
微量W元素的添加对CoCrFeNiMnAl高熵合金的组织与性能的影响
Effect of microscale W elements on microstructure and properties of CoCrFeNiMnAl high entropy alloys
高熵合金(HEAs)表现出比传统合金更为优异的耐磨耐蚀性能, 逐渐成为金属材料领域的研究热点。采用金属热还原法制备不同W含量的CoCrFeNiMnAlWx(x=0.12, 0.15, 0.19)高熵合金, 研究微量W元素的添加对CoCrFeNiMnAlWx高熵合金的相结构、微观组织与性能的影响。采用XRD, SEM和EDS等技术表征该合金的相结构、显微组织及元素分布, 利用材料表面性能测试仪和电化学工作站测定该合金的摩擦磨损性能和电化学腐蚀性能。结果表明: 不同W含量高熵合金均由两种不同晶格常数的BCC相组成, 随着W含量的增加, BCC1相微观相貌并没有明显的变化, 但是BCC2相的微观形貌和元素分布随W含量的变化而明显变化, 而耐磨损性能和耐腐蚀性能均有一定程度的提高, CoCrFeNiMnAlW0.19合金的摩擦因数和磨损率分别为0.684和1.06×10-5 mm3/(N·m), 磨损机制由黏着磨损转变为黏着磨损和磨粒磨损相结合, 最后再转变为摩擦磨损; 在3.5%NaCl溶液中的腐蚀电流密度从6.08×10-6 A/cm2减小到1.72×10-6 A/cm2, 腐蚀速率也逐渐减小。
High entropy alloys (HEAs) show better wear resistance and corrosion resistance than traditional alloys, which has gradually become a research hotspot in the field of metal materials. CoCrFeNiMnAlWx (x=0.12, 0.15, 0.19)high entropy alloys with different W content were prepared by metal thermal reduction. The effects of W addition on phase structure, microstructure and performance of CoCrFeNiMnAlWx high entropy alloy were investigated. The phase structure, microstructure and element distribution of the alloy were characterized by XRD, SEM and EDS. Surface performance tester and electrochemical workstation were adopted to detect corrosion resistance and wear resistance performance of CoCrFeNiMnAlWx high entropy alloy. Results show that the high entropy alloys with different W contents are both composed of BCC phases with two different lattice contents. There is no obvious change in the micro-tissue of the dendrites with the increase content of W. However, microstructure between dendrites changes significantly with the change of W content. The wear resistance and corrosion resistance have certain degree of improvement, the friction coefficient and wear rate of CoCrFeNiMnAlW0.19 alloy are 0.684 and 1.06×10-5 mm3/(N·m) respectively. The wear mechanism is converted from adhesive wear to the combination of adhesion wear and abrasive particle wear, and finally is transformed to friction wear. The wear resistance performance of CoCrFeNiMnAlWx high entropy alloy in 3.5% NaCl solution is increased with the increase of W content. Corrosion current density is decreased from 6.08×10-6 A/cm2 to 1.72×10-6 A/cm2, and the corrosion rate is gradually reduced.
高熵合金 / 铝热反应 / 相结构 / 耐腐蚀性能 / 耐磨损性能 {{custom_keyword}} /
high entropy alloy / thermite reaction / phase structure / corrosion resistance / wear resistance {{custom_keyword}} /
表 1 不同W含量的CoCrFeNiMnAlWx各主元摩尔比Table 1 Molar ratio of elements in CoCrFeNiMnAlWx with different W contents |
Alloy | Fe | Cr | Ni | Mn | Al | Co | W |
W0.12-HEA | 1 | 1 | 1 | 1 | 1 | 1 | 0.12 |
W0.15-HEA | 1 | 1 | 1 | 1 | 1 | 1 | 0.15 |
W0.19-HEA | 1 | 1 | 1 | 1 | 1 | 1 | 0.19 |
图 3 W0.12-HEA(a),W0.15-HEA(b)和W0.19-HEA(c)合金的SEM照片Fig.3 SEM images of W0.12-HEA(a), W0.15-HEA(b) and W0.19-HEA(c) alloys |
