Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Citizen science in environmental and ecological sciences

This article has been updated

Abstract

Citizen science is an increasingly acknowledged approach applied in many scientific domains, and particularly within the environmental and ecological sciences, in which non-professional participants contribute to data collection to advance scientific research. We present contributory citizen science as a valuable method to scientists and practitioners within the environmental and ecological sciences, focusing on the full life cycle of citizen science practice, from design to implementation, evaluation and data management. We highlight key issues in citizen science and how to address them, such as participant engagement and retention, data quality assurance and bias correction, as well as ethical considerations regarding data sharing. We also provide a range of examples to illustrate the diversity of applications, from biodiversity research and land cover assessment to forest health monitoring and marine pollution. The aspects of reproducibility and data sharing are considered, placing citizen science within an encompassing open science perspective. Finally, we discuss its limitations and challenges and present an outlook for the application of citizen science in multiple science domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stages of designing and implementing a citizen science project in ecology and environmental sciences.
Fig. 2: Stylized citizen science quality assurance process for quantitative measures of species abundance.
Fig. 3: Best practice for publishing outputs from a citizen science project.

Similar content being viewed by others

Change history

  • 10 November 2022

    In the version of this article initially published, the name of a peer reviewer, Corlia Meyer, was misspelled as “Cornelia” in the reviewer acknowledgements, and has now been amended in the HTML and PDF versions of the article.

References

  1. Fraisl, D. et al. Mapping citizen science contributions to the UN sustainable development goals. Sustain. Sci. 15, 1735–1751 (2020). This is the first article to quantitatively assess the potential of citizen science for SDG indicator monitoring.

    Article  Google Scholar 

  2. Haklay, M. et al. Contours of citizen science: a vignette study. R. Soc. Open Sci. 8, 202108 (2021). This article comprehensively explores the diverse perceptions of citizen science.

    Article  ADS  Google Scholar 

  3. Kullenberg, C. & Kasperowski, D. What is citizen science? — A scientometric meta-analysis. PLoS ONE 11, e0147152 (2016). This article analyses the main topical focal points of citizen science.

    Article  Google Scholar 

  4. Lemmens, R., Antoniou, V., Hummer, P. & Potsiou, C. in The Science of Citizen Science (eds. Vohland, K. et al.) 461–474 (Springer International Publishing, 2021).

  5. Wynn, J. Citizen Science In The Digital Age: Rhetoric, Science, And Public Engagement (Univ. Alabama Press, 2017).

  6. Roser, M. & Ortiz-Ospina, E. Literacy. Our World in Data https://ourworldindata.org/literacy (2016).

  7. Pateman, R., Dyke, A. & West, S. The diversity of participants in environmental citizen science. Citiz. Sci. Theory Pract. 6, 9 (2021).

    Article  Google Scholar 

  8. Haklay, M. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 13–33 (Springer International Publishing, 2021).

  9. Odenwald, S. A citation study of citizen science projects in space science and astronomy. Citiz. Sci. Theory Pract. 3, 5 (2018).

    Article  Google Scholar 

  10. Bedessem, B., Julliard, R. & Montuschi, E. Measuring epistemic success of a biodiversity citizen science program: a citation study. PLoS ONE 16, e0258350 (2021).

    Article  Google Scholar 

  11. Gardiner, M. M. & Roy, H. E. The role of community science in entomology. Annu. Rev. Entomol. 67, 437–456 (2022).

    Article  Google Scholar 

  12. Kasperowski, D. & Hillman, T. The epistemic culture in an online citizen science project: programs, antiprograms and epistemic subjects. Soc. Stud. Sci. 48, 564–588 (2018).

    Article  Google Scholar 

  13. Lambers, K., Verschoof-van der Vaart, W. & Bourgeois, Q. Integrating remote sensing, machine learning, and citizen science in Dutch archaeological prospection. Remote. Sens. 11, 794 (2019).

    Article  ADS  Google Scholar 

  14. Froeling, F. et al. Narrative review of citizen science in environmental epidemiology: setting the stage for co-created research projects in environmental epidemiology. Environ. Int. 152, 106470 (2021).

    Article  Google Scholar 

  15. Hilton, N. H. Stimmen: a citizen science approach to minority language sociolinguistics. Linguist. Vanguard. 7, 20190017 (2021).

    Article  Google Scholar 

  16. Maisonneuve, N., Stevens, M., Niessen, M. E. & Steels, L. in Information Technologies in Environmental Engineering (eds Athanasiadis, I. N., Rizzoli, A. E., Mitkas, P. A. & Gómez, J. M.) 215–228 (Springer, 2009).

  17. Arias, R., Capelli, L. & Diaz Jimenez, C. A new methodology based on citizen science to improve environmental odour management. Chem. Eng. Trans. 68, 7–12 (2018).

    Google Scholar 

  18. Nascimento, S., Rubio Iglesias, J. M., Owen, R., Schade, S. & Shanley, L. in Citizen Science — Innovation in Open Science, Society and Policy (eds Hecker, S. et al.) 219–240 (UCL Press, 2018).

  19. Den Broeder, L., Devilee, J., Van Oers, H., Schuit, A. J. & Wagemakers, A. Citizen Science for public health. Health Promot. Int. 33, 505–514 (2018).

    Google Scholar 

  20. Bio Innovation Service. Citizen Science For Environmental Policy: Development Of An EU Wide Inventory And Analysis Of Selected Practices (Publications Office, 2018).

  21. Mielke, J., Vermaßen, H. & Ellenbeck, S. Ideals, practices, and future prospects of stakeholder involvement in sustainability science. Proc. Natl Acad. Sci. USA 114, E10648–E10657 (2017).

    Article  ADS  Google Scholar 

  22. Pocock, M. J. O. et al. A vision for global biodiversity monitoring with citizen science. Adv. Ecol. Res. 59, 169–223 (2018). This article describes the opportunities of citizen science for biodiversity research.

    Article  Google Scholar 

  23. Isaac, N. J. B., Strien, A. J., August, T. A., Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014). This article describes bias-correction approaches for ecological trend estimates.

    Article  Google Scholar 

  24. Tengö, M., Austin, B. J., Danielsen, F. & Fernández-Llamazares, Á. Creating synergies between citizen science and Indigenous and local knowledge. BioScience 71, 503–518 (2021).

    Article  Google Scholar 

  25. Krick, E. Citizen experts in participatory governance: democratic and epistemic assets of service user involvement, local knowledge and citizen science. Curr. Sociol. https://doi.org/10.1177/00113921211059225 (2021).

    Article  Google Scholar 

  26. Danielsen, F. et al. in Citizen Science (eds Hecker, S. et al.) 110–123 (UCL Press, 2018).

  27. Luzar, J. B. et al. Large-scale environmental monitoring by Indigenous peoples. BioScience 61, 771–781 (2011).

    Article  Google Scholar 

  28. UNESCO. UNESCO recommendation on open science. UNESCO https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en (2021).

  29. Wehn, U. et al. Impact assessment of citizen science: state of the art and guiding principles for a consolidated approach. Sustain. Sci. 16, 1683–1699 (2021). This article presents guidelines for a common approach in assessing citizen science impacts.

    Article  Google Scholar 

  30. Aristeidou, M. & Herodotou, C. Online citizen science: a systematic review of effects on learning and scientific literacy. Citiz. Sci. Theory Pract. 5, 11 (2020).

    Article  Google Scholar 

  31. Peter, M., Diekötter, T. & Kremer, K. Participant outcomes of biodiversity citizen science projects: a systematic literature review. Sustainability 11, 2780 (2019).

