Introduction

The study of graphs that focused on the connection between networks of points and lines is known as graph theory. Graph theory finds numerous real-world applications in fields such as computer graphics, networking, biology, and various other domains. Molecular graph theory, a specialized branch, utilizes discrete mathematics to analyze and model the physical and biological properties of chemical compounds. Leonhard Euler1 was Swiss mathematician who introduced graph theory in eighteenth century.

Networks link nodes that are connected to each other in some way. A network is made up of several individual PCs that are linked together. A network can also be considered to be formed by cell phone users. Examining the optimal approach to network implementation is a step in the networking process. A new field of study called “cheminformatics” combines information science, mathematics, and chemistry. It attracted the interest of researchers worldwide.

Silicates make up the majority of minerals found in the crust of the Earth. In the majority of commonly found silicates, which include practically all silicate minerals found in Earth’s crust. Metal carbonates or oxides from sand can be combined to create silicates. By combining distinct tetrahedron silicates, we can obtain a variety of silicate structures. In a similar vein, distinct silicate structures construct silicate networks. The oxide networks are produced by taking silicon atoms out of the tetrahedra’s center. The copper II oxide (cupric oxide) network is also taken into consideration here. In medical science, copper is incredibly useful. It is necessary for the synthesis and stability of skin proteins in addition to containing powerful biocidal properties2. CuO is an inorganic chemical compound formed from copper II oxide, also known as cupric oxide. This mineral is essential to both plants and animals. Copper II oxide is a safe copper source that is used in vitamin and mineral supplements.

The properties of materials strongly depend on the molecular structure of materials. Therefore, it is very important to model and characterize the structure to predict and enhance the properties. A topological index is a numerical value that can be used to describe a certain feature of the molecular graph. Topological indices are used in theoretical chemistry to predict and evaluate the physical and biological characteristics of chemical compounds, including their boiling point, stability, enthalpy of vaporization, and other characteristics3,4,5,6,7,8,9,10,11,12,13,14. Many topological descriptors have been examined in theoretical chemistry and have found applications, particularly in QSPR/QSAR research15,16,17,18,19,20,21,22,23,24. Topological indices are categorized into three types which are as under: Degree based topological descriptors, distance based topological descriptors, and counting related polynomials indices25,26,27,28,29. Degree based topological descriptors play an important role in molecular graph theory particularly in chemistry7,30,31,32,33,34,35,36,37. The references listed in18,30,33,38,39,40,41,42,43,44,45,46,47,48 have utilized several novel topological descriptors for quantification of molecular structures. This research examines various silicate and oxide networks through Revan topological indices.

Let \({\mathbb{R}}^{ \otimes }\) be a connected graph with the vertex set \(V\left( {{\mathbb{R}}^{ \otimes } } \right)\) and edge set \(E\left( {{\mathbb{R}}^{ \otimes } } \right)\). The degree of a vertex \(\sigma^{ \oplus }\) given by \(\partial \left( {\sigma^{ \oplus } } \right)\) is the number of vertices adjacent at \(\sigma^{ \oplus }\). The maximum and minimum degree of a graph \({\mathbb{R}}^{ \otimes }\) is given as \(\psi \left( {{\mathbb{R}}^{ \otimes } } \right)\) and \(\chi \left( {{\mathbb{R}}^{ \otimes } } \right)\), respectively. The Revan vertex degree of a vertex \(u^{ \oplus } \in {\mathbb{R}}^{ \otimes }\) is defined as \({ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) = \psi \left( {{\mathbb{R}}^{ \otimes } } \right)\) +  \(\chi \left( {{\mathbb{R}}^{ \otimes } } \right) - \partial \left( {\sigma^{ \oplus } } \right)\). The edge \(\sigma^{ \oplus } \varepsilon^{ \oplus }\) denotes the Revan edge connecting the Revan vertices \(\sigma^{ \oplus }\) and \(\varepsilon^{ \oplus }\). One can consult refs.49,50,51 for more details about these topological indices.

The 1st, 2nd and 3rd Revan indices52,53,54 of \({\mathbb{R}}^{ \otimes }\) are expressed as follows:

$$\Re_{1} \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}$$
(1)
$$\Re_{2} \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}$$
(2)
$$\Re_{3} \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]}$$
(3)

The 1st and 2nd modified Revan indices55,56 of \({\mathbb{R}}^{ \otimes }\) are expressed as follows:

$${}^{m}\Re_{1} \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}}$$
(4)
$${}^{m}\Re_{2} \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}}$$
(5)

The 1st and 2nd hyper-Revan indices57,58 of \({\mathbb{R}}^{ \otimes }\) are described as follows:

$$H\Re_{1} \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2}$$
(6)
$$H\Re_{2} \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2}$$
(7)

Sum connectivity Revan index59 of \({\mathbb{R}}^{ \otimes }\) are expressed as follows:

$$S^{c} \Re \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\frac{1}{{\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}}$$
(8)

Product connectivity Revan index60 of \({\mathbb{R}}^{ \otimes }\) is expressed as follows:

$$P^{c8} \Re \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\frac{1}{{\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}}$$
(9)

Harmonic Revan index61 of \({\mathbb{R}}^{ \otimes }\) are defined as follows:

$$H^{r} \Re \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\frac{2}{{{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)}}}$$
(10)

Geometric arithmetic Revan index62 of \({\mathbb{R}}^{ \otimes }\) is defined as follows:

$$GA\Re \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)}}}$$
(11)

Arithmetic geometric Revan index63 of \({\mathbb{R}}^{ \otimes }\) is described as follows:

$$AG\Re \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\frac{{{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}}$$
(12)

F-Revan index64 of \({\mathbb{R}}^{ \otimes }\) is expressed as follows:

$$F\Re \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} }$$
(13)

Sombor Revan index65 of \({\mathbb{R}}^{ \otimes }\) is defined as follows:

$$S^{m} \Re \left( {{\mathbb{R}}^{ \otimes } } \right) = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E\left( {{\mathbb{R}}^{ \otimes } } \right)}} {\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } }$$
(14)

In this study, first Revan index \(\Re_{1} \left( {{\mathbb{R}}^{ \otimes } } \right)\) second Revan index \(\Re_{2} \left( {{\mathbb{R}}^{ \otimes } } \right)\), third Revan index \(\Re_{3} \left( {{\mathbb{R}}^{ \otimes } } \right)\), first modified Revan index \({}^{m}\Re_{1} \left( {{\mathbb{R}}^{ \otimes } } \right)\), second modified Revan index \({}^{m}\Re_{2} \left( {{\mathbb{R}}^{ \otimes } } \right)\), The first hyper-Revan index \(H\Re_{1} \left( {{\mathbb{R}}^{ \otimes } } \right)\), second hyper-Revan index \(H\Re_{2} \left( {{\mathbb{R}}^{ \otimes } } \right)\), sum connectivity Revan index \(S^{c} \Re \left( {{\mathbb{R}}^{ \otimes } } \right)\), product connectivity Revan index \(P^{c} \Re \left( {{\mathbb{R}}^{ \otimes } } \right)\), harmonic Revan index \(H^{r} \Re \left( {{\mathbb{R}}^{ \otimes } } \right)\), geometric arithmetic Revan index \(GA\Re \left( {{\mathbb{R}}^{ \otimes } } \right)\), arithmetic geometric Revan index \(GA\Re \left( {{\mathbb{R}}^{ \otimes } } \right)\), F-Revan index \(F\Re \left( {{\mathbb{R}}^{ \otimes } } \right)\), and Sombor Revan index \(S^{m} \Re \left( {{\mathbb{R}}^{ \otimes } } \right)\) are computed for chain silicate and chain oxide networks. For more details regarding network modeling, the reader is referred to the works18,66,67,68,69,70,71.

Main results

Metal carbonates or oxides from sand can be combined to create silicates. By combining distinct tetrahedron silicates, we can obtain a variety of silicate structures. In a similar vein, distinct silicate structures construct silicate networks. The oxide networks are produced by taking silicon atoms out of the tetrahedra’s center. The copper II oxide (cupric oxide) network is also taken into consideration here72.

This section presents the main results for different types of Revan topological indices for the graphs of oxide and silicate chain networks \(n\).

Results for the graph of chain oxide network \({\mathbb{C}}O_{n}\)

The graph of chain oxide is shown in Fig. 1. We partition the edges of the graph with respect to the degree of the end vertices. All vertices containing degrees according to edges connected with the respective vertices are computed as 2 and 4. Here we have three different kinds of edges whose end vertices have degree (2, 2), (2, 4) and (4, 4). Symbolically represented by \(E_{1} \left( {2,\,2} \right)\), \(E_{2} \left( {2,\,4} \right)\) and \(E_{3} \left( {4,\,4} \right)\). Total number of edges calculated of the type \(E_{1} \left( {2,\,2} \right)\), \(E_{2} \left( {2,\,4} \right)\) and \(E_{3} \left( {4,\,4} \right)\) are 2, 2n and n − 2 respectively. Table 1 provides a summary of all these findings.

Fig. 1
figure 1

Chain oxide network.

Table 1 Edge partition of chain oxide network based on the degree of end vertices of each edge.

Theorem 1

Let \({\mathbb{C}}O_{n}\) is the graph of chain oxide network, then we have

$$\begin{aligned} & \Re_{1} \left( {{\mathbb{C}}O_{n} } \right) = 16n + 8,\;\Re_{2} \left( {{\mathbb{C}}O_{n} } \right) = 20n + 24,\;\Re_{3} \left( {{\mathbb{C}}O_{n} } \right) = 4n,\;^{m} \Re_{1} \left( {{\mathbb{C}}O_{n} } \right) = \frac{1}{12}\left( {7n - 3} \right) \\ &^{m} \Re_{2} \left( {{\mathbb{C}}O_{n} } \right) = \frac{1}{8}\left( {4n - 3} \right),\;H\Re_{1} \left( {{\mathbb{C}}O_{n} } \right) = 88n + 96,\;H\Re_{2} \left( {{\mathbb{C}}O_{n} } \right) = 144n + 480 \\ & S^{c} \Re \left( {{\mathbb{C}}O_{n} } \right) = = \frac{1}{\sqrt 2 } + \frac{2n}{{\sqrt 6 }} + \frac{n - 2}{2},\;P^{c} \Re \left( {{\mathbb{C}}O_{n} } \right) = \frac{n - 2}{2} + \frac{n}{\sqrt 2 },\;H^{r} \Re \left( {{\mathbb{C}}O_{n} } \right) = \frac{1}{12}\left( {14n - 3} \right) \\ & GA\Re \left( {{\mathbb{C}}O_{n} } \right) = \left( {\frac{3 + 4\sqrt 2 }{3}} \right)n,\;AG\Re \left( {{\mathbb{C}}O_{n} } \right) = 1 + \left( {\frac{\sqrt 2 + 6}{{2\sqrt 2 }}} \right)n,\;F\Re \left( {{\mathbb{C}}O_{n} } \right) = 48n + 48 \\ & S^{m} \Re \left( {{\mathbb{C}}O_{n} } \right) = 4\sqrt 2 + \left( {4\sqrt 5 + 2\sqrt 2 } \right)n \\ \end{aligned}$$

Proof

By using the edge partitions mentioned in Table 1 and Eqs. (114), we can obtain the results as follows.

