Skip to main content

Fixed Point Theorems

  • Living reference work entry
  • Latest version View entry history
  • First Online:
The New Palgrave Dictionary of Economics
  • 103 Accesses

Abstract

This article gives statements of the Tarski fixed point theorem and the main versions of the topological fixed point principle that have been applied in economic theory. Pointers are given to literature concerned with proofs of Brouwer’s theorem, and with algorithms for computing approximate fixed points. The topological results are all consequences of a slightly weakened version of the Eilenberg and Montgomery (American Journal of Mathematics 68: 214–222, 1946) fixed point theorem. The axiomatic characterization of the Leray–Schauder fixed point index (which is even more powerful) is also stated, and its application to issues concerning robustness of sets of equilibria is explained.

This chapter was originally published in The New Palgrave Dictionary of Economics, 2nd edition, 2008. Edited by Steven N. Durlauf and Lawrence E. Blume

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Algower, E., and K. Georg. 1990. Numerical continuation methods. New York: Springer Verlag.

    Book  Google Scholar 

  • Arrow, K., and G. Debreu. 1954. Existence of an equilibrium for a competitive economy. Econometrica 22: 265–290.

    Article  Google Scholar 

  • Border, K. 1985. Fixed point theorems with applications to economics and game theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Borsuk, K. 1967. Theory of retracts. Warsaw: Polish Scientific Publishers.

    Google Scholar 

  • Brouwer, L. 1910. Uber Abbildung von Mannigfaltikeiten. Mathematische Annalen 71: 97–115.

    Article  Google Scholar 

  • Browder, F. 1948. The topological fixed point theory and its applications to functional analysis. Ph.D. thesis, Princeton University.

    Google Scholar 

  • Brown, R. 1971. The Lefschetz fixed point theorem. Glenview: Scott Foresman and Co.

    Google Scholar 

  • Debreu, G. 1952. A social equilibrium existence th. Proceedings of the National Academy of Science 38: 886–893.

    Article  Google Scholar 

  • Debreu, G. 1970. Economies with a finite set of equilibria. Econometrica 38: 387–392.

    Article  Google Scholar 

  • Dierker, E. 1972. Two remarks on the number of equilibria of an economy. Econometrica 40: 951–953.

    Article  Google Scholar 

  • Doup, T. 1988. Simplicial algorithms on the simplotope. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Dugundji, J., and A. Granas. 2003. Fixed point theory. New York: Springer-Verlag.

    Google Scholar 

  • Echenique, F. 2005. A short and constructive proof of Tarski’s fixed point th. International Journal of Game Theory 33: 215–218.

    Article  Google Scholar 

  • Eilenberg, S., and D. Montgomery. 1946. Fixed-point theorems for multivalued transformations. American Journal of Mathematics 68: 214–222.

    Article  Google Scholar 

  • Eraslan, H., and A. McLennan. 2005. Uniqueness of stationary equilibrium payoffs in coalitional bargaining. Mimeo, University of Pennsylvania.

    Google Scholar 

  • Fan, K. 1952. Fixed point and minimax theorems in locally convex linear spaces. Proceedings of the National Academy of Sciences 38: 121–126.

    Article  Google Scholar 

  • Fort, M. 1950. Essential and nonessential fixed points. American Journal of Mathematics 72: 315–322.

    Article  Google Scholar 

  • Garcia, C., and W. Zangwill. 1981. Pathways to solutions, fixed points, and equilibria. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Glicksberg, I. 1952. A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium. Proceedings of the American Mathematical Society 3: 170–174.

    Google Scholar 

  • Herings, P. 1997. An extremely simple proof of the K–K–M–S th. Economic Theory 10: 361–367.

    Article  Google Scholar 

  • Hopenhayn, H., and E. Prescott. 1992. Stochastic monotonicity and stationary distributions for dynamic economies. Econometrica 60: 1387–1406.

    Article  Google Scholar 

  • Kakutani, S. 1941. A generalization of Brouwer’s fixed point th. Duke Mathematical Journal 8: 416–427.

    Article  Google Scholar 

  • Kinoshita, S. 1952. On essential components of the set of fixed points. Osaka Mathematical Journal 4: 19–22.

    Google Scholar 

  • Kinoshita, S. 1953. On some contractible continua without the fixed point property. Fundamentae Mathematicae 40: 96–98.