    Article  Google Scholar 

  32. Turrini, T., Dörler, D., Richter, A., Heigl, F. & Bonn, A. The threefold potential of environmental citizen science — generating knowledge, creating learning opportunities and enabling civic participation. Biol. Conserv. 225, 176–186 (2018).

    Article  Google Scholar 

  33. ECSA. Ten principles of citizen science. ECSA https://zenodo.org/record/5127534 (2015).

  34. Haklay, M. et al. ECSA’s characteristics of citizen science. ECSA https://zenodo.org/record/3758668 (2020).

  35. Danielsen, F. Community-based Monitoring In The Arctic (Univ. Alaska Press, 2020).

  36. Cooper, C. B. et al. Inclusion in citizen science: the conundrum of rebranding. Science 372, 1386–1388 (2021). This article discusses issues around justice, equity, diversity and inclusion related to citizen science.

    Article  ADS  Google Scholar 

  37. Eitzel, M. V. et al. Citizen science terminology matters: exploring key terms. Citiz. Sci. Theory Pract. 2, 1 (2017). This article highlights how choice of concepts and terms affects knowledge creation.

    Article  Google Scholar 

  38. Bonney, R. et al. Citizen science: a developing tool for expanding science knowledge and scientific literacy. BioScience 59, 977–984 (2009). This article presents an early model for building and operating citizen science projects.

    Article  Google Scholar 

  39. Haklay, M. in Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice (eds Sui, D., Elwood, S. & Goodchild, M.) 105–122 (Springer, 2013).

  40. Wiggins, A. & Crowston, K. From conservation to crowdsourcing: a typology of citizen science. In 44th Hawaii Int. Conf. on System Sciences 1–10 (IEEE, 2011).

  41. Shirk, J. L. et al. Public participation in scientific research: a framework for deliberate design. Ecol. Soc. 17, art29 (2012). This article describes multiple forms of public participation in science.

    Article  Google Scholar 

  42. Tweddle, J. C., Robinson, L. D., Pocock, M. J. O. & Roy, H. E. Guide to citizen science: developing, implementing and evaluating citizen science to study biodiversity and the environment in the UK. UK Environmental Observation Framework https://www.ceh.ac.uk/sites/default/files/citizenscienceguide.pdf (2012).

  43. Wiggins, A. et al. Data management guide for public participation in scientific research. DataONE https://old.dataone.org/sites/all/documents/DataONE-PPSR-DataManagementGuide.pdf (2013). This document describes essential steps of the data management life cycle.

  44. Silvertown, J., Buesching, C. D., Jacobson, S. K. & Rebelo, T. in Key Topics in Conservation Biology Vol. 2 (eds Macdonald, D. W. & Willis, K. J.) 127–142 (John Wiley & Sons, 2013).

  45. Pocock, M. J. O., Chapman, D. S., Sheppard, L. J. & Roy, H. E. Choosing and using citizen science: a guide to when and how to use citizen science to monitor biodiversity and the environment. SEPA https://www.ceh.ac.uk/sites/default/files/sepa_choosingandusingcitizenscience_interactive_4web_final_amended-blue1.pdf (2014).

  46. Participatory Monitoring and Management Partnership (PMMP). Manaus Letter: recommendations for the participatory monitoring of biodiversity. Participatory Monitoring and Management Partnership (PMMP) https://doi.org/10.25607/OBP-965 (2015).

  47. Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F. Handbook Of Citizen Science In Ecology And Conservation (Univ. California Press, 2020).

  48. US GSA. Citizen science toolkit: basic steps for your project planning. citizenscience.gov https://www.citizenscience.gov/toolkit/howto/ (2022).

  49. García, F. S. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 419–437 (Springer International Publishing, 2021).

  50. Van Brussel, S. & Huyse, H. Citizen science on speed? Realising the triple objective of scientific rigour, policy influence and deep citizen engagement in a large-scale citizen science project on ambient air quality in Antwerp. J. Environ. Plan. Manag. 62, 534–551 (2019).

    Article  Google Scholar 

  51. de Sherbinin, A. et al. The critical importance of citizen science data. Front. Clim. 3, 650760 (2021).

    Article  Google Scholar 

  52. Hyder, K., Townhill, B., Anderson, L. G., Delany, J. & Pinnegar, J. K. Can citizen science contribute to the evidence-base that underpins marine policy? Mar. Policy 59, 112–120 (2015).

    Article  Google Scholar 

  53. Wehn, U. et al. Capturing and communicating impact of citizen science for policy: a storytelling approach. J. Environ. Manag. 295, 113082 (2021).

    Article  Google Scholar 

  54. van Strien, A. J., van Swaay, C. A. M. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).

    Article  Google Scholar 

  55. Laso Bayas, J. C. et al. Crowdsourcing LUCAS: citizens generating reference land cover and land use data with a mobile app. Land 9, 446 (2020).

    Article  Google Scholar 

  56. Cooper, C. B. Is there a weekend bias in clutch-initiation dates from citizen science? Implications for studies of avian breeding phenology. Int. J. Biometeorol. 58, 1415–1419 (2014).

    Article  ADS  Google Scholar 

  57. Pettibone, L. et al. Citizen Science For All. A Guide For Citizen Science Practitioners (Deutsches Zentrum für Integrative Biodiversitätsforschung, Helmholtz-Zentrum für Umweltforschung, Berlin-Brandenburgisches Institut für Biodiversitätsforschung, Museum für Naturkunde, Leibniz-Institut, 2016).

  58. Pernat, N. et al. How media presence triggers participation in citizen science — the case of the mosquito monitoring project ‘Mückenatlas’. PLoS ONE 17, e0262850 (2022).

    Article  Google Scholar 

  59. Crowston, K. & Prestopnik, N. R. Motivation and data quality in a citizen science game: a design science evaluation. In 46th Hawaii Int. Conf. on System Sciences 450–459 (IEEE, 2013).

  60. Funder, M., Danielsen, F., Ngaga, Y., Nielsen, M. R. & Poulsen, M. K. Reshaping conservation: the social dynamics of participatory monitoring in Tanzania’s community-managed forests. Conserv. Soc. 11, 218–232 (2013).

    Article  Google Scholar 

  61. Deterding, S. Gamification: designing for motivation. Interactions 19, 14–17 (2012).

    Article  Google Scholar 

  62. West, S. & Pateman, R. Recruiting and retaining participants in citizen science: what can be learned from the volunteering literature? Citiz. Sci. Theory Pract. 1, 15 (2016). This article discusses participant motivations for engagement and volunteering.

    Article  Google Scholar 

  63. Geoghegan, H., Dyke, A., Pateman, R., West, S. & Everett, G. Understanding motivations for citizen science. Final report on behalf of UKEOF. SEI https://www.sei.org/publications/understanding-motivations-for-citizen-science/ (2016).

  64. Baruch, A., May, A. & Yu, D. The motivations, enablers and barriers for voluntary participation in an online crowdsourcing platform. Comput. Hum. Behav. 64, 923–931 (2016).

    Article  Google Scholar 

  65. Larson, L. R. et al. The diverse motivations of citizen scientists: does conservation emphasis grow as volunteer participation progresses? Biol. Conserv. 242, 108428 (2020).

    Article  Google Scholar 

  66. Danielsen, F. et al. The concept, practice, application, and results of locally based monitoring of the environment. BioScience 71, 484–502 (2021). This article summarizes the potential and intricacies of community-led citizen science.

    Article  Google Scholar 

  67. Salmon, R. A., Rammell, S., Emeny, M. T. & Hartley, S. Citizens, scientists, and enablers: a tripartite model for citizen science projects. Diversity 13, 309 (2021).