$$\begin{aligned} \Re_{1} \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} \\ & = \left[ {\lambda \left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \left( {4 + 4} \right)\left( 2 \right) + \left( {4 + 2} \right)\left( {2n} \right) + \left( {2 + 2} \right)\left( {n - 2} \right) \\ \Re_{1} \left( {{\mathbb{C}}O_{n} } \right) & = 16n + 8 \\ \end{aligned}$$
$$\begin{aligned} \Re_{2} \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \left( {4 \times 4} \right)\left( 2 \right) + \left( {4 \times 2} \right)\left( {2n} \right) + \left( {2 \times 2} \right)\left( {n - 2} \right) \\ \Re_{2} \left( {{\mathbb{C}}O_{n} } \right) & = 20n + 24 \\ \end{aligned}$$
$$\begin{aligned} \Re_{3} \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]} \\ & = \left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]\left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]\left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]\left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \left( {\left| {4 - 4} \right|} \right)\left( 2 \right) + \left( {\left| {4 - 2} \right|} \right)\left( {2n} \right) + \left( {\left| {2 - 2} \right|} \right)\left( {n - 2} \right) \\ \Re_{3} \left( {{\mathbb{C}}O_{n} } \right) & = 4n \\ \end{aligned}$$
$$\begin{aligned}^{m} \Re_{1} \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \frac{1}{{\left( {4 + 4} \right)}}\left( 2 \right) + \frac{1}{{\left( {4 + 2} \right)}}\left( {2n} \right) + \frac{1}{{\left( {2 + 2} \right)}}\left( {n - 2} \right) \\^{m} \Re_{1} \left( {{\mathbb{C}}O_{n} } \right) & = \frac{1}{12}\left( {7n - 3} \right) \\ \end{aligned}$$
$$\begin{aligned}^{m} \Re_{2} \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \frac{1}{{\left( {4 \times 4} \right)}}\left( 2 \right) + \frac{1}{{\left( {4 \times 2} \right)}}\left( {2n} \right) + \frac{1}{{\left( {2 \times 2} \right)}}\left( {n - 2} \right) \\^{m} \Re_{2} \left( {{\mathbb{C}}O_{n} } \right) & = \frac{1}{8}\left( {4n - 3} \right) \\ \end{aligned}$$
$$\begin{aligned} H\Re_{1} \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \left( {4 + 4} \right)^{2} \left( 2 \right) + \left( {4 + 2} \right)^{2} \left( {2n} \right) + \left( {2 + 2} \right)^{2} \left( {n - 2} \right) \\ H\Re_{1} \left( {{\mathbb{C}}O_{n} } \right) & = 88n + 96 \\ \end{aligned}$$
$$\begin{aligned} H\Re_{2} \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \left( {4 \times 4} \right)^{2} \left( 2 \right) + \left( {4 \times 2} \right)^{2} \left( {2n} \right) + \left( {2 \times 2} \right)^{2} \left( {n - 2} \right) \\ H\Re_{2} \left( {{\mathbb{C}}O_{n} } \right) & = 144n + 480 \\ \end{aligned}$$
$$\begin{aligned} S^{c} \Re \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} \\ & = \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \frac{1}{{\sqrt {\left( {4 + 4} \right)} }}\left( 2 \right) + \frac{1}{{\sqrt {\left( {4 + 2} \right)} }}\left( {2n} \right) + \frac{1}{{\sqrt {\left( {2 + 2} \right)} }}\left( {n - 2} \right) \\ S^{c} \Re \left( {{\mathbb{C}}O_{n} } \right) & = = \frac{1}{\sqrt 2 } + \frac{2n}{{\sqrt 6 }} + \frac{n - 2}{2} \\ \end{aligned}$$
$$\begin{aligned} P^{c} \Re \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} \\ & = \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times v\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \frac{1}{{\sqrt {\left( {4 \times 4} \right)} }}\left( 2 \right) + \frac{1}{{\sqrt {\left( {4 \times 2} \right)} }}\left( {2n} \right) + \frac{1}{{\sqrt {\left( {2 \times 2} \right)} }}\left( {n - 2} \right) \\ P^{c} \Re \left( {{\mathbb{C}}O_{n} } \right) & = \frac{n - 2}{2} + \frac{n}{\sqrt 2 } \\ \end{aligned}$$
$$\begin{aligned} H^{r} \Re \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{2}{{{ \mathchar'26\mkern-9mu\lambda }\left[ {\zeta \left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{2}{\begin{gathered} \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right] \hfill \\ \hfill \\ \end{gathered} }} \\ & = \frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \frac{2}{{\left( {4 + 4} \right)}}\left( 2 \right) + \frac{2}{{\left( {4 + 2} \right)}}\left( {2n} \right) + \frac{2}{{\left( {2 + 2} \right)}}\left( {n - 2} \right) \\ H^{r} \Re \left( {{\mathbb{C}}O_{n} } \right) & = \frac{1}{12}\left( {14n - 3} \right) \\ \end{aligned}$$
$$\begin{aligned} GA\Re \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times \zeta \left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + \zeta \left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}s\left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \frac{{2\sqrt {\left( {4 \times 4} \right)} }}{{\left( {4 + 4} \right)}}\left( 2 \right) + \frac{{2\sqrt {\left( {4 \times 2} \right)} }}{{\left( {4 + 2} \right)}}\left( {2n} \right) + \frac{{2\sqrt {\left( {2 \times 2} \right)} }}{{\left( {2 + 2} \right)}}\left( {n - 2} \right) \\ GA\Re \left( {{\mathbb{C}}O_{n} } \right) & = \left( {\frac{3 + 4\sqrt 2 }{3}} \right)n \\ \end{aligned}$$
$$\begin{aligned} AG\Re \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}} \\ & = \frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}\left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}\left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}s\left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \frac{{\left( {4 + 4} \right)}}{{2\sqrt {\left( {4 \times 4} \right)} }}\left( 2 \right) + \frac{{\left( {4 + 2} \right)}}{{2\sqrt {\left( {4 \times 2} \right)} }}\left( {2n} \right) + \frac{{\left( {2 + 2} \right)}}{{2\sqrt {\left( {2 \times 2} \right)} }}\left( {n - 2} \right) \\ AG\Re \left( {{\mathbb{C}}O_{n} } \right) & = 1 + \left( {\frac{\sqrt 2 + 6}{{2\sqrt 2 }}} \right)n \\ \end{aligned}$$
$$\begin{aligned} F\Re \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} \begin{gathered} \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right] \hfill \\ \hfill \\ \end{gathered} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]\left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]\left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]\left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \left( {4^{2} + 4^{2} } \right)\left( 2 \right) + \left( {4^{2} + 2^{2} } \right)\left( {2n} \right) + \left( {2^{2} + 2^{2} } \right)\left( {n - 2} \right) \\ F\Re \left( {{\mathbb{C}}O_{n} } \right) & = 48n + 48 \\ \end{aligned}$$
$$\begin{aligned} S^{m} \Re \left( {{\mathbb{C}}O_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}O_{n} } \right)}} {\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} } + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}O_{n} } \right)}} {\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} } + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}O_{n} } \right)}} {\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} } \\ & = \sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \left| {E_{1} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \left| {E_{2} \left( {{\mathbb{C}}O_{n} } \right)} \right| + \sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \left| {E_{3} \left( {{\mathbb{C}}O_{n} } \right)} \right| \\ & = \sqrt {\left( {4^{2} + 4^{2} } \right)} \left( 2 \right) + \sqrt {\left( {4^{2} + 2^{2} } \right)} \left( {2n} \right) + \sqrt {\left( {2^{2} + 2^{2} } \right)} \left( {n - 2} \right) \\ S^{m} \Re \left( {{\mathbb{C}}O_{n} } \right) & = 4\sqrt 2 + \left( {4\sqrt 5 + 2\sqrt 2 } \right)n \\ \end{aligned}$$

\(\square\)

Results for the graph of chain silicate network \({\mathbb{C}}S_{n}\)

The graph of chain silicate is shown in Fig. 2. The edge partition of the graph is performed according to the degree of the end vertices. All vertices with degrees according to edges connected with the respective vertices are computed as 3 and 6. Here we have three different types of edges whose end vertices have degree (3, 3), (3, 6) and (6, 6). Symbolically represented by \(E_{1} \left( {3,\,3} \right)\), \(E_{2} \left( {3,\,6} \right)\) and \(E_{3} \left( {6,\,6} \right)\). Total edge number calculated of the type \(E_{1} \left( {3,\,3} \right)\), \(E_{2} \left( {3,\,6} \right)\) and \(E_{3} \left( {6,\,6} \right)\) are \(n + 4\), \(4n - 2\) and \(n - 2\) respectively. All these results are summarized in Table 2.

Fig. 2
figure 2

Chain silicate network.

Table 2 Partition of edges of chain silicate network based on the degree of end vertices of each edge.

Theorem 2

Let \({\mathbb{C}}S_{n}\) is the chain silicate network, then

$$\begin{aligned} & \Re_{1} \left( {{\mathbb{C}}S_{n} } \right) = 54n + 18,\;\Re_{2} \left( {{\mathbb{C}}S_{n} } \right) = {117}n + 90,\;\Re_{3} \left( {{\mathbb{C}}S_{n} } \right) = 12n - 6,\;^{m} \Re_{1} \left( {{\mathbb{C}}S_{n} } \right) = \frac{1}{36}\left( {25n - 8} \right) \\ &^{m} \Re_{2} \left( {{\mathbb{C}}S_{n} } \right) = \frac{1}{36}\left( {13n - 8} \right),\;H\Re_{1} \left( {{\mathbb{C}}S_{n} } \right) = {504}n + 242,\;H\Re_{2} \left( {{\mathbb{C}}S_{n} } \right) = {2673}n + {4374} \\ & S^{c} \Re \left( {{\mathbb{C}}S_{n} } \right) = \frac{1}{{\sqrt {12} }}\left( {n + 4} \right) + \frac{1}{3}\left( {4n - 2} \right) + \frac{1}{\sqrt 6 }\left( {n - 2} \right) \\ & P^{c} \Re \left( {{\mathbb{C}}S_{n} } \right) = \frac{1}{6}\left( {n + 2 + 2} \right) + \frac{1}{{\sqrt {18} }}\left( {4n - 2} \right) + \frac{1}{3}\left( {n - 4 + 2} \right) \\ & H^{r} \Re \left( {{\mathbb{C}}S_{n} } \right) = \frac{2}{{\sqrt {12} }}\left( {n + 4} \right) + \frac{2}{3}\left( {4n - 2} \right) + \frac{2}{\sqrt 6 }\left( {n - 2} \right),\;GA\Re \left( {{\mathbb{C}}S_{n} } \right) = 2n + 1 + 1\frac{2\sqrt 2 }{3}\left( {4n - 4 + 2} \right) \\ & AG\Re \left( {{\mathbb{C}}S_{n} } \right) = 2n + 2 + \frac{3}{2\sqrt 2 }\left( {4n - 2} \right),\; F\Re_{1} \left( {{\mathbb{C}}S_{n} } \right) = 270n + 162 \\ & S^{m} \Re_{1} \left( {{\mathbb{C}}S_{n} } \right) = \left( {9\sqrt 2 + 12\sqrt 5 } \right)n + \left( {18\sqrt 2 - 6\sqrt 5 } \right) \\\end{aligned}$$

