
烧结工艺对WC-1.0TiC-3.1TaC-4.5Co硬质合金性能及微观组织的影响
李重典, 时凯华, 王海霞, 闵召宇, 廖军, 徐志超
材料工程 ›› 2016, Vol. 44 ›› Issue (12) : 74-79.
烧结工艺对WC-1.0TiC-3.1TaC-4.5Co硬质合金性能及微观组织的影响
Effect of Sintering Process on Properties and Microstructure of WC-1.0TiC-3.1TaC-4.5Co Cemented Carbides
采用传统粉末冶金法,分别用真空烧结和低压烧结工艺制备出一系列WC-1.0TiC-3.1TaC-4.5Co硬质合金样品。利用光学显微镜、扫描电镜与能谱仪对合金微观组织结构特征进行观察与分析。结果表明:提高真空工艺烧结温度或采用低压烧结工艺,能使合金内部的显微孔隙、钴池减少;低压烧结制备的合金WC晶粒度小于真空烧结制备的合金WC晶粒度,合金中易出现WC晶粒异常长大现象。
A series of WC-1.0TiC-3.1TaC-4.5Co cemented carbides were prepared by vacuum sintering and Sintering-HIP through traditional powder metallurgy method. Optical microscopy(OM),scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to characterize the microstructures. The results show that pores and cobalt-lake can be reduced in cemented carbides by increasing sintering temperature or using Sintering-HIP. The mean size of WC cemented carbide prepared by vacuum sintering process is larger than that prepared by Sintering-HIP. Furthermore, the phenomenon of WC abnormal growth was found in the cemented carbides prepared by Sintering-HIP.
硬质合金 / 烧结工艺 / 性能 / 微观组织 {{custom_keyword}} /
cemented carbide / sintering process / property / microstructure {{custom_keyword}} /
表 1 粉末原料的物理和化学性能Table 1 Physical and chemical properties of experimental raw powders |
Powder | FSSS-value/μm | Total carbon/% | Oxygen content/% | Free carbon/% |
WC | 0.85 | 6.16 | 0.03 | 0.12 |
Co | 1.15 | 0.03 | - | 0.45 |
CTC-3 | 3.60 | 12.46 | 0.07 | 0.25 |
TaC | 1.35 | 6.21 | 0.06 | 0.21 |
表 2 制备WC-1.0TiC-3.1TaC-4.5Co合金的烧结工艺Table 2 Sintering process of WC-1.0TiC-3.1TaC-4.5Co samples |
Sample | Sintering process |
1# | Vacuum sintering process(sintered at 1300℃ for 30min) |
2# | Vacuum sintering process (sintered at 1400℃ for 90min) |
3# | Vacuum sintering process (sintered at 1460℃ for 90min) |
4# | Sintering-HIP(sintered at 1400℃ for 90min under 0.9MPa pressure) |
5# | Sintering-HIP(sintered at 1460℃ for 90min under 0.9MPa pressure) |
6# | Sintering-HIP(sintered at 1460℃ for 90min under 3.0MPa pressure) |
7# | Sintering-HIP(sintered at 1460℃ for 90min under 5.0MPa pressure) |
表 3 不同烧结工艺对合金试样组织的影响Table 3 Microstructure of samples prepared by different sintering process |
Sample | Sintering process | Porosity | Cobalt phase |
1# | Vacuum/1300℃/30min | A08B08C00 | Cobalt lake |
2# | Vacuum/1400℃/90min | A02B00C00 | Cobalt lake |
3# | Vacuum/1460℃/90min | A02B00C00 | Cobalt lake |
4# | HIP/1400℃/ 0.9MPa/90min | A02B00C00 | Cobalt lake |
5# | HIP/1460℃/0.9MPa/90min | A02B00C00 | - |
6# | HIP/1460℃/ 3.0MPa/90min | A02B00C00 | - |
7# | HIP/1460℃/5.0MPa/90min | A02B00C00 | - |
图 2 不同烧结工艺制备的合金试样的光学低倍金相图片(a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#;(g)7# Fig.2 OM micrographs of samples prepared by different sintering process (a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#;(g)7# |
1 |
HUANG S G, VANMEENSEL K, BIEST O V, et al Binderless WC and WC-VC materials obtained by pulsed electric current sintering[J]. International Journal of Refractory Metals & Hard Materials, 2008, 26 (1): 41- 47.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
邬荫芳 "双高"超细合金的研制[J]. 硬质合金, 2000, 17 (4): 214- 222.