    Article  Google Scholar 

  68. Bowser, A., Shilton, K., Preece, J. & Warrick, E. Accounting for privacy in citizen science: ethical research in a context of openness. In Proc. 2017 ACM Conf. on Computer Supported Cooperative Work and Social Computing 2124–2136 (ACM, 2017).

  69. Ward-Fear, G., Pauly, G. B., Vendetti, J. E. & Shine, R. Authorship protocols must change to credit citizen scientists. Trends Ecol. Evol. 35, 187–190 (2020).

    Article  Google Scholar 

  70. Pandya, R. E. A framework for engaging diverse communities in citizen science in the US. Front. Ecol. Environ. 10, 314–317 (2012).

    Article  Google Scholar 

  71. Sorensen, A. E. et al. Reflecting on efforts to design an inclusive citizen science project in West Baltimore. Citiz. Sci. Theory Pract. 4, 13 (2019).

    Article  Google Scholar 

  72. Bonney, R., Phillips, T. B., Ballard, H. L. & Enck, J. W. Can citizen science enhance public understanding of science? Public. Underst. Sci. 25, 2–16 (2016).

    Article  Google Scholar 

  73. Hermoso, M. I., Martin, V. Y., Gelcich, S., Stotz, W. & Thiel, M. Exploring diversity and engagement of divers in citizen science: insights for marine management and conservation. Mar. Policy 124, 104316 (2021).

    Article  Google Scholar 

  74. Barahona-Segovia, R. M. et al. Combining citizen science with spatial analysis at local and biogeographical scales for the conservation of a large-size endemic invertebrate in temperate forests. For. Ecol. Manag. 497, 119519 (2021).

    Article  Google Scholar 

  75. Bowser, A., Wiggins, A., Shanley, L., Preece, J. & Henderson, S. Sharing data while protecting privacy in citizen science. Interactions 21, 70–73 (2014).

    Article  Google Scholar 

  76. Wiggins, A., Newman, G., Stevenson, R. D. & Crowston, K. Mechanisms for data quality and validation in citizen science. In IEEE Seventh Int. Conf. on e-Science Workshops 14–19 (IEEE, 2011).

  77. Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016). This article discusses common assumptions and evidence about citizen science data quality.

    Article  Google Scholar 

  78. Downs, R. R., Ramapriyan, H. K., Peng, G. & Wei, Y. Perspectives on citizen science data quality. Front. Clim. 3, 615032 (2021). This article describes perspectives on quality assessment and control issues.

    Article  Google Scholar 

  79. Fritz, S. et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2, 922–930 (2019). This article identifies the full potential of citizen science for SDG monitoring and implementation.

    Article  Google Scholar 

  80. Phillips, T., Ferguson, M., Minarchek, M., Porticella, N. & Bonney, R. Evaluating learning outcomes from citizen science. The Cornell Lab of Ornithology https://www.birds.cornell.edu/citizenscience/wp-content/uploads/2018/10/USERS-GUIDE_linked.pdf (2014).

  81. Tredick, C. A. et al. A rubric to evaluate citizen-science programs for long-term ecological monitoring. BioScience 67, 834–844 (2017).

    Article  Google Scholar 

  82. Kieslinger, B. et al. in Citizen Science — Innovation in Open Science, Society and Policy (eds Hekler, S., Haklay, M., Bowser, A., Vogel, J. & Bonn, A.) 81–95 (UCL Press, 2018).

  83. Schaefer, T., Kieslinger, B., Brandt, M. & van den Bogaert, V. in The Science of Citizen Science (eds Vohland, K. et al.) 495–514 (Springer International Publishing, 2021).

  84. Prysby, M. & Oberhauser, K. S. in The Monarch Butterfly: Biology and Conservation (eds Oberhauser, K. S. & Solensky, M. J.) 9–20 (Cornell Univ. Press, 2004).

  85. Danielsen, F. et al. A multicountry assessment of tropical resource monitoring by local communities. BioScience 64, 236–251 (2014). The article presents the largest quantitative study to date of the accuracy of citizen science across the three tropical continents.

    Article  Google Scholar 

  86. Swanson, A., Kosmala, M., Lintott, C. & Packer, C. A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conserv. Biol. 30, 520–531 (2016).

    Article  Google Scholar 

  87. Serret, H., Deguines, N., Jang, Y., Lois, G. & Julliard, R. Data quality and participant engagement in citizen science: comparing two approaches for monitoring pollinators in France and South Korea. Citiz. Sci. Theory Pract. 4, 22 (2019).

    Article  Google Scholar 

  88. Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. J. Soc. Conserv. Biol 25, 1148–1154 (2011).

    Article  Google Scholar 

  89. Deguines, N., de Flores, M., Loïs, G., Julliard, R. & Fontaine, C. Fostering close encounters of the entomological kind. Front. Ecol. Environ. 16, 202–203 (2018).

    Article  Google Scholar 

  90. van der Wal, R., Sharma, N., Mellish, C., Robinson, A. & Siddharthan, A. The role of automated feedback in training and retaining biological recorders for citizen science. Conserv. Biol. J. Soc. Conserv. Biol. 30, 550–561 (2016).

    Article  Google Scholar 

  91. Watson, D. & Floridi, L. Crowdsourced science: sociotechnical epistemology in the e-research paradigm. Synthese 195, 741–764 (2018).

    Article  MathSciNet  Google Scholar 

  92. Silvertown, J. et al. Crowdsourcing the identification of organisms: a case-study of iSpot. ZooKeys 480, 125–146 (2015).

    Article  Google Scholar 

  93. Edgar, G. & Stuart-Smith, R. Ecological effects of marine protected areas on rocky reef communities — a continental-scale analysis. Mar. Ecol. Prog. Ser. 388, 51–62 (2009).

    Article  ADS  Google Scholar 

  94. Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).

    Article  Google Scholar 

  95. Johnson, N., Druckenmiller, M. L., Danielsen, F. & Pulsifer, P. L. The use of digital platforms for community-based monitoring. BioScience 71, 452–466 (2021).

    Article  Google Scholar 

  96. Hochmair, H. H., Scheffrahn, R. H., Basille, M. & Boone, M. Evaluating the data quality of iNaturalist termite records. PLoS ONE 15, e0226534 (2020).

    Article  Google Scholar 

  97. Torres, A.-C., Bedessem, B., Deguines, N. & Fontaine, C. Online data sharing with virtual social interactions favor scientific and educational successes in a biodiversity citizen science project. J. Responsible Innov. https://doi.org/10.1080/23299460.2021.2019970 (2022).

  98. Hochachka, W. M. et al. Data-intensive science applied to broad-scale citizen science. Trends Ecol. Evol. 27, 130–137 (2012).

    Article  Google Scholar 

  99. Robinson, O. J., Ruiz-Gutierrez, V. & Fink, D. Correcting for bias in distribution modelling for rare species using citizen science data. Divers. Distrib. 24, 460–472 (2018).

    Article  Google Scholar 

  100. Johnston, A., Moran, N., Musgrove, A., Fink, D. & Baillie, S. R. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927 (2020).

    Article  Google Scholar 

  101. Kelling, S. et al. Can observation skills of citizen scientists be estimated using species accumulation curves? PLoS ONE 10, e0139600 (2015).

    Article  Google Scholar 

  102. Johnston, A., Fink, D., Hochachka, W. M. & Kelling, S. Estimates of observer expertise improve species distributions from citizen science data. Methods Ecol. Evol. 9, 88–97 (2018).

    Article  Google Scholar 

  103. Giraud, C., Calenge, C., Coron, C. & Julliard, R. Capitalizing on opportunistic data for monitoring relative abundances of species. Biometrics 72, 649–658 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  104. Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).