Proof

By using the edge partitions mentioned in Table 2 and Eqs. (114), we can obtain the results as follows.

$$\begin{aligned} \Re_{1} \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \left( {6 + 6} \right)\left( {n + 4} \right) + \left( {6 + 3} \right)\left( {4n - 2} \right) + \left( {3 + 3} \right)\left( {n - 2} \right) \\ \Re_{1} \left( {{\mathbb{C}}S_{n} } \right) & = 54n + 18 \\ \end{aligned}$$
$$\begin{aligned} \Re_{2} \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{1} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{2} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \left( {6 \times 6} \right)\left( {n + 4} \right) + \left( {6 \times 3} \right)\left( {4n - 2} \right) + \left( {3 \times 3} \right)\left( {n - 2} \right) \\ \Re_{2} \left( {{\mathbb{C}}S_{n} } \right) & = {117}n + 90 \\ \end{aligned}$$
$$\begin{aligned} \Re_{3} \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]} \\ & = \left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]\left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]\left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]\left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \left| {\left( {6 - 6} \right)} \right|\left( {n + 4} \right) + \left| {\left( {6 - 3} \right)} \right|\left( {4n - 2} \right) + \left| {\left( {3 - 3} \right)} \right|\left( {n - 2} \right) \\ \Re_{3} \left( {{\mathbb{C}}S_{n} } \right) & = 12n - 6 \\ \end{aligned}$$
$$\begin{aligned}^{m} \Re_{1} \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \frac{1}{{\left( {6 + 6} \right)}}\left( {n + 4} \right) + \frac{1}{{\left( {6 + 3} \right)}}\left( {4n - 2} \right) + \frac{1}{{\left( {3 + 3} \right)}}\left( {n - 2} \right) \\^{m} \Re_{1} \left( {{\mathbb{C}}S_{n} } \right) & = \frac{1}{36}\left( {25n - 8} \right) \\ \end{aligned}$$
$$\begin{aligned}^{m} \Re_{2} \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \frac{1}{{\left( {6 \times 6} \right)}}\left( {n + 4} \right) + \frac{1}{{\left( {6 \times 3} \right)}}\left( {4n - 2} \right) + \frac{1}{{\left( {3 \times 3} \right)}}\left( {n - 2} \right) \\^{m} \Re_{2} \left( {{\mathbb{C}}S_{n} } \right) & = \frac{1}{36}\left( {13n - 8} \right) \\ \end{aligned}$$
$$\begin{aligned} H\Re_{1} \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \left( {6 + 6} \right)^{2} \left( {n + 4} \right) + \left( {6 + 3} \right)^{2} \left( {4n - 2} \right) + \left( {3 + 3} \right)^{2} \left( {n - 2} \right) \\ H\Re_{1} \left( {{\mathbb{C}}S_{n} } \right) & = {504}n + 242 \\ \end{aligned}$$
$$\begin{aligned} H\Re_{2} \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \left( {6 \times 6} \right)^{2} \left( {n + 4} \right) + \left( {6 \times 3} \right)^{2} \left( {4n - 2} \right) + \left( {3 \times 3} \right)^{2} \left( {n - 2} \right) \\ H\Re_{2} \left( {{\mathbb{C}}S_{n} } \right) & = {2673}n + {4374} \\ \end{aligned}$$
$$\begin{aligned} S^{c} \Re \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} \\ & = \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \frac{1}{{\sqrt {\left( {6 + 6} \right)} }}\left( {n + 4} \right) + \frac{1}{{\sqrt {\left( {6 + 3} \right)} }}\left( {4n - 2} \right) + \frac{1}{{\sqrt {\left( {3 + 3} \right)} }}\left( {n - 2} \right) \\ S^{c} \Re \left( {{\mathbb{C}}S_{n} } \right) & = \frac{1}{{\sqrt {12} }}\left( {n + 4} \right) + \frac{1}{3}\left( {4n - 2} \right) + \frac{1}{\sqrt 6 }\left( {n - 2} \right) \\ \end{aligned}$$
$$\begin{aligned} P^{c} \Re \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} \\ & = \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \frac{1}{{\sqrt {\left( {6 \times 6} \right)} }}\left( {n + 2 + 2} \right) + \frac{1}{{\sqrt {\left( {6 \times 3} \right)} }}\left( {4n - 4 + 2} \right) + \frac{1}{{\sqrt {\left( {3 \times 3} \right)} }}\left( {n - 2} \right) \\ P^{c} \Re \left( {{\mathbb{C}}S_{n} } \right) & = \frac{1}{6}\left( {n + 2 + 2} \right) + \frac{1}{{\sqrt {18} }}\left( {4n - 2} \right) + \frac{1}{3}\left( {n - 4 + 2} \right) \\ \end{aligned}$$
$$\begin{aligned} H^{r} \Re \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \frac{2}{{\sqrt {\left( {6 + 6} \right)} }}\left( {n + 4} \right) + \frac{2}{{\sqrt {\left( {6 + 3} \right)} }}\left( {4n - 2} \right) + \frac{2}{{\sqrt {\left( {3 + 3} \right)} }}\left( {n - 2} \right) \\ H^{r} \Re \left( {{\mathbb{C}}S_{n} } \right) & = \frac{2}{{\sqrt {12} }}\left( {n + 4} \right) + \frac{2}{3}\left( {4n - 2} \right) + \frac{2}{\sqrt 6 }\left( {n - 2} \right) \\ \end{aligned}$$
$$\begin{aligned} GA\Re \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}s\left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \frac{{2\sqrt {\left( {6 \times 6} \right)} }}{{\left( {6 + 6} \right)}}\left( {n + 4} \right) + \frac{{2\sqrt {\left( {6 \times 3} \right)} }}{{\left( {6 + 3} \right)}}\left( {4n - 2} \right) + \frac{{2\sqrt {\left( {3 \times 3} \right)} }}{{\left( {3 + 3} \right)}}\left( {n - 2} \right) \\ GA\Re \left( {{\mathbb{C}}S_{n} } \right) & = 2n + 1 + 1\frac{2\sqrt 2 }{3}\left( {4n - 4 + 2} \right) \\ \end{aligned}$$
$$\begin{aligned} AG\Re \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}} \\ & = \frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}\left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}\left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}s\left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \frac{{\left( {6 + 6} \right)}}{{2\sqrt {\left( {6 \times 6} \right)} }}\left( {n + 4} \right) + \frac{{\left( {6 + 3} \right)}}{{2\sqrt {\left( {6 \times 3} \right)} }}\left( {4n - 2} \right) + \frac{{\left( {3 + 3} \right)}}{{2\sqrt {\left( {3 \times 3} \right)} }}\left( {n - 2} \right) \\ AG\Re \left( {{\mathbb{C}}S_{n} } \right) & = 2n + 2 + \frac{3}{2\sqrt 2 }\left( {4n - 2} \right) \\ \end{aligned}$$
$$\begin{aligned} F\Re \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]\left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]\left| {E_{2} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]\left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \left( {6^{2} + 6^{2} } \right)\left( {n + 4} \right) + \left( {6^{2} + 3^{2} } \right)\left( {4n - 2} \right) + \left( {3^{2} + 3^{2} } \right)\left( {n - 2} \right) \\ F\Re_{1} \left( {{\mathbb{C}}S_{n} } \right) & = 270n + 162 \\ \end{aligned}$$
$$\begin{aligned} S^{m} \Re \left( {{\mathbb{C}}S_{n} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {{\mathbb{C}}S_{n} } \right)}} {\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} } + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {{\mathbb{C}}S_{n} } \right)}} {\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} } + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {{\mathbb{C}}S_{n} } \right)}} {\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} } \\ & = \sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \left| {E_{1} \left( {{\mathbb{C}}S_{n} } \right)} \right| + \sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \left| {E_{2} \left( v \right)} \right| + \sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \left| {E_{3} \left( {{\mathbb{C}}S_{n} } \right)} \right| \\ & = \sqrt {\left( {6^{2} + 6^{2} } \right)} \left( {n + 4} \right) + \sqrt {\left( {6^{2} + 3^{2} } \right)} \left( {4n - 2} \right) + \sqrt {\left( {3^{2} + 3^{2} } \right)} \left( {n - 2} \right) \\ S^{m} \Re_{1} \left( {{\mathbb{C}}S_{n} } \right) & = \left( {9\sqrt 2 + 12\sqrt 5 } \right)n + \left( {18\sqrt 2 - 6\sqrt 5 } \right) \\ \end{aligned}$$

\(\square\)

Results for the graph of sheet oxide network \(SO^{*}\)

The graph of sheet oxide network is shown in Fig. 3. The edge partition of the graph is performed according to the degree of the end vertices. All vertices with degrees according to edges connected with the respective vertices are computed as 2 and 4. Here we have two different types of edges whose end vertices have degree (2, 4) and (4, 4). Symbolically represented by \(E_{1} \left( {2,\,4} \right)\) and \(E_{2} \left( {4,\,4} \right)\). Total edge number calculated of the type \(E_{1} \left( {2,\,4} \right)\) and \(E_{2} \left( {4,\,4} \right)\) are \(12n\) and \(18n^{2} - 12n\) respectively. All these results are summarized in Table 3.

Fig. 3
figure 3

Sheet oxide network.

Table 3 Partition of edges of sheet oxide network based on the degree of end vertices of each edge.

Theorem 3

Let \(SO^{*}\) is the graph of sheet oxide network then

$$\begin{aligned} & \Re_{1} \left( {SO^{*} } \right) = 72n^{2} + 24n,\;\Re_{2} \left( {SO^{*} } \right) = 72n^{2} + 48n,\;\Re_{3} \left( {SO^{*} } \right) = 24n,\;^{m} \Re_{1} \left( {SO^{*} } \right) = \frac{1}{2}\left( {9n^{2} - 2n} \right) \\ &^{m} \Re_{2} \left( {SO^{*} } \right) = \frac{1}{2}\left( {3n^{2} - n} \right),\;H\Re_{1} \left( {SO^{*} } \right) = 288n^{2} + 240n,\;H\Re_{2} \left( {SO^{*} } \right) = 288n^{2} + 576n \\ & S^{c} \Re \left( {SO^{*} } \right) = = \frac{12n}{{\sqrt 6 }} + 9n^{2} - 6n,\;P^{c} \Re \left( {SO^{*} } \right) = \frac{12n}{{\sqrt 8 }} + \frac{{18n^{2} - 12n}}{2},\;P^{c} \Re \left( {SO^{*} } \right) = \frac{12n}{{\sqrt 8 }} + \frac{{18n^{2} - 12n}}{2} \\ & H^{r} \Re \left( {SO^{*} } \right) = \left( {9n^{2} - 2n} \right),\;GA\Re \left( {SO^{*} } \right) = 18n^{2} - 12n + 8\sqrt 2 n,\;F\Re_{1} \left( {SO^{*} } \right) = 144n^{2} - 144n \\ & S^{m} \Re_{1} \left( {SO^{*} } \right) = 36\sqrt 2 n^{2} + 24\sqrt 5 n - 24n\sqrt 2 \\ \end{aligned}$$

Proof

By using the edge partitions mentioned in Table 3 and Eqs. (114), we can obtain the results as follows

