Skip to main content
Log in

A pair spectrometer for nuclear astrophysics experiments

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Non-radiative transitions in nuclear capture reactions between light nuclei play a relevant role in stellar nuclear astrophysics, where nuclear processes occur at typical energies from tens to hundreds of keV. At higher energies, instead, the E0 contributions may be shadowed by more intense transitions. The experimental study of E0 transitions requires a specific detection setup, able to uniquely identify events where an electron-positron pair is produced. A compact ΔE-E charged-particle spectrometer based on two silicon detectors has been designed to be installed in the jet gas target chamber of the recoil mass separator ERNA (European Recoil separator for Nuclear Astrophysics) at the CIRCE laboratory of Caserta, Italy. The detector design, its performances and the first foreseen applications are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. D. Schürmann et al., Eur. Phys. J. A 26, 301 (2005).

    Article  ADS  Google Scholar 

  2. A. Di Leva et al., Phys. Rev. Lett. 102, 232502 (2009).

    Article  ADS  Google Scholar 

  3. A. Di Leva et al., Phys. Rev. Lett. 103, 159903 (2009).

    Article  ADS  Google Scholar 

  4. K.A. Snover, A.E. Hurd, Phys. Rev. C 67, 055801 (2003).

    Article  ADS  Google Scholar 

  5. G. Baur, K.A. Snover, S. Typel, Phys. Rev. C 75, 058801 (2007).

    Article  ADS  Google Scholar 

  6. D. Rogalla et al., Nucl. Instrum. Methods A 437, 266 (1999).

    Article  ADS  Google Scholar 

  7. D. Rogalla et al., Eur. Phys. J. A 6, 471 (1999).

    Article  ADS  Google Scholar 

  8. D. Rogalla et al., Nucl. Instrum. Methods A 513, 573 (2003).

    Article  ADS  Google Scholar 

  9. L. Gialanella et al., Nucl. Instrum. Methods A 522, 432 (2004).

    Article  ADS  Google Scholar 

  10. D. Schürmann et al., Nucl. Instrum. Methods A 531, 428 (2004).

    ADS  Google Scholar 

  11. G. Imbriani et al., Astrophys. J. 558, 903 (2001).

    Article  ADS  Google Scholar 

  12. I. Dominguez, P. Höflich, Astrophys. J. 528, 854 (2000).

    Article  ADS  Google Scholar 

  13. D. Schürmann et al., Phys. Lett. B 711, 35 (2012).

    Article  ADS  Google Scholar 

  14. C. Matei et al., Phys. Rev. Lett. 97, 242503 (2006).

    Article  ADS  Google Scholar 

  15. D. Schürmann et al., Phys. Lett. B 703, 557 (2011).

    Article  ADS  Google Scholar 

  16. K.H. Hahn, K.H. Chang, T.R. Donoghue, B.W. Filippone, Phys. Rev. C 36, 892 (1987).

    Article  ADS  Google Scholar 

  17. R. Kunz et al., Nucl. Phys. A 621, 149c (1997).

    Article  ADS  Google Scholar 

  18. U. Hager et al., Phys. Rev. C 84, 022801 (2011).

    Article  ADS  Google Scholar 

  19. O. Straniero, private communication.

  20. D. Baye, P. Descouvemont, Phys. Rev. C 38, 5 (1988).

    Article  Google Scholar 

  21. S.D. Bloom, Phys. Rev. 88, 312 (1952).

    Article  ADS  Google Scholar 

  22. J.L. Wood et al., Nucl. Phys. A 651, 323 (1999).

    Article  ADS  Google Scholar 

  23. C.P. Montoya et al., Nucl. Instrum. Methods A 334, 437 (1993).

    Article  ADS  Google Scholar 

  24. W.S. Freeman et al., Nucl. Instrum. Methods 204, 445 (1983).

    Article  Google Scholar 

  25. W. Michaelis, D. Lange, Nucl. Instrum. Methods 58, 349 (1968).

    Article  ADS  Google Scholar 

  26. L. Landau, J. Phys. USSR 8, 201 (1944).

    Google Scholar 

  27. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003).

    Article  ADS  Google Scholar 

  28. D.R. Tilley, C.M. Cheves, J.H. Kelley, S. Raman, H.R. Weller, Nucl. Phys. A 636, 247 (1998).

    Article  ADS  Google Scholar 

  29. K. Spyrou et al., Z. Phys. A 357, 283 (1997).

    Article  ADS  Google Scholar 

  30. Y. Kalambet et al., J. Chemom. 25, 352 (2011).

    Article  Google Scholar 

  31. A. Gavron, Phys. Rev. C 21, 230 (1980).

    Article  ADS  Google Scholar 

  32. O.B. Tarasov, D. Bazin, Nucl. Instrum. Methods B 266, 4657 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Guerro.

Additional information

Communicated by N. Kalantar-Nayestanaki

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerro, L., Di Leva, A., Gialanella, L. et al. A pair spectrometer for nuclear astrophysics experiments. Eur. Phys. J. A 50, 171 (2014). https://doi.org/10.1140/epja/i2014-14171-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14171-1

Keywords