    Article  Google Scholar 

  105. Kelling, S., Yu, J., Gerbracht, J. & Wong, W.-K. Emergent filters: automated data verification in a large-scale citizen science project. In IEEE Seventh Int. Conf. on e-Science Workshops 20–27 (IEEE, 2011).

  106. Kelling, S. et al. Taking a ‘Big Data’ approach to data quality in a citizen science project. Ambio 44, 601–611 (2015).

    Article  Google Scholar 

  107. Palmer, J. R. B. et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8, 916 (2017).

    Article  ADS  Google Scholar 

  108. Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).

    Article  ADS  Google Scholar 

  109. Brashares, J. S. & Sam, M. K. How much is enough? Estimating the minimum sampling required for effective monitoring of African reserves. Biodivers. Conserv. 14, 2709–2722 (2005).

    Article  Google Scholar 

  110. Andrianandrasana, H. T., Randriamahefasoa, J., Durbin, J., Lewis, R. E. & Ratsimbazafy, J. H. Participatory ecological monitoring of the Alaotra Wetlands in Madagascar. Biodivers. Conserv. 14, 2757–2774 (2005).

    Article  Google Scholar 

  111. Jiguet, F., Devictor, V., Julliard, R. & Couvet, D. French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecologica 44, 58–66 (2012).

    Article  ADS  Google Scholar 

  112. Martin, G., Devictor, V., Motard, E., Machon, N. & Porcher, E. Short-term climate-induced change in French plant communities. Biol. Lett. 15, 20190280 (2019).

    Article  Google Scholar 

  113. Guillera-Arroita, G. Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography 40, 281–295 (2017).

    Article  Google Scholar 

  114. Gregory, R. D. et al. Developing indicators for European birds. Phil. Trans. R. Soc. B 360, 269–288 (2005).

    Article  Google Scholar 

  115. Cima, V. et al. A test of six simple indices to display the phenology of butterflies using a large multi-source database. Ecol. Indic. 110, 105885 (2020).

    Article  Google Scholar 

  116. Weisshaupt, N., Lehikoinen, A., Mäkinen, T. & Koistinen, J. Challenges and benefits of using unstructured citizen science data to estimate seasonal timing of bird migration across large scales. PLoS ONE 16, e0246572 (2021).

    Article  Google Scholar 

  117. Isaac, N. J. B. et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 35, 56–67 (2020).

    Article  Google Scholar 

  118. Deguines, N., Julliard, R., de Flores, M. & Fontaine, C. Functional homogenization of flower visitor communities with urbanization. Ecol. Evol. 6, 1967–1976 (2016).

    Article  Google Scholar 

  119. Desaegher, J., Nadot, S., Fontaine, C. & Colas, B. Floral morphology as the main driver of flower-feeding insect occurrences in the Paris region. Urban. Ecosyst. 21, 585–598 (2018).

    Article  Google Scholar 

  120. Osenga, E. C., Vano, J. A. & Arnott, J. C. A community-supported weather and soil moisture monitoring database of the Roaring Fork catchment of the Colorado River Headwaters. Hydrol. Process. 35, e14081 (2021).

    Article  Google Scholar 

  121. Ryan, S. F. et al. The role of citizen science in addressing grand challenges in food and agriculture research. Proc. R. Soc. B 285, 20181977 (2018).

    Article  Google Scholar 

  122. Paap, T., Wingfield, M. J., Burgess, T. I., Hulbert, J. M. & Santini, A. Harmonising the fields of invasion science and forest pathology. NeoBiota 62, 301–332 (2020).

    Article  Google Scholar 

  123. Newman, G. et al. The future of citizen science: emerging technologies and shifting paradigms. Front. Ecol. Environ. 10, 298–304 (2012). This article gives a history account of the development of citizen science.

    Article  Google Scholar 

  124. Clark, G. F. et al. A visualization tool for citizen-science marine debris big data. Water Int. 46, 211–223 (2021).

    Article  Google Scholar 

  125. Gray, A., Robertson, C. & Feick, R. CWDAT — an open-source tool for the visualization and analysis of community-generated water quality data. ISPRS Int. J. Geo-Inf. 10, 207 (2021).

    Article  Google Scholar 

  126. Hoyer, T., Moritz, J. & Moser, J. Visualization and perception of data gaps in the context of citizen science projects. KN J. Cartogr. Geogr. Inf. 71, 155–172 (2021).

    Article  Google Scholar 

  127. Liu, H.-Y., Dörler, D., Heigl, F. & Grossberndt, S. in The Science of Citizen Science (eds Vohland, K. et al.) 439–459 (Springer International Publishing, 2021).

  128. Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290 (2012).

    Article  Google Scholar 

  129. Kobori, H. et al. Citizen science: a new approach to advance ecology, education, and conservation. Ecol. Res. 31, 1–19 (2016).

    Article  Google Scholar 

  130. Clavero, M. & Revilla, E. Mine centuries-old citizen science. Nature 510, 35–35 (2014).

    Article  ADS  Google Scholar 

  131. Kalle, R., Pieroni, A., Svanberg, I. & Sõukand, R. Early citizen science action in ethnobotany: the case of the folk medicine collection of Dr. Mihkel Ostrov in the territory of present-day Estonia, 1891–1893. Plants 11, 274 (2022).

    Article  Google Scholar 

  132. Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017). This article highlights the magnitude of citizen science contributions to global biodiversity datasets.

    Article  Google Scholar 

  133. Groom, Q., Weatherdon, L. & Geijzendorffer, I. R. Is citizen science an open science in the case of biodiversity observations? J. Appl. Ecol. 54, 612–617 (2017).

    Article  Google Scholar 

  134. Cooper, C. B., Shirk, J. & Zuckerberg, B. The invisible prevalence of citizen science in global research: migratory birds and climate change. PLoS ONE 9, e106508 (2014).

    Article  ADS  Google Scholar 

  135. Morales, C. L. et al. Does climate change influence the current and future projected distribution of an endangered species? The case of the southernmost bumblebee in the world. J. Insect Conserv. 26, 257–269 (2022).

    Article  Google Scholar 

  136. Campbell, H. & Engelbrecht, I. The Baboon Spider Atlas — using citizen science and the ‘fear factor’ to map baboon spider (Araneae: Theraphosidae) diversity and distributions in southern Africa. Insect Conserv. Divers. 11, 143–151 (2018).

    Article  Google Scholar 

  137. Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. BioScience 71, 55–63 (2021).

    Google Scholar 

  138. Croft, S., Chauvenet, A. L. M. & Smith, G. C. A systematic approach to estimate the distribution and total abundance of British mammals. PLoS ONE 12, e0176339 (2017).

    Article  Google Scholar 

  139. Hsing, P. et al. Economical crowdsourcing for camera trap image classification. Remote Sens. Ecol. Conserv. 4, 361–374 (2018).

    Article  Google Scholar 

  140. Altwegg, R. & Nichols, J. D. Occupancy models for citizen-science data. Methods Ecol. Evol. 10, 8–21 (2019).

    Article  Google Scholar 

  141. Green, S. E., Rees, J. P., Stephens, P. A., Hill, R. A. & Giordano, A. J. Innovations in camera trapping technology and approaches: the integration of citizen science and artificial intelligence. Animals 10, 132 (2020).

    Article  Google Scholar 

  142. Hsing, P.-Y. et al. Citizen scientists: school students conducting, contributing to and communicating ecological research — experiences of a school–university partnership. Sch. Sci. Rev. 101, 67–74 (2020).

    Google Scholar 

  143. Degnan, L. MammalWeb citizen science wildlife monitoring. Vimeo https://vimeo.com/237565215 (2017).

  144. Hsing, P.-Y. et al. Large-scale mammal monitoring: the potential of a citizen science camera-trapping project in the UK. Ecol. Solut. Evid. (in the press).