$$\begin{aligned} \Re_{2} \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{1} \left( {SO^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \left( {4 + 2} \right)\left( {12n} \right) + \left( {2 + 2} \right)\left( {18n^{2} - 12n} \right) \\ \Re_{1} \left( {SO^{*} } \right) & = 72n^{2} + 24n \\ \end{aligned}$$
$$\begin{aligned} \Re_{2} \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{1} \left( {SO^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \left( {4 \times 2} \right)\left( {12n} \right) + \left( {2 \times 2} \right)\left( {18n^{2} - 12n} \right) \\ \Re_{2} \left( {SO^{*} } \right) & = 72n^{2} + 48n \\ \end{aligned}$$
$$\begin{aligned} \Re_{3} \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]} \\ & = \left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]\left| {E_{1} \left( {SO^{*} } \right)} \right| + \left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]\left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \left( {\left| {4 - 2} \right|} \right)\left( {12n} \right) + \left( {\left| {2 - 2} \right|} \right)\left( {18n^{2} - 12n} \right) \\ \Re_{3} \left( {SO^{*} } \right) & = 24n \\ \end{aligned}$$
$$\begin{aligned}^{m} \Re_{1} \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {SO^{*} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \frac{1}{{\left( {4 + 2} \right)}}\left( {12n} \right) + \frac{1}{{\left( {2 + 2} \right)}}\left( {18n^{2} - 12n} \right) \\^{m} \Re_{1} \left( {SO^{*} } \right) & = \frac{1}{2}\left( {9n^{2} - 2n} \right) \\ \end{aligned}$$
$$\begin{aligned}^{m} \Re_{2} \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{u^{ \oplus } v^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {SO^{*} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \frac{1}{{\left( {4 \times 2} \right)}}\left( {12n} \right) + \frac{1}{{\left( {2 \times 2} \right)}}\left( {18n^{2} - 12n} \right) \\^{m} \Re_{2} \left( {SO^{*} } \right) & = \frac{1}{2}\left( {3n^{2} - n} \right) \\ \end{aligned}$$
$$\begin{aligned} H\Re_{1} \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{1} \left( {SO^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \left( {4 + 2} \right)^{2} \left( {12n} \right) + \left( {2 + 2} \right)^{2} \left( {18n^{2} - 12n} \right) \\ H\Re_{1} \left( {SO^{*} } \right) & = 288n^{2} + 240n \\ \end{aligned}$$
$$\begin{aligned} H\Re_{2} \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{1} \left( {SO^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \left( {4 \times 2} \right)^{2} \left( {12n} \right) + \left( {2 \times 2} \right)^{2} \left( {18n^{2} - 12n} \right) \\ H\Re_{2} \left( {SO^{*} } \right) & = 288n^{2} + 576n \\ \end{aligned}$$
$$\begin{aligned} S^{c} \Re \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} \\ & = \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{1} \left( {SO^{*} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \frac{1}{{\sqrt {\left( {4 + 2} \right)} }}\left( {12n} \right) + \frac{1}{{\sqrt {\left( {2 + 2} \right)} }}\left( {18n^{2} - 12n} \right) \\ S^{c} \Re \left( {SO^{*} } \right) & = = \frac{12n}{{\sqrt 6 }} + 9n^{2} - 6n \\ \end{aligned}$$
$$\begin{aligned} P^{c} \Re \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} \\ & = \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{1} \left( {SO^{*} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \frac{1}{{\sqrt {\left( {4 \times 2} \right)} }}\left( {12n} \right) + \frac{1}{{\sqrt {\left( {2 \times 2} \right)} }}\left( {18n^{2} - 12n} \right) \\ P^{c} \Re \left( {SO^{*} } \right) & = \frac{12n}{{\sqrt 8 }} + \frac{{18n^{2} - 12n}}{2} \\ \end{aligned}$$
$$\begin{aligned} H^{r} \Re \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {SO^{*} } \right)} \right| + \frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \frac{2}{{\left( {4 + 2} \right)}}\left( {12n} \right) + \frac{2}{{\left( {2 + 2} \right)}}\left( {18n^{2} - 12n} \right) \\ H^{r} \Re \left( {SO^{*} } \right) & = \left( {9n^{2} - 2n} \right) \\ \end{aligned}$$
$$\begin{aligned} GA\Re \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {SO^{*} } \right)} \right| + \frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \frac{{2\sqrt {\left( {4 \times 2} \right)} }}{{\left( {4 + 2} \right)}}\left( {12n} \right) + \frac{{2\sqrt {\left( {2 \times 2} \right)} }}{{\left( {2 + 2} \right)}}\left( {18n^{2} - 12n} \right) \\ GA\Re \left( {SO^{*} } \right) & = 18n^{2} - 12n + 8\sqrt 2 n \\ \end{aligned}$$
$$\begin{aligned} AG\Re \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}} \\ & = \frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {\zeta \left( {\sigma^{ \oplus } } \right) \times \zeta \left( {\varepsilon^{ \oplus } } \right)} }}\left| {E_{1} \left( {SO^{*} } \right)} \right| + \frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}\left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \frac{{\left( {4 + 2} \right)}}{{2\sqrt {\left( {4 \times 2} \right)} }}\left( {12n} \right) + \frac{{\left( {2 + 2} \right)}}{{2\sqrt {\left( {2 \times 2} \right)} }}\left( {18n^{2} - 12n} \right) \\ & = \frac{36}{{\sqrt 8 }}n + \left( {18n^{2} - 12n} \right) \\ AG\Re \left( {SO^{*} } \right) & = \frac{18}{{\sqrt 2 }}n + \left( {18n^{2} - 12n} \right) \\ \end{aligned}$$
$$\begin{aligned} F\Re \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]\left| {E_{1} \left( {SO^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]\left| {E_{2} \left( {SO^{*}_{n} } \right)} \right| \\ & = \left( {4^{2} + 2^{2} } \right)\left( {12n} \right) + \left( {2^{2} + 2^{2} } \right)\left( {18n^{2} - 12n} \right) \\ F\Re_{1} \left( {SO^{*} } \right) & = 144n^{2} - 144n \\ \end{aligned}$$
$$\begin{aligned} S^{m} \Re \left( {SO^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SO^{*} } \right)}} {\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} } + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SO^{*} } \right)}} {\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} } \\ & = \sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \left| {E_{1} \left( {SO^{*} } \right)} \right| + \sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \left| {E_{2} \left( {SO^{*} } \right)} \right| \\ & = \sqrt {\left( {4^{2} + 2^{2} } \right)} \left( {12n} \right) + \sqrt {\left( {2^{2} + 2^{2} } \right)} \left( {18n^{2} - 12n} \right) \\ S^{m} \Re_{1} \left( {SO^{*} } \right) & = 36\sqrt 2 n^{2} + 24\sqrt 5 n - 24n\sqrt 2 \\ \end{aligned}$$

\(\square\)

Results for the graph of sheet Silicate network \(SS^{*}\)

The graph of sheet silicate is shown in Fig. 4. The edge partition of the graph is performed according to the degree of the end vertices. All vertices having degrees according to edges connected with the respective vertices are computed as 3 and 6. Here we have three different types of edges whose end vertices have degree (3, 3), (3, 6) and (6, 6). Symbolically represented by \(E_{1} \left( {3,\,3} \right)\), \(E_{2} \left( {3,\,6} \right)\) and \(E_{3} \left( {6,\,6} \right)\). Total number of edges computed of the type \(E_{1} \left( {3,\,3} \right)\), \(E_{2} \left( {3,\,6} \right)\) and \(E_{3} \left( {6,\,6} \right)\) are \(6n\), \(18n^{2} + 6n\) and \(18n^{2} - 12n\) respectively. All these results are summarized in Table 4.

Fig. 4
figure 4

Sheet silicate network.

Table 4 Partition of edges of sheet silicate network based on the degree of end vertices of each edge.

Theorem 4

Let \(SS^{*}\) is the graph of sheet Silicate network then

$$\begin{aligned} & \Re_{1} \left( {SS^{*} } \right) = 270n^{2} + 54n,\;\Re_{2} \left( {SS^{*} } \right) = 486n^{2} + 216n,\;\Re_{3} \left( {SS^{*} } \right) = 54n^{2} + 18n, \\ &^{m} \Re_{1} \left( {SS^{*} } \right) = \frac{1}{6}\left( {30n^{2} - n} \right),\;^{m} \Re_{2} \left( {SS^{*} } \right) = \frac{1}{2}\left( {6n^{2} - n} \right),\;H\Re_{1} \left( {SS^{*} } \right) = 2106n^{2} + 918n \\ & H\Re_{2} \left( {SS^{*} } \right) = 7290n^{2} + 8748n,\;S^{c} \Re \left( {SS^{*} } \right) = = \left( {6 + \frac{18}{{\sqrt 6 }}} \right)n^{2} + \left( {4 + \frac{3}{\sqrt 6 } - \frac{12}{{\sqrt 6 }}} \right)n \\ & P^{c} \Re \left( {SS^{*} } \right) = \left( {\frac{6}{\sqrt 2 } + 6} \right)n^{2} + \left( {\frac{2}{\sqrt 2 } - 3} \right)n,\;H^{r} \Re \left( {SS^{*} } \right) = \left( {12 + \frac{36}{{\sqrt 6 }}} \right)n^{2} + \left( {4 + \frac{6}{\sqrt 3 } - \frac{24}{{\sqrt 6 }}} \right)n \\ \end{aligned}$$
$$\begin{aligned} & GA\Re \left( {SS^{*} } \right) = \left( {12\sqrt {12} + 18} \right)n^{2} + \left( {4\sqrt 2 - 6} \right)n,\;AG\Re \left( {SS^{*} } \right) = \left( {\frac{27}{{\sqrt 2 }} + 18} \right)n^{2} + \left( {\frac{9}{\sqrt 2 } - 9} \right)n \\ & F\Re_{1} \left( {SS^{*} } \right) = 1134n^{2} + 486n,\;S^{m} \Re_{1} \left( {SS^{*} } \right) = 54\left( {\sqrt {5} + \sqrt 2 } \right)n^{2} + 18\sqrt {5} n \\ \end{aligned}$$

