Issue 17, 2025

High-throughput microdroplet-based synthesis using automated array-to-array transfer

Abstract

Automation of chemical synthesis and high-throughput (HT) screening are important for speeding up drug discovery. Here, we describe an automated HT picomole scale synthesis system which uses desorption electrospray ionization (DESI) to create microdroplets of reaction mixtures at individual positions from a two-dimensional reactant array and transfer them to a corresponding position in an array of collected reaction products. On-the-fly chemical transformations are facilitated by the reaction acceleration phenomenon in microdroplets and high reaction conversions are achieved during the milliseconds droplet flight time from the reactant to the product array. Successful functionalization of bioactive molecules is demonstrated through the generation of 172 analogs (64% success rate) using multiple reaction types. Synthesis throughput is ∼45 seconds/reaction including droplet formation, reaction, and collection steps, all of which occur in an integrated fashion, generating product amounts sufficient for subsequent bioactivity screening (low ng to low μg). Quantitative performance was validated using LC/MS. This system bridges the demonstrated capabilities of HT-DESI for reaction screening and label-free bioassays, allowing consolidation of the key early drug discovery steps around a single synthetic-analytical technology.

Graphical abstract: High-throughput microdroplet-based synthesis using automated array-to-array transfer

Supplementary files

Article information

Article type
Edge Article
Submitted
23 Jan 2025
Accepted
20 Mar 2025
First published
21 Mar 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 7544-7550

High-throughput microdroplet-based synthesis using automated array-to-array transfer

K. Huang, K. Chen, N. M. Morato, T. C. Sams, E. T. Dziekonski and R. G. Cooks, Chem. Sci., 2025, 16, 7544 DOI: 10.1039/D5SC00638D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements