
碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战
Application requirements and challenges of CMC-SiC composites on aero-engine
随着航空发动机推重比的不断提高,急需发展轻质、高强韧、耐高温、长寿命、抗烧蚀、抗氧化的碳化硅陶瓷基复合材料(SiC matrix ceramic composites,CMC-SiC),以满足航空发动机愈加苛刻的服役要求。本文简要介绍了CMC-SiC复合材料的特点和制备方法,综述了CMC-SiC复合材料在国外先进航空发动机热端部件上的应用进展及国内的研究现状。从工程化角度,指出了国内在高性能纤维、构件设计及制备、环境障涂层、无损检测技术、考核验证方法、修复技术等方面存在的差距及需突破的关键技术,指出了今后国内的研究目标与发展方向。
With the increase of the thrust-weight ratio of the aero-engine, CMC-SiC composites with low density, high strength and toughness, high thermal stability, long lifetime, good ablation resistance and oxidation resistance need to be developed to meet the requirements of the complicated and aggressive environments in the aero-engine. The characteristics, fabrication methods, applications on the hot components of the abroad advanced aero-engines, the domestic research achievements and the open problems of the CMC-SiC composites were introduced. The research tendencies in the high performance fibers, parts design and fabrication, environmental barrier coatings, non-destructive testing technologies, evaluation and verification method and repairing technologies were put forward.
航空发动机 / CMC-SiC复合材料 / 热端部件 / 应用 {{custom_keyword}} /
aero-engine / CMC-SiC composite / hot component / application {{custom_keyword}} /
Engine, country | Composite | Application part | Earning |
F119,US | CMC-SiC | Vector nozzle inner panel | Mass reduced,solve the problem of airplane gravity center moved backward |
F414,US | CMC-SiC | Combustion chamber | The amount of cooling air reduced,work temperature and lifetime improved |
XTC76/3,US | SiCf/SiC | Combustion liner | The wall of combustion liner can withstand a temperature of 1589K |
XTC 77/1,US | CMC-SiC | Combustion liner,high pressure turbine vane | Thermal and stress analysis improved,the amount of cooling air reduced,mass reduced |
XTE76/1,US | SiCf/SiC | Low pressure turbine vane | The amount of cooling air reduced,strength and durability improved |
EJ200,Europe | SiCf/SiC | Combustion chamber,flame holder,nozzle flap | No damage in high temperature and high pressure gas |
Trent800,US & UK | CMC-SiC | Turbine shroud | The amount of cooling air reduced significant,mass reduced,work temperature and lifetime improved |
1 |
刘大响. 高性能航空发动机的发展对材料技术的要求[J]. 燃气涡轮试验与研究, 1998, 11 (3): 1- 5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
江义军. 推重比12~15发动机技术途径分析[J]. 航空动力学报, 2001, 16 (2): 103- 107.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
GASS D E. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton: The American Institute of Aeronautics and Astronautics (AIAA), 2008: 1-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
刘大响. 一代新材料, 一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45 (10): 1- 5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
张立同. 纤维增韧碳化硅陶瓷复合材料-模拟、表征与设计[M]. 北京: 化学工业出版社, 2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
张立同, 成来飞. 自愈合陶瓷基复合材料制备和应用基础[M]. 北京: 化学工业出版社, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
刘巧沐, 黄顺洲, 刘佳, 等. 高温材料研究进展及其在航空发动机上应用[J]. 燃气涡轮试验与研究, 2014, 27 (4): 51- 56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
BERDOYES I, THEBAULT J, BOUILLON E. Improved SiC/SiC and C/C materials applications parts[C]//European Congress Advanced Materials Processes. Prague, Czech: Springer, 2005: 1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24 (2): 1- 6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
江东亮. 结构功能一体化的高性能陶瓷材料的研究与开发[J]. 中国工程科学, 2003, 5 (2): 35- 39.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
李世波, 徐永东, 张立同. 碳化硅纤维增强陶瓷基复合材料的研究进展[J]. 材料导报, 2001, 15 (1): 45- 49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
张立同. 国外航空用陶瓷发展趋势[J]. 航空科技技术, 1994, (6): 25- 28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
张立同, 成来飞, 徐永东, 等. 自愈合碳化硅陶瓷基复合材料研究及应用进展[J]. 航空材料学报, 2006, 26 (3): 226- 232.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
肖鹏, 徐永东, 张立同. 高温陶瓷基复合材料制备工艺的研究[J]. 材料工程, 2000, (2): 41- 44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术, 2003, (1): 24- 32.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
卢国锋, 乔生儒, 徐艳. 连续纤维增强陶瓷基复合材料界面层研究进展[J]. 材料工程, 2014, (11): 107- 112.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
邹世钦, 张长瑞, 周新贵, 等. 连续纤维增强SiCf/SiC陶瓷复合材料的发展[J]. 材料导报, 2003, 17 (8): 61- 64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
CHOURY J J. Thermostructural composite materials in aeronautics and space applications[C]//GIFAS Aeronautical and Space Conference. Delhi, India: GIFAS, 1989: 1-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
ZAWADA L, RICHARDSON G, SPRIET P. Ceramic matrix composites for aerospace turbine engine exhaust nozzles[C]//5th International Conference on High-Temperature Ceramic Matrix Composites. Seattle, Washington, America: American Ceramic Society Bulletin, 2004: 491-498.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
SINGH M. Advanced ceramic matrix composites (CMCs) for high temperature applications[C]//Plenary Lecture at the International Symposium on High Temperature Ceramic. Selb: Germany Ceramic Society, 2005: 1-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
刘巧沐, 许建锋, 刘佳. 碳化硅陶瓷基复合材料基体和涂层改性研究进展[J]. 硅酸盐学报, 2018, 46 (12): 1700- 1706.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料环境障涂层研究进展[J]. 材料工程, 2018, 46 (10): 1- 8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
张勇, 何新波, 曲选辉, 等. 超高温材料的研究进展及应用[J]. 材料导报, 2007, 21 (12): 60- 64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
段刘阳, 罗磊, 王一光. 超高温陶瓷基复合材料的改性和烧蚀行为[J]. 中国材料进展, 2015, 34 (10): 762- 769.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
刘巧沐, 张立同, 成来飞, 等. C/SiC-ZrC复合材料在甲烷燃气环境中的氧化行为[J]. 复合材料学报, 2011, 28 (4): 107- 111.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |