Loading [MathJax]/extensions/TeX/boldsymbol.js
A Multiband/Multistandard 15–57 GHz Receive Phased-Array Module Based on 4 × 1 Beamformer IC and Supporting 5G NR FR2 Operation | IEEE Journals & Magazine | IEEE Xplore

A Multiband/Multistandard 15–57 GHz Receive Phased-Array Module Based on 4 × 1 Beamformer IC and Supporting 5G NR FR2 Operation


Abstract:

This work presents a 15–57 GHz multiband/ multistandard phased-array architecture for the fifth-generation (5G) new radio (NR) frequency range 2 (FR2) bands. An eight-ele...Show More

Abstract:

This work presents a 15–57 GHz multiband/ multistandard phased-array architecture for the fifth-generation (5G) new radio (NR) frequency range 2 (FR2) bands. An eight-element phased-array receive module is demonstrated based on two four-channel wideband beamformer chips designed in the SiGe BiCMOS process and flipped on a low-cost printed circuit board. The SiGe Rx chip employs RF beamforming and is designed to interface to a wideband differential Vivaldi antenna array. Each channel consists of a low-noise amplifier (LNA), active phase shifter with 5-bit resolution, variable gain amplifier (VGA), and differential-to-single-ended stage. The four channels are combined using a wideband two-stage on-chip Wilkinson network. The beamformer has a peak electronic gain of 24–25 dB and a 4.7–6.2 dB noise figure (NF) with a −29 to −24 dBm input P_{\boldsymbol {1\,dB}} at 20–40 GHz. The eight-element phased-array module also achieved ultra-wideband frequency response with flat gain and low-system NF. The phased array scans ±55° with < -12 -dB sidelobes demonstrating multiband operation. A 1.2-m over-the-air (OTA) link measurement using the eight-element Rx module supports 400-MHz 256-QAM OFDMA modulation with < 2.76% error vector magnitude (EVM) at multiple 5G NR FR2 bands. To the author’s knowledge, this work achieves the widest bandwidth phased array enabling the construction of multistandard systems.
Published in: IEEE Transactions on Microwave Theory and Techniques ( Volume: 70, Issue: 3, March 2022)
Page(s): 1732 - 1744
Date of Publication: 07 January 2022

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.