Skip to main content
Log in

Use of solid-phase inhomogeneities to increase the efficiency of ultrasonic therapy of oncological diseases

  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Authors’ concepts on the use of solid-phase sonosensitizer nanoinclusions in biological structures as ultrasonic energy concentrators in the therapy of oncological diseases are developed. The possibility of directed synthesis of nanoparticles and their aggregates in tumor tissue depending on its growth features is discussed. It was found that acoustic effects in polymer structures containing solid-phase inclusions depend on the nature of these inclusions and their bond with the polymer matrix. Using model gel systems, it was shown that solid-phase sonosensitizers enhance local thermal effects and amplitude-dependent scattering of ultrasound during its propagation in gel. Experimental studies on animals showed that the ultrasound exposure of malignant tumors containing nanoparticles of gold and some complex compounds results in a significant therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. A. Szent-Gyorgi, Nature 131, 178 (1933).

    Article  Google Scholar 

  2. C. J. Diederich and K. Hynynen, Ultrasound Med. Biol. 25, 871 (1999).

    Article  Google Scholar 

  3. M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, Akust. Zh. 49, 437 (2003) [Acoust. Phys. 49, 369 (2003)].

    Google Scholar 

  4. S. Umemura, Y. Nagashiko, R. Nishikagi, and K. Umemura, Jpn. J. Cancer Res. 81, 962 (1990).

    Google Scholar 

  5. Yu. N. Makov, in Proc. of the 19th Session RAO (GEOS, Moscow, 2007), pp. 97–100.

    Google Scholar 

  6. W. Hiraoka, H. Honda, L. B. Feril, Jr., N. Kudo, and T. Kondo, Ultrason. Sonochem. 13, 535 (2006).

    Article  Google Scholar 

  7. N. Yumita and S. Umemura, J. Med. Ultrasonics 31, 35 (2004).

    Article  Google Scholar 

  8. N. V. Andronova, E. M. Treshchalina, D. V. Filonenko, A. L. Nikolaev, and A. V. Gopin, Ros. Bioterapevt. Zh. 3(2), 12 (2004).

    Google Scholar 

  9. N. V. Andronova, E. M. Treshchalina, D. V. Filonenko, and A. L. Nikolaev, Ros. Bioterapevt. Zh. 4(3), 101 (2005).

    Google Scholar 

  10. Z. Gao, H. D. Fain, and N. Rapoport, Molec. Pharmaceutics 1, 317 (2004).

    Article  Google Scholar 

  11. Z. G. Gao, H. D. Fain, and N. Rapoport, J. Control Release 102, 203 (2005).

    Article  Google Scholar 

  12. O. V. Chumakova, A. V. Liopo, V. G. Andreev, T. C. Pappas, and R. O. Esenaliev, Cancer Lett. 261, 215 (2008).

    Article  Google Scholar 

  13. I. V. Larina, B. M. Evers, and R. O. Esenaliev, Anticancer Res. 25(1A), 149 (2005).

    Google Scholar 

  14. M. W. Keller, W. Glasheen, and S. Kaul, J. Am. Soc. Echocardiogr. 2(1), 48 (1989).

    Google Scholar 

  15. L. J. Shaw, L. Gillam, S. Feinstein, J. Dent, and G. Plotnick, Am. J. Managed Care 4, 169 (1998).

    Google Scholar 

  16. N. V. Men’shutina, Nanoparticles and Nanostructures Materials for Farmaceutics (Izd. Nauchn. Liter., Kaluga, 2008) [in Russian].

    Google Scholar 

  17. T. Nakanishi, S. Fukushima, K. Okamoto, et al., J. Controlled Release 74, 295 (2001).

    Article  Google Scholar 

  18. M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, and K. Kataoka, J. Drug Target 7(3), 171 (1999).

    Article  Google Scholar 

  19. V. S. Shapot, Biochemical Aspects of Tumour Growth (Meditsina, Moscow, 1975) [in Russian].

    Google Scholar 

  20. M. von Ardenne and P. G. Reitnauer, Arch. Geschwulstforsch 38, 264 (1971).

    Google Scholar 

  21. I. S. Kol’tsova, Distribution of Ultrasonic Waves in Heterogeneous Mediums (S.-Peterb. Univ., St. Petersburg, 2007) [in Russian].

    Google Scholar 

  22. R. B. Gennis, Biomembranes: Molecular Structure and Function (Mir, Moscow, 1997; Springer, New York, 1989).

    Google Scholar 

  23. I. E. Él’piner, Ultrasound Biophysics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  24. M. G. Sirotyuk, Acoustic Cavitation (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  25. A. L. Nikolaev, A. V. Gopin, D. S. Chicherin, V. E. Bozhevol’nov, and I. V. Melikhov, Vestn. Mosk. Univ., Ser. Khim. 49, 203 (2008).

    Google Scholar 

  26. A. L. Nikolaev, D. S. Chicherin, V. A. Sinani, O. V. Noa, I. V. Melikhov, and N. A. Platé, Vysokomol. Soedin. A 43, 27 (2001) [Polymer Sci., Ser. A 43, 21 (2001)].

    Google Scholar 

  27. M. Matsukawa, T. Akimoto, Sh. Ueba, and T. Otani, Ultrasonics 40, 323 (2002).

    Article  Google Scholar 

  28. R. E. Challis, M. J. W. Povey, M. L. Mather, and A. K. Holmes, Rep. Prog. Phys. 68, 1541 (2005).

    Article  ADS  Google Scholar 

  29. V. A. Akulichev, Akust. Zh. 11, 19 (1965) [Sov. Phys. Acoust. 11, 15 (1965)].

    Google Scholar 

  30. R. E. Apfel, J. Acoust. Soc. Am. 48, 1179 (1970).

    Article  ADS  Google Scholar 

  31. I. I. Konopatskaya, M. A. Mironov, P. A. Pyatakov, V. E. Bozhevol’nov, A. V. Gopin, and A. L. Nikolaev, in Proc. of the 20th Session of RAO (GEOS, Moscow, 2008), Vol. 1, p. 80.

    Google Scholar 

  32. L. B. Boinovich and A. M. Emel’yanenko, Usp. Khim. 77, 619 (2008).

    Google Scholar 

  33. N. N. Khavski, Akust. Zh. 25, 119 (1979) [Sov. Phys. Acoust. 25, 64 (1979)].

    Google Scholar 

  34. L. R. Gavrilov, in Proc. of the 18 Session of RAO, 11–15 Sept., 2006 (Taganrog, 2006), Vol. 3, p. 98.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Nikolaev.

Additional information

Original Russian Text © A.L. Nikolaev, A.V. Gopin, V.E. Bozhevol’nov, E.M. Treshchalina, N.V. Andronova, I.V. Melikhov, 2009, published in Akusticheskiĭ Zhurnal, 2009, Vol. 55, No. 4–5, pp. 565–574.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaev, A.L., Gopin, A.V., Bozhevol’nov, V.E. et al. Use of solid-phase inhomogeneities to increase the efficiency of ultrasonic therapy of oncological diseases. Acoust. Phys. 55, 575–583 (2009). https://doi.org/10.1134/S1063771009040149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771009040149

PACS numbers