Proof

By using the edge partitions mentioned in Table 4 and Eqs. (114), we can obtain the results as follows

$$\begin{aligned} \Re_{1} \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {v^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {v^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {v^{ \oplus } } \right)} \right]} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {v^{ \oplus } } \right)} \right]\left| {E_{1} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {v^{ \oplus } } \right)} \right]\left| {E_{2} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {v^{ \oplus } } \right)} \right]\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \left( {6 + 6} \right)\left( {6n} \right) + \left( {6 + 3} \right)\left( {18n^{2} + 6n} \right) + \left( {3 + 3} \right)\left( {18n^{2} - 12n} \right) \\ \Re_{1} \left( {SS^{*} } \right) & = 270n^{2} + 54n \\ \end{aligned}$$
$$\begin{aligned} \Re_{1} \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{1} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{2} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \left( {6 \times 6} \right)\left( {6n} \right) + \left( {6 \times 3} \right)\left( {18n^{2} + 6n} \right) + \left( {3 \times 3} \right)\left( {18n^{2} - 12n} \right) \\ \Re_{2} \left( {SS^{*} } \right) & = 486n^{2} + 216n \\ \end{aligned}$$
$$\begin{aligned} \Re_{3} \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]} \\ & = \left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]\left| {E_{1} \left( {SS^{*} } \right)} \right| + \left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]\left| {E_{2} \left( {SS^{*} } \right)} \right| + \left[ {\left| {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) - { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right|} \right]\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \left| {\left( {6 - 6} \right)} \right|\left( {6n} \right) + \left| {\left( {6 - 3} \right)} \right|\left( {18n^{2} + 6n} \right) + \left| {\left( {3 - 3} \right)} \right|\left( {18n^{2} - 12n} \right) \\ \Re_{3} \left( {SS^{*} } \right) & = 54n^{2} + 18n \\ \end{aligned}$$
$$\begin{aligned}^{m} \Re_{1} \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {SS^{*} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {SS^{*} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \frac{1}{{\left( {6 + 6} \right)}}\left( {6n} \right) + \frac{1}{{\left( {6 + 3} \right)}}\left( {18n^{2} + 6n} \right) + \frac{1}{{\left( {3 + 3} \right)}}\left( {18n^{2} - 12n} \right) \\^{m} \Re_{1} \left( {SS^{*} } \right) & = \frac{1}{6}\left( {30n^{2} - n} \right) \\ \end{aligned}$$
$$\begin{aligned}^{m} \Re_{2} \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {SS^{*} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {SS^{*} } \right)} \right| + \frac{1}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \frac{1}{{\left( {6 \times 6} \right)}}\left( {6n} \right) + \frac{1}{{\left( {6 \times 3} \right)}}\left( {18n^{2} + 6n} \right) + \frac{1}{{\left( {3 \times 3} \right)}}\left( {18n^{2} - 12n} \right) \\^{m} \Re_{2} \left( {SS^{*} } \right) & = \frac{1}{2}\left( {6n^{2} - n} \right) \\ \end{aligned}$$
$$\begin{aligned} H\Re_{1} \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{1} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{2} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \left( {6 + 6} \right)^{2} \left( {6n} \right) + \left( {6 + 3} \right)^{2} \left( {18n^{2} + 6n} \right) + \left( {3 + 3} \right)^{2} \left( {18n^{2} - 12n} \right) \\ H\Re_{1} \left( {SS^{*} } \right) & = 2106n^{2} + 918n \\ \end{aligned}$$
$$\begin{aligned} H\Re_{2} \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}^{2} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{1} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{2} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]^{2} \left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \left( {6 \times 6} \right)^{2} \left( {6n} \right) + \left( {6 \times 3} \right)^{2} \left( {18n^{2} + 6n} \right) + \left( {3 \times 3} \right)^{2} \left( {18n^{2} - 12n} \right) \\ H\Re_{2} \left( {SS^{*} } \right) & = 7290n^{2} + 8748n \\ \end{aligned}$$
$$\begin{aligned} S^{c} \Re \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} \\ & = \frac{1}{{\sqrt {\left( {6 + 6} \right)} }}\left( {6n} \right) + \frac{1}{{\sqrt {\left( {6 + 3} \right)} }}\left( {18n^{2} + 6n} \right) + \frac{1}{{\sqrt {\left( {3 + 3} \right)} }}\left( {18n^{2} - 12n} \right) \\ & = \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{1} \left( {SS^{*} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{2} \left( {SS^{*} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \frac{1}{2\sqrt 3 }\left( {6n} \right) + \frac{1}{3}\left( {18n^{2} + 6n} \right) + \frac{1}{\sqrt 6 }\left( {18n^{2} - 12n} \right) \\ S^{c} \Re \left( {SS^{*} } \right) & = = \left( {6 + \frac{18}{{\sqrt 6 }}} \right)n^{2} + \left( {4 + \frac{3}{\sqrt 6 } - \frac{12}{{\sqrt 6 }}} \right)n \\ \end{aligned}$$
$$\begin{aligned} P^{c} \Re \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}} \\ & = \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{1} \left( {SS^{*} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{2} \left( {SS^{*} } \right)} \right| + \frac{1}{{\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]} }}\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \frac{1}{{\sqrt {\left( {6 \times 6} \right)} }}\left( {6n} \right) + \frac{1}{{\sqrt {\left( {6 \times 3} \right)} }}\left( {18n^{2} + 6n} \right) + \frac{1}{{\sqrt {\left( {3 \times 3} \right)} }}\left( {18n^{2} - 12n} \right) \\ P^{c} \Re \left( {SS^{*} } \right) & = \left( {\frac{6}{\sqrt 2 } + 6} \right)n^{2} + \left( {\frac{2}{\sqrt 2 } - 3} \right)n \\ \end{aligned}$$
$$\begin{aligned} H^{r} \Re \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {SS^{*} } \right)} \right| + \frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {SS^{*} } \right)} \right| + \frac{2}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \frac{2}{{\sqrt {\left( {6 + 6} \right)} }}\left( {6n} \right) + \frac{2}{{\sqrt {\left( {6 + 3} \right)} }}\left( {18n^{2} + 6n} \right) + \frac{2}{{\sqrt {\left( {3 + 3} \right)} }}\left( {18n^{2} - 12n} \right) \\ H^{r} \Re \left( {SS^{*} } \right) & = \left( {12 + \frac{36}{{\sqrt 6 }}} \right)n^{2} + \left( {4 + \frac{6}{\sqrt 3 } - \frac{24}{{\sqrt 6 }}} \right)n \\ \end{aligned}$$
$$\begin{aligned} GA\Re \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times \zeta \left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + \zeta \left( {\varepsilon^{ \oplus } } \right)} \right]}}} \\ & = \frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{1} \left( {SS^{*} } \right)} \right| + \frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}\left| {E_{2} \left( {SS^{*} } \right)} \right| + \frac{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}s\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \frac{{2\sqrt {\left( {6 \times 6} \right)} }}{{\left( {6 + 6} \right)}}\left( {6n} \right) + \frac{{2\sqrt {\left( {6 \times 3} \right)} }}{{\left( {6 + 3} \right)}}\left( {18n^{2} + 6n} \right) + \frac{{2\sqrt {\left( {3 \times 3} \right)} }}{{\left( {3 + 3} \right)}}\left( {18n^{2} - 12n} \right) \\ GA\Re \left( {SS^{*} } \right) & = \left( {12\sqrt {12} + 18} \right)n^{2} + \left( {4\sqrt 2 - 6} \right)n \\ \end{aligned}$$
$$\begin{aligned} AG\Re \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}} \\ & = \frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}\left| {E_{1} \left( {SS^{*} } \right)} \right| + \frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}\left| {E_{2} \left( {SS^{*} } \right)} \right| + \frac{{\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} \right]}}{{2\sqrt {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right) \times { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)} }}s\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \frac{{\left( {6 + 6} \right)}}{{2\sqrt {\left( {6 \times 6} \right)} }}\left( {6n} \right) + \frac{{\left( {6 + 3} \right)}}{{2\sqrt {\left( {6 \times 3} \right)} }}\left( {18n^{2} + 6n} \right) + \frac{{\left( {3 + 3} \right)}}{{2\sqrt {\left( {3 \times 3} \right)} }}\left( {18n^{2} - 12n} \right) \\ AG\Re \left( {SS^{*} } \right) & = \left( {\frac{27}{{\sqrt 2 }} + 18} \right)n^{2} + \left( {\frac{9}{\sqrt 2 } - 9} \right)n \\ \end{aligned}$$
$$\begin{aligned} F\Re \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \\ & = \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]\left| {E_{1} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]\left| {E_{2} \left( {SS^{*} } \right)} \right| + \left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]\left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \left( {6^{2} + 6^{2} } \right)\left( {6n} \right) + \left( {6^{2} + 3^{2} } \right)\left( {18n^{2} + 6n} \right) + \left( {3^{2} + 3^{2} } \right)\left( {18n^{2} - 12n} \right) \\ F\Re_{1} \left( {SS^{*} } \right) & = 1134n^{2} + 486n \\ \end{aligned}$$
$$\begin{aligned} S^{m} \Re \left( {SS^{*} } \right) & = \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{1} \left( {SS^{*} } \right)}} {\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} } + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{2} \left( {SS^{*} } \right)}} {\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} } + \sum\limits_{{\sigma^{ \oplus } \varepsilon^{ \oplus } \in E_{3} \left( {SS^{*} } \right)}} {\sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} } \\ & = \sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \left| {E_{1} \left( {SS^{*} } \right)} \right| + \sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \left| {E_{2} \left( {SS^{*} } \right)} \right| + \sqrt {\left[ {{ \mathchar'26\mkern-9mu\lambda }\left( {\sigma^{ \oplus } } \right)^{2} + { \mathchar'26\mkern-9mu\lambda }\left( {\varepsilon^{ \oplus } } \right)^{2} } \right]} \left| {E_{3} \left( {SS^{*} } \right)} \right| \\ & = \sqrt {\left( {6^{2} + 6^{2} } \right)} \left( {6n} \right) + \sqrt {\left( {6^{2} + 3^{2} } \right)} \left( {18n^{2} + 6n} \right) + \sqrt {\left( {3^{2} + 3^{2} } \right)} \left( {18n^{2} - 12n} \right) \\ S^{m} \Re_{1} \left( {SS^{*} } \right) & = 54\left( {\sqrt {5} + \sqrt 2 } \right)n^{2} + 18\sqrt {5} n \\ \end{aligned}$$