  145. Chapman, H. Spotting wildlife helps teens cope with life in lockdown. The Northern Echo https://www.thenorthernecho.co.uk/news/18459359.spotting-wildlife-helps-teens-cope-life-lockdown/ (2020).

  146. McKie, R. How an army of ‘citizen scientists’ is helping save our most elusive animals. The Guardian https://www.theguardian.com/environment/2019/jul/28/britain-elusive-animals-fall-into-camera-trap-citizen-scientist (2019).

  147. Deguines, N., Julliard, R., de Flores, M. & Fontaine, C. The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS ONE 7, e45822 (2012).

    Article  ADS  Google Scholar 

  148. Levé, M., Baudry, E. & Bessa-Gomes, C. Domestic gardens as favorable pollinator habitats in impervious landscapes. Sci. Total Environ. 647, 420–430 (2019).

    Article  ADS  Google Scholar 

  149. Aparicio Camín, N., Comaposada, A., Paul, E., Maceda-Veiga, A. & Piera, J. Analysis of species richness in Barcelona beaches using a citizen science based approach (Sociedad Ibérica de Ecología, 2019).

  150. Chao, A., Colwell, R. K., Chiu, C. & Townsend, D. Seen once or more than once: applying Good–Turing theory to estimate species richness using only unique observations and a species list. Methods Ecol. Evol. 8, 1221–1232 (2017).

    Article  Google Scholar 

  151. Mominó, J. M., Piera, J. & Jurado, E. in Analyzing the Role of Citizen Science in Modern Research (eds Ceccaroni, L. & Piera, J.) 231–245 (IGI Global, 2017).

  152. Salvador, X. et al. Guia Participativa Marina del Barcelonès (Marcombo, 2021).

  153. Carayannis, E. G., Barth, T. D. & Campbell, D. F. The Quintuple Helix innovation model: global warming as a challenge and driver for innovation. J. Innov. Entrep. 1, 2 (2012).

    Article  Google Scholar 

  154. Goodchild, M. F. Citizens as sensors: the world of volunteered geography. GeoJournal 69, 211–221 (2007).

    Article  Google Scholar 

  155. Capineri, C. et al. European Handbook of Crowdsourced Geographic Information (Ubiquity Press, 2016).

  156. Skarlatidou, A. & Haklay, M. Geographic Citizen Science Design: No One Left Behind (UCL Press, 2021).

  157. Haklay, M. & Weber, P. OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008).

    Article  Google Scholar 

  158. Jeddi, Z. et al. Citizen seismology in the Arctic. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00139 (2020).

  159. Eurostat. LUCAS — Land use and land cover survey. eurostat https://ec.europa.eu/eurostat/statistics-explained/index.php?title=LUCAS_-_Land_use_and_land_cover_survey (2021).

  160. Laso Bayas, J. et al. Crowdsourcing in-situ data on land cover and land use using gamification and mobile technology. Remote. Sens. 8, 905 (2016).

    Article  ADS  Google Scholar 

  161. EU. Regulation (EU) 2016/679 Of The European Parliament And Of The Council, Article 5(c). EU https://eur-lex.europa.eu/eli/reg/2016/679/oj (2016).

  162. Danielsen, F. et al. Community monitoring for REDD+: international promises and field realities. Ecol. Soc. 18, 41 (2013).

    Article  Google Scholar 

  163. Boissière, M., Herold, M., Atmadja, S. & Sheil, D. The feasibility of local participation in measuring, reporting and verification (PMRV) for REDD. PLoS ONE 12, e0176897 (2017).

    Article  Google Scholar 

  164. Walker, D. W., Smigaj, M. & Tani, M. The benefits and negative impacts of citizen science applications to water as experienced by participants and communities. WIREs Water 8, e1488 (2021).

    Article  Google Scholar 

  165. Danielsen, F. et al. Community monitoring of natural resource systems and the environment. Annu. Rev. Environ. Resour. https://doi.org/10.1146/annurev-environ-012220-022325 (2022).

  166. Pecl, G. T. et al. Redmap Australia: challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00349 (2019).

  167. Shinbrot, X. A. et al. Quiahua, the first citizen science rainfall monitoring network in Mexico: filling critical gaps in rainfall data for evaluating a payment for hydrologic services program. Citiz. Sci. Theory Pract. 5, 19 (2020).

    Article  Google Scholar 

  168. Little, K. E., Hayashi, M. & Liang, S. Community-based groundwater monitoring network using a citizen-science approach. Groundwater 54, 317–324 (2016).

    Article  Google Scholar 

  169. Wolff, E. The promise of a “people-centred” approach to floods: types of participation in the global literature of citizen science and community-based flood risk reduction in the context of the Sendai Framework. Prog. Disaster Sci. 10, 100171 (2021).

    Article  Google Scholar 

  170. Hauser, D. D. W. et al. Co-production of knowledge reveals loss of Indigenous hunting opportunities in the face of accelerating Arctic climate change. Environ. Res. Lett. 16, 095003 (2021).

    Article  ADS  Google Scholar 

  171. Soroye, P., Ahmed, N. & Kerr, J. T. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Glob. Change Biol. 24, 5281–5291 (2018).

    Article  ADS  Google Scholar 

  172. Robles, M. C. et al. Clouds around the world: how a simple citizen science data challenge became a worldwide success. Bull. Am. Meteorol. Soc. 101, E1201–E1213 (2020).

    Google Scholar 

  173. Beeden, R. J. et al. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef. Environ. Monit. Assess. 186, 8527–8540 (2014).

    Article  Google Scholar 

  174. Miller-Rushing, A. J., Gallinat, A. S. & Primack, R. B. Creative citizen science illuminates complex ecological responses to climate change. Proc. Natl Acad. Sci. USA 116, 720–722 (2019).

    Article  ADS  Google Scholar 

  175. Kress, W. J. et al. Citizen science and climate change: mapping the range expansions of native and exotic plants with the mobile app Leafsnap. BioScience 68, 348–358 (2018).

    Article  Google Scholar 

  176. Kirchhoff, C. et al. Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. Sci. Total Environ. 755, 142348 (2021).

    Article  ADS  Google Scholar 

  177. Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).

    Article  Google Scholar 

  178. Soil Survey Staff, Natural Resources Conservation Service & USDA. Web soil survey. USDA https://websoilsurvey.nrcs.usda.gov/ (2019).

  179. Cooper, C. B., Hochachka, W. M. & Dhondt, A. A. in Citizen Science (eds Dickinson, J. L. & Bonney, R.) 99–113 (Cornell Univ. Press, 2012).

  180. Bastin, L., Schade, S. & Schill, C. in Mapping and the Citizen Sensor (eds Foody, G. et al.) 249–272 (Ubiquity Press, 2017).

  181. Resnik, D. B., Elliott, K. C. & Miller, A. K. A framework for addressing ethical issues in citizen science. Environ. Sci. Policy 54, 475–481 (2015). This article outlines basic considerations for ethical research practices in citizen science.

    Article  Google Scholar 

  182. Brashares, J. S., Arcese, P. & Sam, M. K. Human demography and reserve size predict wildlife extinction in West Africa. Proc. R. Soc. Lond. B 268, 2473–2478 (2001).

    Article  Google Scholar 

  183. Lotfian, M., Ingensand, J. & Brovelli, M. A. The partnership of citizen science and machine learning: benefits, risks, and future challenges for engagement, data collection, and data quality. Sustainability 13, 8087 (2021).

    Article  Google Scholar 

  184. Kissling, W. D. et al. Towards global interoperability for supporting biodiversity research on essential biodiversity variables (EBVs). Biodiversity 16, 99–107 (2015).

    Article  Google Scholar 

  185. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  186. Carroll, S. R., Herczog, E., Hudson, M., Russell, K. & Stall, S. Operationalizing the CARE and FAIR principles for Indigenous data futures. Sci. Data 8, 108 (2021).

    Article  Google Scholar 

  187. UKEOF Citizen Science Working. Data management planning for citizen science. Ocean Best Practices https://repository.oceanbestpractices.org/handle/11329/1406 (2020). This document provides advice about the development of data management plans.

  188. Hansen, J. S. et al. Research data management challenges in citizen science projects and recommendations for library support services. A scoping review and case study. Data Sci. J. 20, 25 (2021).

    Article  Google Scholar 

  189. Croucher, M., Graham, L., James, T., Krystalli, A. & Michonneau, F. A guide to reproducible code. British Ecological Society https://www.britishecologicalsociety.org/publications/guides-to/ (2019).

  190. Parker, A., Dosemagen, S., Molloy, J., Bowser, A. & Novak, A. Open hardware: an opportunity to build better science. Wilson Center https://www.wilsoncenter.org/publication/open-hardware-opportunity-build-better-science (2021).

  191. Palmer, M. S., Dewey, J. & Huebner, S. Snapshot Safari educational materials. Libraries Digital Conservancy https://hdl.handle.net/11299/217102 (2020).

  192. Campbell, J., Bowser, A., Fraisl, D. & Meloche, M. in Data for Good Exchange (IIASA, 2019).

  193. Fraisl, D. et al. Demonstrating the potential of Picture Pile as a citizen science tool for SDG monitoring. Environ. Sci. Policy 128, 81–93 (2022).

    Article  Google Scholar 

  194. Humm, C. & Schrögel, P. Science for all? Practical recommendations on reaching underserved audiences. Front. Commun. https://doi.org/10.3389/fcomm.2020.00042 (2020).

    Article  Google Scholar 

  195. Clary, E. G. & Snyder, M. The motivations to volunteer: theoretical and practical considerations. Curr. Dir. Psychol. Sci. 8, 156–159 (1999).

    Article  Google Scholar 

  196. Hobbs, S. J. & White, P. C. L. Motivations and barriers in relation to community participation in biodiversity recording. J. Nat. Conserv. 20, 364–373 (2012).

    Article  Google Scholar 

  197. Lukyanenko, R., Wiggins, A. & Rosser, H. K. Citizen science: an information quality research frontier. Inf. Syst. Front. 22, 961–983 (2020).

    Article  Google Scholar 

  198. Mair, L. & Ruete, A. Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE 11, e0147796 (2016).

    Article  Google Scholar 

  199. Petrovan, S. O., Vale, C. G. & Sillero, N. Using citizen science in road surveys for large-scale amphibian monitoring: are biased data representative for species distribution? Biodivers. Conserv. 29, 1767–1781 (2020).

    Article  Google Scholar 

  200. Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A. & Kaiser, E. W. Weekend bias in Citizen Science data reporting: implications for phenology studies. Int. J. Biometeorol. 57, 715–720 (2013).

    Article  ADS  Google Scholar 

  201. Cretois, B. et al. Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway. Ecol. Evol. 11, 15191–15204 (2021).

    Article  Google Scholar 

  202. Haklay, M. E. in European Handbook of Crowdsourced Geographic Information (eds Capineri, C. et al.) 35–44 (Ubiquity Press, 2016).

  203. Haklay, M. in Citizen Science (eds Haklay, M. et al.) 52–62 (UCL Press, 2018).

  204. Schade, S., Herding, W., Fellermann, A. & Kotsev, A. Joint statement on new opportunities for air quality sensing — lower-cost sensors for public authorities and citizen science initiatives. Res. Ideas Outcomes 5, e34059 (2019).

    Article  Google Scholar 

  205. Moustard, F. et al. Using Sapelli in the field: methods and data for an inclusive citizen science. Front. Ecol. Evol https://doi.org/10.3389/fevo.2021.638870 (2021).

    Article  Google Scholar 

  206. Pettibone, L. et al. Transdisciplinary sustainability research and citizen science: options for mutual learning. GAIA — Ecol. Perspect. Sci. Soc. 27, 222–225 (2018).

    Google Scholar 

  207. Low, R., Schwerin, T. & Codsi, R. Citizen Science As A Tool For Transdisciplinary Research And Stakeholder Engagement (ESSOAr, 2020).

  208. Ottinger, G. in The Routledge Handbook of the Political Economy of Science (eds Tyfield, D., Lave, R., Randalls, S. & Thorpe, C.) 351–364 (Routledge, 2017).

  209. Rey-Mazón, P., Keysar, H., Dosemagen, S., D’Ignazio, C. & Blair, D. Public lab: community-based approaches to urban and environmental health and justice. Sci. Eng. Ethics 24, 971–997 (2018).

    Article  Google Scholar 

  210. Brown, A., Franken, P., Bonner, S., Dolezal, N. & Moross, J. Safecast: successful citizen-science for radiation measurement and communication after Fukushima. J. Radiol. Prot. 36, S82–S101 (2016).

    Article  Google Scholar 

  211. Pocock, M. J. O. et al. Developing the global potential of citizen science: assessing opportunities that benefit people, society and the environment in East Africa. J. Appl. Ecol. 56, 274–281 (2019).

    Article  Google Scholar 

  212. Gollan, J., de Bruyn, L. L., Reid, N. & Wilkie, L. Can volunteers collect data that are comparable to professional scientists? A study of variables used in monitoring the outcomes of ecosystem rehabilitation. Environ. Manag. 50, 969–978 (2012).

    Article  ADS  Google Scholar 

  213. van Noordwijk, T. C. G. E. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 373–395 (Springer International Publishing, 2021).

  214. Auerbach, J. et al. The problem with delineating narrow criteria for citizen science. Proc. Natl. Acad. Sci. USA 116, 15336–15337 (2019).

    Article  ADS  Google Scholar 

  215. Gold, M., Wehn, U., Bilbao, A. & Hager, G. EU Citizen observatories landscape report II: addressing the challenges of awareness, acceptability, and sustainability. EU https://zenodo.org/record/4472670 (2020).

  216. WeObserve Consortium. Roadmap for the uptake of the citizen observatories’ knowledge base. WeObserve Consortium https://zenodo.org/record/4646774 (2021).

  217. UNECE. Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters (Aarhus Convention). UNECE https://unece.org/fileadmin/DAM/env/pp/documents/cep43e.pdf (1998).

  218. UNECE. Draft updated recommendations on the more effective use of electronic information tools. UNECE https://unece.org/sites/default/files/2021-08/ECE_MP.PP_2021_20_E.pdf (2021).

  219. UNECE. Draft updated recommendations on the more effective use of electronic information tools, Addendum. UNECE https://unece.org/sites/default/files/2021-08/ECE_MP.PP_2021_20_Add.1_E.pdf (2021).

  220. UNEP. Measuring progress: environment and the SDGs. UNEP http://www.unep.org/resources/publication/measuring-progress-environment-and-sdgs (2021).

  221. SDSN TReNDS. Strengthening measurement of marine litter in Ghana. How citizen science is helping to measure progress on SDG 14.1.1b. SDSN TReNDS https://storymaps.arcgis.com/stories/2622af0a0c7d4c709c3d09f4cc249f7d (2021).

  222. Goudeseune, L. et al. Citizen science toolkit for biodiversity scientists. biodiversa https://zenodo.org/record/3979343 (2020).