    Google Scholar 

  • Knaster, B., C. Kuratowski, and C. Mazurkiewicz. 1929. Ein Beweis des Fixpunktsatzes fur n-dimensionale Simplexe. Fundamenta Mathematicae 14: 132–137.

    Google Scholar 

  • Kohlberg, E., and J.-F. Mertens. 1986. On the strategic stability of equilibria. Econometrica 54: 1003–1038.

    Article  Google Scholar 

  • Lefschetz, S. 1923. Continuous transformations of manifolds. Proceedings of the National Academy of Sciences 9: 90–93.

    Article  Google Scholar 

  • Mas-Colell, A. 1974. A note on a theorem of F. Browder. Mathematical Programming 6: 229–233.

    Article  Google Scholar 

  • Mas-Colell, A. 1985. The theory of general economic equilibrium: A differentiable approach. Cambridge: Cambridge University Press.

    Google Scholar 

  • McKenzie, L. 1959. On the existence of general equilibrium for a competitive market. Econometrica 27: 54–71.

    Article  Google Scholar 

  • McLennan, A. 1989a. Consistent conditional systems in noncooperative game theory. International Journal of Game Theory 18: 141–174.

    Article  Google Scholar 

  • McLennan, A. 1989b. Fixed points of contractible valued correspondences. International Journal of Game Theory 18: 175–184.

    Article  Google Scholar 

  • McLennan, A., and R. Tourky. 2005. From imitation games to Kakutani. Mimeo, University of Minnesota.

    Google Scholar 

  • Milgrom, P., and C. Shannon. 1994. Monotone comparative statics. Econometrica 62: 157–180.

    Article  Google Scholar 

  • Milnor, J. 1965. Topology from the differentiable viewpoint. Charlottesville: University Press of Virginia.

    Google Scholar 

  • Milnor, J. 1978. Analytic proofs of the ‘hairy ball th’ and the Brouwer fixed-point th. American Mathematical Monthly 85: 521–524.

    Article  Google Scholar 

  • Nash, J. 1950. Non-cooperative games. Ph.D. thesis, Department of Mathematics, Princeton University.

    Google Scholar 

  • Nash, J. 1951. Non-cooperative games. Annals of Mathematics 54: 286–295.

    Article  Google Scholar 

  • O’Neill, B. 1953. Essential sets and fixed points. American Journal of Mathematics 75: 497–509.

    Article  Google Scholar 

  • Reny, P. 2005. On the existence of monotone pure strategy equilibria in Bayesian games. Mimeo, University of Chicago.

    Google Scholar 

  • Scarf, H. 1973. The computation of economic equilibria. New Haven: Yale University Press.

    Google Scholar 

  • Schauder, J. 1930. Der Fixpunktsatz in Funktionalraumen. Studia Mathematica 2: 171–180.

    Google Scholar 

  • Selten, R. 1975. Re-examination of the perfectness concept for equilibrium points of extensive games. International Journal of Game Theory 4: 25–55.

    Article  Google Scholar 

  • Shapley, L. 1973a. On balanced games without side payments. In Mathematical programming study, ed. T. Hu and S. Robinson. New York: Academic Press.

    Google Scholar 

  • Shapley, L. 1973b. On balanced games without side payments: A correction, Rand paper series report no. p-4910/1. Santa Monica: RAND Corporation.

    Book  Google Scholar 

  • Sperner, E. 1928. Neuer Beweis fiir die Invarianz der Dimensionszahl und des Gebietes. Abhandlungen aus dem Mathematischen Seminar der Hamburgischen 6: 265–272.

    Article  Google Scholar 

  • Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5: 285–309.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2008 The Author(s)

About this entry

Cite this entry

McLennan, A. (2008). Fixed Point Theorems. In: The New Palgrave Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-95121-5_646-2

Download citation

  • DOI: https://doi.org/10.1057/978-1-349-95121-5_646-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Palgrave Macmillan, London

  • Online ISBN: 978-1-349-95121-5

  • eBook Packages: Living Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Fixed Point Theorems
    Published:
    19 April 2017

    DOI: https://doi.org/10.1057/978-1-349-95121-5_646-2

  2. Original

    Fixed Point Theorems
    Published:
    11 November 2016

    DOI: https://doi.org/10.1057/978-1-349-95121-5_646-1