\(\square\)

Numerical results and chemical applicability of the Revan indices

Numerical and graphical results of above computed topological indices for the graph of chain oxide network of dimension n, chain silicate network of dimension n, sheet oxide network and sheet silicate network are mentioned in Tables 5, 6, 7 and 8 and visualized in Figs. 5, 6, 7 and 8 respectively. Here, we observed that all indices for chain oxide network of dimension n, chain silicate network of dimension n, sheet oxide network and sheet silicate network increase for rising value of n. The increasing rate of \(H\Re_{2}\) and \(H\Re_{1}\) are higher than other topological indices. These computed topological indices have good correlations with many characteristics in network and chemistry. In order to test the chemical applicability and property prediction ability of the Revan topological indices, we have tested them against the experimental data of octane isomers.

Table 5 Numerical comparison of Revan topological indices for different value of n in \({\mathbb{C}}O_{n}\).
Table 6 Comparison of topological indices for different value of n in \({\mathbb{C}}S_{n}\).
Table 7 Numerical comparison of topological indices for different value of n in \(SO^{*}\).
Table 8 Numerical comparison of Revan topological indices for different value of n in \(SS^{*}\).
Fig. 5
figure 5

Graphical representation of Revan topological indices for \({\mathbb{C}}O_{n}\).

Fig. 6
figure 6

Graphical representation of Revan topological indices for \({\mathbb{C}}S_{n}\).

Fig. 7
figure 7

Graphical representation of Revan topological indices for \(SO^{*}\).

Fig. 8
figure 8

Graphical representation of Revan topological indices for \(SS^{*}\).

Following the guidelines set by the International Academy of Mathematical Chemistry (IAMC), regression analysis is employed to evaluate the applicability of topological indices in modeling physicochemical properties73. Octane isomers are often used for such analyses due to their structural diversity, which encompasses variations in branching and non-polar characteristics. These organic compounds provide an ideal test case because their numerous structural isomers allow for robust statistical evaluation, and comprehensive experimental data is readily accessible. According to Randić and Trinajstić74, theoretical invariants should be correlated with experimental physicochemical properties of octane isomers to assess their predictive capabilities19,75,76,77.

Here, the correlation of the 1st Revan index and second Revan index with entropy and the acentric factor was analyzed. Experimental data for the physicochemical properties of octane isomers were sourced from the IAMC-recommended database73, and its associated datasets78. Calculations were conducted following the methodology outlined in “Main results” section above. As illustrated in Figs. 9 and 10, both 1st and 2nd Revan indices demonstrated good correlation with the acentric factor (AF) and entropy (S). Among these two indices, the 1st Revan index has the highest correlation with both Acentric Factor and Entropy. This shows the potential chemical applicability of the considered topological indices.

Fig. 9
figure 9

Correlation of 1st Revan index with acentric factor and entropy for octane isomers.

Fig. 10
figure 10

Correlation of 2nd Revan index with acentric factor and entropy for octane isomers.

Conclusion

Topological indices help us understand the physical properties, biological activity, and chemical activity of a molecular structure. In this research we have computed degree based topological indices, namely, first Revan index, second Revan index, third Revan index, first modified Revan index, second modified Revan index, The first hyper- Revan index, second hyper- Revan index, sum connectivity Revan index, product connectivity Revan index, harmonic Revan index, geometric arithmetic Revan index, arithmetic geometric Revan index, F-Revan index, and Sombor Revan index for the graph of chain oxide network of dimension n, chain silicate network of dimension n, sheet oxide network and sheet silicate network. It can be observed from the obtained results that the first and second hyper Revan indices acquire higher values than other computed topological indices. These Revan type indices have good correlations with many properties in networking and Chemistry. The chemical applicability testing results of these indices show that, they have strong potential to predict important physico-chemical properties like Entropy and Acentric factor. Thus, the computed results can provide a good basis to understand the topology and properties of these graphs and networks in a better way. These findings may also have significant contributions in the field of chemical and materials sciences. For future research some other molecular structures can be considered for studying these Revan topological indices in order to test their robustness.