  223. Veeckman, C., Talboom, S., Gijsel, L., Devoghel, H. & Duerinckx, A. Communication in citizen science. A practical guide to communication and engagement in citizen science. SCivil https://www.scivil.be/sites/default/files/paragraph/files/2020-01/Scivil%20Communication%20Guide.pdf (2019).

  224. Durham, E., Baker, S., Smith, M., Moore, E. & Morgan, V. BiodivERsA: stakeholder engagement handbook. biodiversa https://www.biodiversa.org/702 (2014).

  225. WeObserve Consortium. WeObserve Cookbook. WeObserve Consortium https://zenodo.org/record/5493543 (2021).

  226. Danielsen, F. et al. Testing focus groups as a tool for connecting Indigenous and local knowledge on abundance of natural resources with science-based land management systems. Conserv. Lett. 7, 380–389 (2014).

    Article  Google Scholar 

  227. Elliott, K. C., McCright, A. M., Allen, S. & Dietz, T. Values in environmental research: citizens’ views of scientists who acknowledge values. PLoS ONE 12, e0186049 (2017).

    Article  Google Scholar 

  228. Yamamoto, Y. T. Values, objectivity and credibility of scientists in a contentious natural resource debate. Public. Underst. Sci. 21, 101–125 (2012).

    Article  Google Scholar 

  229. Danielsen, F. et al. in Handbook of Citizen Science in Ecology and Conservation (eds Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F.) 25–29 (Univ. California Press, 2020).

  230. Eicken, H. et al. Connecting top-down and bottom-up approaches in environmental observing. BioScience 71, 467–483 (2021). This article highlights the benefits of linking community- and science/policy-led approaches.

    Article  Google Scholar 

  231. Slough, T. et al. Adoption of community monitoring improves common pool resource management across contexts. Proc. Natl Acad. Sci. USA 118, e2015367118 (2021).

    Article  Google Scholar 

  232. Wilderman, C. C., Barron, A. & Imgrund, L. Top down or bottom up? ALLARM’s experience with two operational models for community science. In 4th Natl Monitoring Conf. (National Water Quality Monitoring Council, 2004).

  233. Johnson, N. et al. Community-based monitoring and Indigenous knowledge in a changing Arctic: a review for the sustaining Arctic Observing Networks. Ocean Best Practices https://repository.oceanbestpractices.org/handle/11329/1314 (2016).

  234. Lau, J. D., Gurney, G. G. & Cinner, J. Environmental justice in coastal systems: perspectives from communities confronting change. Glob. Environ. Change 66, 102208 (2021).

    Article  Google Scholar 

  235. Lyver, P. O. B. et al. An Indigenous community-based monitoring system for assessing forest health in New Zealand. Biodivers. Conserv. 26, 3183–3212 (2017).

    Article  Google Scholar 

  236. Cuyler, C. et al. Using local ecological knowledge as evidence to guide management: a community-led harvest calculator for muskoxen in Greenland. Conserv. Sci. Pract. 2, e159 (2020).

    Google Scholar 

  237. Fox, J. A. Social accountability: what does the evidence really say? World Dev. 72, 346–361 (2015).

    Article  Google Scholar 

  238. Wheeler, H. C. et al. The need for transformative changes in the use of Indigenous knowledge along with science for environmental decision-making in the Arctic. People Nat. 2, 544–556 (2020).

    Article  Google Scholar 

  239. Storey, R. G., Wright-Stow, A., Kin, E., Davies-Colley, R. J. & Stott, R. Volunteer stream monitoring: do the data quality and monitoring experience support increased community involvement in freshwater decision making? Ecol. Soc. 21, art32 (2016).

    Article  Google Scholar 

  240. Brofeldt, S. et al. Community-based monitoring of tropical forest crimes and forest resources using information and communication technology — experiences from Prey Lang, Cambodia. Citiz. Sci. Theory Pract. 3, 4 (2018).

    Article  Google Scholar 

  241. Menton, M. & Le Billon, P. Environmental Defenders: Deadly Struggles For Life And Territory (Routledge, 2021).

  242. Eastman, L. B., Hidalgo-Ruz, V., Macaya-Caquilpán, V., Núñez, P. & Thiel, M. The potential for young citizen scientist projects: a case study of Chilean schoolchildren collecting data on marine litter. J. Integr. Coast. Zone Manag. 14, 569–579 (2014).

    Google Scholar 

  243. Hidalgo-Ruz, V. & Thiel, M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): a study supported by a citizen science project. Mar. Environ. Res. 87–88, 12–18 (2013).

    Article  Google Scholar 

  244. Kruse, K., Kiessling, T., Knickmeier, K., Thiel, M. & Parchmann, I. in Engaging Learners with Chemistry (eds Ilka P., Shirley S. & Jan A.) 225–240 (Royal Society of Chemistry, 2020).

  245. Wichman, C. S. et al. Promoting pro-environmental behavior through citizen science? A case study with Chilean schoolchildren on marine plastic pollution. Mar. Policy 141, 105035 (2022).

    Article  Google Scholar 

  246. Bravo, M. et al. Anthropogenic debris on beaches in the SE Pacific (Chile): results from a national survey supported by volunteers. Mar. Pollut. Bull. 58, 1718–1726 (2009).

    Article  Google Scholar 

  247. Hidalgo-Ruz, V. et al. Spatio-temporal variation of anthropogenic marine debris on Chilean beaches. Mar. Pollut. Bull. 126, 516–524 (2018).

    Article  Google Scholar 

  248. Honorato-Zimmer, D. et al. Mountain streams flushing litter to the sea — Andean rivers as conduits for plastic pollution. Environ. Pollut. 291, 118166 (2021).

    Article  Google Scholar 

  249. Amenábar Cristi, M. et al. The rise and demise of plastic shopping bags in Chile — broad and informal coalition supporting ban as a first step to reduce single-use plastics. Ocean. Coast. Manag. 187, 105079 (2020).

    Article  Google Scholar 

  250. Kiessling, T. et al. Plastic Pirates sample litter at rivers in Germany — riverside litter and litter sources estimated by schoolchildren. Environ. Pollut. 245, 545–557 (2019).

    Article  Google Scholar 

  251. Kiessling, T. et al. Schoolchildren discover hotspots of floating plastic litter in rivers using a large-scale collaborative approach. Sci. Total. Environ. 789, 147849 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of C.B.H. was supported by a Brandeis University Provost Research grant. The work of D.F. was supported by the European Union’s Horizon 2020 Research And Innovation Programme EU-Citizen.Science project (under grant agreement number 824580). The work of F.D. was supported by the European Union’s Horizon 2020 Research And Innovation Programme INTAROS, CAPARDUS and FRAMEwork projects (under grant agreement numbers 727890, 869673 and 862731), and the Danish Agency for Science and Higher Education through the UArctic Thematic Network on Collaborative Resource Management. The work of G.H. was supported by the European Union’s Horizon 2020 research and innovation programme EU-Citizen.Science and FRAMEwork projects (under grant agreement numbers 824580 and 862731). The work of J.M.H. was supported by the AFRI Postdoctoral Fellowship grant 2020-67034-31766 from the USDA National Institute of Food and Agriculture. The work of J.P. was supported by the European Union’s H2020 Research And Innovation Programme Cos4Cloud project (under grant agreement number 863463); J.P. also acknowledges the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S). The work of M.H. was supported by the European Union’s ERC Advanced Grant project ‘European Citizen Science: Analysis and Visualisation’ (under grant agreement number 694767); and the European Union’s Horizon 2020 Research And Innovation Programme EU-Citizen.Science and TIME4CS projects (under grant agreement numbers 824580 and 101006201). The work of M.T. was supported by the European Union’s Horizon 2020 Research And Innovation Programme MINKE project (under grant agreement number 101008724). The work of P.-Y.H. was supported by P. Stephens, Department of Biosciences, Durham University, UK; the Belmont Community School, Durham, UK; the Durham Wildlife Trust, Durham, UK; the United Kingdom Heritage Lottery Fund (grant numbers OH-14-06474, OM-21-00458 and RH-16-09501); the British Ecological Society; the United Kingdom Economic and Social Research Council Impact Acceleration Account, Durham University (grant numbers TESS–ESLE2012 and 030-15/16, and a Doctoral Scholarship); the United Kingdom Natural Environment Research Council (NE/R008485/1); the European Food Safety Authority (grant numbers OC/EFSA/ALPHA/2016/01–01 and OC/EFSA/AMU/2018/02); a HMP and YOI Deerbolt Operational Innovation Award, and the Royal Society (grant number PG\S2\192047).

Author information

Authors and Affiliations

Authors

Contributions

D.F. and G.H. contributed equally as first authors. B.B., M.G. and P.-Y.H. contributed equally as second authors. Introduction (D.F., G.H. and M.G.); Experimentation (D.F., G.H., C.B.H., H.S. and M.H.); Results (D.F., G.H., B.B. and J.M.H.); Applications (D.F., G.H., F.D., J.M.H., J.P., M.T. and P.-Y.H.); Reproducibility and data deposition (D.F., G.H. and P.-Y.H.); Limitations and optimizations (D.F., G.H., B.B., J.P., and M.H.); Outlook (D.F., G.H., M.G. and P.-Y.H.); Overview of the Primer (D.F., G.H. and M.H.).

Corresponding author

Correspondence to Dilek Fraisl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Finn Arne Jorgensen, Corlia Meyer, Kirsten Silvius and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AfriAlliance Knowledge Hub: https://afrialliance.org/knowledge-hub

Atlas of Barcelona Biodiversity: https://ajuntament.barcelona.cat/atlesbiodiversitat/en/

Australian Citizen Science Association: https://citizenscience.org.au/

CERN Open Hardware Licences: https://ohwr.org/project/cernohl/wikis/Documents/CERN-OHL-version-2

CesiumJS open source JavaScript library: https://cesium.com/platform/cesiumjs/

choosealicense.com: https://choosealicense.com/

Cientificos de la Basura: http://www.cientificosdelabasura.cl/en/

Citizen Science Africa Association: https://www.usiu.ac.ke/citsci-africa-association/

CitizenScience.Asia: http://www.citizenscience.asia/

Citizen Science Association in the USA: https://citizenscience.org/

Citizen Science Center at the University of Zurich: https://citizenscience.ch/en/

Citizen Science Global Partnership: http://globalcitizenscience.org/

CitSci.org: https://www.citsci.org

Community-based Monitoring Library: https://mkp28.wixsite.com/cbm-best-practice

Cos4Cloud project: https://cos4cloud-eosc.eu/

Creative Commons: https://creativecommons.org/about/cclicenses

CWDAT open source tool: https://spatial.wlu.ca/cwdat/

Darwin Core: https://dwc.tdwg.org/

Data Visualization Overlay: https://www.spotteron.net/blog-and-news/making-data-meaningful-data-visualization-overlay-in-citizen-science-apps-on-the-spotteron-platform

Dryad: https://datadryad.org/stash/

EU-Citizen.Science: https://eu-citizen.science/

European Citizen Science Association: https://ecsa.citizen-science.net/

European Environment Agency’s Marine Litter Watch: https://www.eea.europa.eu/themes/water/europes-seas-and-coasts/assessments/marine-litterwatch/data-and-results/marine-litterwatch-data-viewer

European Open Science Cloud: https://eosc-portal.eu/

Forest Health Watch program: https://foresthealth.org/

FotoQuest Go: http://fotoquest-go.org/

Global Earth Challenge Marine Litter Data Integration Platform: https://globalearthchallenge.earthday.org/datasets/data-earth-challenge-integrated-data-plastic-pollution-mlw-mdmap-icc-2015-2018/explore?location=2.132530%2C2.357206%2C1.89

Great Southern BioBlitz: https://www.inaturalist.org/projects/great-southern-bioblitz-2021-umbrella

iNaturalist: https://github.com/inaturalist/

Iberoamerican Network of Participatory Science (RICAP): http://cienciaparticipativa.net/la-ricap/

MammalWeb: https://www.mammalweb.org/

National Oceanic and Atmospheric Administration’s (NOAA) Marine Debris Monitoring and Assessment Project’s Accumulation Data: https://mdmap.orr.noaa.gov/

Ocean Conservancy’s International Coastal Cleanup (ICC) Trash Information and Data for Education and Solutions (TIDES) database: https://www.coastalcleanupdata.org/

OSF: https://osf.io/

Plastic Pirates: https://www.plastic-pirates.eu/

Public Lab: https://publiclab.org/

Public Participation in Scientific Research (PPSR) Core: https://core.citizenscience.org/

Registry of Research Data Repositories: https://www.re3data.org/

Safecast: https://safecast.org/

Spipoll: https://www.spipoll.org/

The Zooniverse: https://github.com/zooniverse/

URBAMAR: https://www.natusfera.org/projects/urbamar

Western Redcedar Dieback Map: https://www.inaturalist.org/projects/western-redcedar-dieback-map

Zenodo: https://zenodo.org/

Supplementary information

Glossary

Participants

A participant is a person who takes part in a citizen science project in a non-professional capacity, by helping to define its focus, gather or analyse data. Other terms used are contributor, volunteer or citizen scientist.

Lay knowledge

Lay knowledge comes from personal experience or tradition rather than formal education or professional research.

Indigenous knowledge

Understandings, skills and worldviews developed by societies with centuries to millennia of interactions with their natural surroundings, and with potential to inform decision-making about fundamental aspects of day-to-day life.

Contributory citizen science

Citizen science programmes designed by professional scientists and involving primarily non-credentialled participants contributing to data collection.

In situ

In situ refers to data that are gathered on a site, an activity that takes place locally, or an observation made at a specific location on the ground.

Opportunistic data

Opportunistic data are gathered by participants, usually while being engaged in another activity, such as taking a walk. Data collection does not follow a structured sampling design and can therefore be unevenly distributed or contain biases.

Structured/semi-structured/unstructured

Citizen science programmes may be placed along a spectrum from structured to unstructured protocols. The level of structure of a protocol is defined both by the degree of prescription in space and time of the sampling effort and by the degree of training and experience of the participants.

Community-led citizen science

Citizen science programmes involving members of the public and communities not only primarily as data collectors but also in additional stages of the research process (including identifying the question of interest, designing methodologies, interpreting data, and using data for decision-making), although professional scientists may provide advice and training.

BioBlitz

A collective activity, most often open to the public, to record biodiversity observations within a set time frame and within a defined spatial area, often also combined with expert talks and hands-on activities.

Metadata

Metadata help to identify basic information about data regarding when, where and how the data were gathered, for what purpose, what information they include and how the data quality was ensured, among others.

Bottom-up

Self-organized, people-led initiatives, often forming around matters of local concern or shared interest.

OpenStreetMap

The Wikipedia of maps — a free and open digital map of the world, created by volunteers.

Data minimization

The collection and processing of only as much data as is absolutely necessary for the purposes specified.

Citizen observatories

Community-based environmental monitoring initiatives that gather citizen science data for policymaking, and environmental management and governance.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraisl, D., Hager, G., Bedessem, B. et al. Citizen science in environmental and ecological sciences. Nat Rev Methods Primers 2, 64 (2022). https://doi.org/10.1038/s43586-022-00144-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00144-4

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene