Abstract
This article gives statements of the Tarski fixed point theorem and the main versions of the topological fixed point principle that have been applied in economic theory. Pointers are given to literature concerned with proofs of Brouwer’s theorem, and with algorithms for computing approximate fixed points. The topological results are all consequences of a slightly weakened version of the Eilenberg and Montgomery (American Journal of Mathematics 68: 214–222, 1946) fixed point theorem. The axiomatic characterization of the Leray–Schauder fixed point index (which is even more powerful) is also stated, and its application to issues concerning robustness of sets of equilibria is explained.
This chapter was originally published in The New Palgrave Dictionary of Economics, 2nd edition, 2008. Edited by Steven N. Durlauf and Lawrence E. Blume
Similar content being viewed by others
Bibliography
Algower, E., and K. Georg. 1990. Numerical continuation methods. New York: Springer Verlag.
Arrow, K., and G. Debreu. 1954. Existence of an equilibrium for a competitive economy. Econometrica 22: 265–290.
Border, K. 1985. Fixed point theorems with applications to economics and game theory. Cambridge: Cambridge University Press.
Borsuk, K. 1967. Theory of retracts. Warsaw: Polish Scientific Publishers.
Brouwer, L. 1910. Uber Abbildung von Mannigfaltikeiten. Mathematische Annalen 71: 97–115.
Browder, F. 1948. The topological fixed point theory and its applications to functional analysis. Ph.D. thesis, Princeton University.
Brown, R. 1971. The Lefschetz fixed point theorem. Glenview: Scott Foresman and Co.
Debreu, G. 1952. A social equilibrium existence th. Proceedings of the National Academy of Science 38: 886–893.
Debreu, G. 1970. Economies with a finite set of equilibria. Econometrica 38: 387–392.
Dierker, E. 1972. Two remarks on the number of equilibria of an economy. Econometrica 40: 951–953.
Doup, T. 1988. Simplicial algorithms on the simplotope. Berlin: Springer-Verlag.
Dugundji, J., and A. Granas. 2003. Fixed point theory. New York: Springer-Verlag.
Echenique, F. 2005. A short and constructive proof of Tarski’s fixed point th. International Journal of Game Theory 33: 215–218.
Eilenberg, S., and D. Montgomery. 1946. Fixed-point theorems for multivalued transformations. American Journal of Mathematics 68: 214–222.
Eraslan, H., and A. McLennan. 2005. Uniqueness of stationary equilibrium payoffs in coalitional bargaining. Mimeo, University of Pennsylvania.
Fan, K. 1952. Fixed point and minimax theorems in locally convex linear spaces. Proceedings of the National Academy of Sciences 38: 121–126.
Fort, M. 1950. Essential and nonessential fixed points. American Journal of Mathematics 72: 315–322.
Garcia, C., and W. Zangwill. 1981. Pathways to solutions, fixed points, and equilibria. Englewood Cliffs: Prentice-Hall.
Glicksberg, I. 1952. A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium. Proceedings of the American Mathematical Society 3: 170–174.
Herings, P. 1997. An extremely simple proof of the K–K–M–S th. Economic Theory 10: 361–367.
Hopenhayn, H., and E. Prescott. 1992. Stochastic monotonicity and stationary distributions for dynamic economies. Econometrica 60: 1387–1406.
Kakutani, S. 1941. A generalization of Brouwer’s fixed point th. Duke Mathematical Journal 8: 416–427.
Kinoshita, S. 1952. On essential components of the set of fixed points. Osaka Mathematical Journal 4: 19–22.
Kinoshita, S. 1953. On some contractible continua without the fixed point property. Fundamentae Mathematicae 40: 96–98.
Knaster, B., C. Kuratowski, and C. Mazurkiewicz. 1929. Ein Beweis des Fixpunktsatzes fur n-dimensionale Simplexe. Fundamenta Mathematicae 14: 132–137.
Kohlberg, E., and J.-F. Mertens. 1986. On the strategic stability of equilibria. Econometrica 54: 1003–1038.
Lefschetz, S. 1923. Continuous transformations of manifolds. Proceedings of the National Academy of Sciences 9: 90–93.
Mas-Colell, A. 1974. A note on a theorem of F. Browder. Mathematical Programming 6: 229–233.
Mas-Colell, A. 1985. The theory of general economic equilibrium: A differentiable approach. Cambridge: Cambridge University Press.
McKenzie, L. 1959. On the existence of general equilibrium for a competitive market. Econometrica 27: 54–71.
McLennan, A. 1989a. Consistent conditional systems in noncooperative game theory. International Journal of Game Theory 18: 141–174.
McLennan, A. 1989b. Fixed points of contractible valued correspondences. International Journal of Game Theory 18: 175–184.
McLennan, A., and R. Tourky. 2005. From imitation games to Kakutani. Mimeo, University of Minnesota.
Milgrom, P., and C. Shannon. 1994. Monotone comparative statics. Econometrica 62: 157–180.
Milnor, J. 1965. Topology from the differentiable viewpoint. Charlottesville: University Press of Virginia.
Milnor, J. 1978. Analytic proofs of the ‘hairy ball th’ and the Brouwer fixed-point th. American Mathematical Monthly 85: 521–524.
Nash, J. 1950. Non-cooperative games. Ph.D. thesis, Department of Mathematics, Princeton University.
Nash, J. 1951. Non-cooperative games. Annals of Mathematics 54: 286–295.
O’Neill, B. 1953. Essential sets and fixed points. American Journal of Mathematics 75: 497–509.
Reny, P. 2005. On the existence of monotone pure strategy equilibria in Bayesian games. Mimeo, University of Chicago.
Scarf, H. 1973. The computation of economic equilibria. New Haven: Yale University Press.
Schauder, J. 1930. Der Fixpunktsatz in Funktionalraumen. Studia Mathematica 2: 171–180.
Selten, R. 1975. Re-examination of the perfectness concept for equilibrium points of extensive games. International Journal of Game Theory 4: 25–55.
Shapley, L. 1973a. On balanced games without side payments. In Mathematical programming study, ed. T. Hu and S. Robinson. New York: Academic Press.
Shapley, L. 1973b. On balanced games without side payments: A correction, Rand paper series report no. p-4910/1. Santa Monica: RAND Corporation.
Sperner, E. 1928. Neuer Beweis fiir die Invarianz der Dimensionszahl und des Gebietes. Abhandlungen aus dem Mathematischen Seminar der Hamburgischen 6: 265–272.
Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5: 285–309.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Copyright information
© 2008 The Author(s)
About this entry
Cite this entry
McLennan, A. (2008). Fixed Point Theorems. In: The New Palgrave Dictionary of Economics. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-349-95121-5_646-2
Download citation
DOI: https://doi.org/10.1057/978-1-349-95121-5_646-2
Received:
Accepted:
Published:
Publisher Name: Palgrave Macmillan, London
Online ISBN: 978-1-349-95121-5
eBook Packages: Living Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences
Publish with us
Chapter history
-
Latest
Fixed Point Theorems- Published:
- 19 April 2017
DOI: https://doi.org/10.1057/978-1-349-95121-5_646-2
-
Original
Fixed Point Theorems- Published:
- 11 November 2016
DOI: https://doi.org/10.1057/978-1-349-95121-5_646-1