图 4 W0.12-HEA(a),W0.15-HEA(b)和W0.19-HEA(c)合金的元素分布图Fig.4 Element distribution images of W0.12-HEA(a), W0.15-HEA(b) and W0.19-HEA(c) alloys |
表 2 Wx-HEA (x=0.12, 0.15, 0.19)合金的化学成分Table 2 Chemical composition of Wx-HEA(x=0.12, 0.15, 0.19) alloys |
Alloys | Region | Atom fraction/% | ||||||
Co | Cr | Fe | Ni | Mn | Al | W | ||
W0.12-HEA | Overall | 16.22 | 17.30 | 16.24 | 15.60 | 16.15 | 16.46 | 2.03 |
Position A1(BCC1) | 16.61 | 9.27 | 18.31 | 17.29 | 17.26 | 20.02 | 1.24 | |
Position A2 | 7.36 | 24.5 | 8.82 | 9.70 | 6.49 | 7.92 | 35.21 | |
Position A3(BCC2) | 7.25 | 46.90 | 8.62 | 9.95 | 7.65 | 8.69 | 10.94 | |
W0.15-HEA | Overall | 15.83 | 16.71 | 16.18 | 15.88 | 16.52 | 16.36 | 2.52 |
Position B1(BCC1) | 16.89 | 9.91 | 17.69 | 16.47 | 17.70 | 19.64 | 1.70 | |
Position B2(BCC2) | 8.61 | 44.50 | 8.07 | 7.76 | 9.73 | 6.57 | 14.76 | |
W0.19-HEA | Overall | 15.91 | 16.10 | 15.78 | 16.71 | 16.13 | 16.31 | 3.06 |
Position C1(BCC1) | 16.64 | 11.16 | 15.76 | 17.38 | 16.31 | 20.29 | 1.47 | |
Position C2(BCC2) | 7.83 | 43.76 | 10.21 | 6.16 | 11.62 | 2.66 | 17.76 |
图 6 Wx-HEA (x=0.12, 0.15, 0.19)合金的摩擦因数-时间曲线(a)和平均体积磨损量(b)Fig.6 Friction coefficient-time curves (a) and average wear volume (b) of Wx-HEA (x=0.12, 0.15, 0.19) alloys |
表 3 Wx-HEA (x=0.12, 0.15, 0.19)合金的摩擦因数与磨损率Table 3 Friction coefficient and wear rate of Wx-HEA (x=0.12, 0.15, 0.19) alloys |
Alloy | Friction coefficient | Wear rate/(mm3·N-1·m-1) |
W0.12-HEA | 0.775 | 2.59×10-5 |
W0.15-HEA | 0.731 | 1.41×10-5 |
W0.19-HEA | 0.684 | 1.06×10-5 |
图 8 Wx-HEA (x=0.12, 0.15, 0.19)合金的动态电势极化曲线Fig.8 Dynamic potential polarization curves of Wx-HEA (x=0.12, 0.15, 0.19) alloys |
表 4 Wx-HEA (x=0.12, 0.15, 0.19)合金的腐蚀电位、腐蚀电流密度和腐蚀速率Table 4 Corrosion potential, corrosion current density and corrosion rate of Wx-HEA (x=0.12, 0.15, 0.19) alloys |
Alloy | Corrosion potential/V | Corrosion current density/(A·cm-2) | Corrosion rate/(mm·a-1) |
W0.12-HEA | -0.390 | 6.08×10-6 | 0.126 |
W0.15-HEA | -0.394 | 3.93×10-6 | 0.088 |
W0.19-HEA | -0.442 | 1.72×10-6 | 0.038 |
1 |
彭鹏, 汤爱涛, 佘加, 等. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33 (9): 1526- 1534.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
李天昕, 卢一平, 曹志强, 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57 (1): 42- 54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
戴玮, 秦博, 颜恒维, 等. 钛铁合金制备研究现状[J]. 有色金属(冶炼部分), 2019, 5, 54- 59.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
喇培清, 吕蕊娇. 铝热反应制备纳米晶Fe3Al过程中熔体冷却的温度场模拟[J]. 兰州理工大学学报, 2010, 36 (3): 13- 17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
程楚, 豆志河, 张廷安, 等. 单位质量反应热对铝热法直接制备Ti-Al-V合金的影响[J]. 材料与冶金学报, 2017, 3 (25): 35- 39.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
陈刚, 罗涛, 唐啸天, 等. 基于铝热反应多主元合金的成分调控[J]. 有色金属工程, 2021, 11 (9): 1- 10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
陈刚, 罗涛, 沈书成, 等. 基于铝热反应FeCrNiCuAlSn0.5高熵合金涂层的制备[J]. 材料导报, 2020, 34 (17): 17047- 17051.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
温诗铸, 黄平. 摩擦学原理[M]. 北京: 清华大学出版社, 2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |