Noble metal/metal–organic framework nanoparticle-based electrochemical sensors for evaluating fish quality: a comprehensive review
Abstract
Fish quality is a big-picture issue because of the possible presence of many chemical and biological pollutants, that may affect fish leading to environmental and health hazards. In this regard, researchers focus on developing efficient strategies for evaluating fish quality in terms of safety and freshness. Fish safety is determined based on assessing various pollutants, such as heavy metals, pesticides, dyes, and drugs, in fish tissue. Additionally, fish freshness evaluation is based on assessing some indicators including xanthine, hypoxanthine, uric acid, and histamine. Many chromatographic methods can assess all of these chemical indicators to evaluate the fish quality. However, these methods are expensive and often require sophisticated steps. Thus, electrochemical methods based on noble metal nanoparticles (NMNPs), metal–organic frameworks (MOFs) NPs, and their composites as electrode modifiers were investigated as potential replacements for the chromatographic ones. These materials showed high catalytic activity and electrical conductivity compared to the other electrode modifiers. In this review, we spotlight the role of NMNPs and MOF NPs in evaluating the quality of fish samples as a food source. Overall, NMNPs and MOF NPs are considered promising electrode materials for the electrochemical monitoring of fish quality.