WU Y F Manufacture of"both high"ultrafine cemented carbide[J]. Cemented Carbide, 2000, 17 (4): 214- 222.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
史晓亮, 杨华, 邵刚勤, 等 微波烧结法制备WC-10Co硬质合金[J]. 中南大学学报(自然科学版), 2006, 37 (4): 665- 669.
SHI X L, YANG H, SHAO G Q, et al Preparation of WC-10Co cemented carbide by microwave sintering[J]. Journal of Central South University(Science and Technology), 2006, 37 (4): 665- 669.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
杜伟, 聂洪波, 吴冲浒 烧结工艺对低Co超细晶硬质合金性能的影响[J]. 粉末冶金材料科学与工程, 2010, 15 (6): 650- 655.
DU W, NIE H B, WU C H Effects of sintering on properties of ultrafine cemented carbide with low cobalt content[J]. Material Science and Engineering of Powder Metallurgy, 2010, 15 (6): 650- 655.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
张守全, 程登峰, 王海峰, 等 粗大钴团在硬质合金烧结过程中的演变[J]. 粉末冶金材料科学与工程, 2010, 15 (6): 661- 666.
ZHANG S Q, CHENG D F, WANG H F, et al Evolvement of cobalt agglomerate during cemented carbide sintering process[J]. Material Science and Engineering of Powder Metallurgy, 2010, 15 (6): 661- 666.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
张卫兵 WC、Co质量对超细硬质合金性能影响的研究[J]. 硬质合金, 2003, 20 (3): 157- 160.
ZHANG W B Effect of quality of WC and Co on properties of ultrafine-grained cemented carbide[J]. Cemented Carbide, 2003, 20 (3): 157- 160.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
汪中玮, 张卫兵, 周华堂 超细硬质合金生产过程中的质量控制[J]. 粉末冶金技术, 2007, 25 (1): 284- 288.
WANG Z W, ZHANG W B, ZHOU H T Quality controll of the superfine cemented carbide in production run[J]. Powder Metallurgy Technology, 2007, 25 (1): 284- 288.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
陈立宝, 贺跃辉, 邓意达 镍、钴粉末生产现状及发展趋势[J]. 粉末冶金材料科学与工程, 2003, 8 (1): 28- 33.
CHEN L B, HE Y H, DENG Y D Present status and development trend of nickel powder and cobalt powder[J]. Material Science and Engineering of Powder Metallurgy, 2003, 8 (1): 28- 33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
MCHUGHA P E, RIEDELB H A liquid phase sintering model: Application to Si3N4and WC-Co[J]. Acta Materialia, 1997, 45 (7): 2995- 3003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
ALLIBERT C H Sintering features of cemented carbides WC-Co processed from fine powders[J]. International Journal of Refractory Metals & Hard Materials, 2001, 19 (1): 53- 61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
SHERIF EL-ESKANDARANY M, AMIR MAHDAY A Synthesis and characterizations of ball-milled nano-crystalline WC and nano-composite WC-Co powders and subsequent consolidations[J]. Journal of Alloys and Compounds, 2000, 312, 315- 325.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
谢宏, 肖逸锋, 贺跃辉, 等 低压烧结对硬质合金组织和性能的影响[J]. 中国钨业, 2006, 21 (6): 27- 31.
XIE H, XIAO Y F, HE Y H, et al Effects of sinter-HIP on microstructure and properties of cemented carbides[J]. China Tungsten Industry, 2006, 21 (6): 27- 31.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
王忆民 "高温粉末"和气压烧结对YG8硬质合金性能的影响[J]. 硬质合金, 2005, 22 (2): 86- 89.
WANG Y M Effect of high temperature powder WC and sintering process on properties of YG8 cemented carbide[J]. Cemented Carbide, 2005, 22 (2): 86- 89.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
张启礼, 孔立峰, 高引慧 纳米WC-10Co硬质合金粉末的低压烧结[J]. 材料研究与应用, 2007, 1 (1): 31- 33.
ZHANG Q L, KONG L F, GAO Y H The low-pressure sintering of nano-structured WC-10Co composite powder prepared by high energy ball milling[J]. Materials Research and Application, 2007, 1 (1): 31- 33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
李广生 超细WC-Co硬质合金的磁性能与金相分析[J]. 中国钨业, 2008, 23 (2): 33- 35.
LI G S Magnetic properties and metallographic of ultra-fine WC-Co cemented carbide[J]. China Tungsten Industry, 2008, 23 (2): 33- 35.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
ROEBUCK B Terminnology, testing, properties, imaging and models for fine grained hard materials[J]. International Journal of Refractory Metals & Hard Materials, 1995, 13 (5): 265- 279.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |