Skip to main content

Spin Trapping and Electron Paramagnetic Resonance Spectroscopy

  • Protocol
Free Radical and Antioxidant Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 108))

  • 1769 Accesses

  • 8 Citations

Abstract

Electron paramagnetic resonance (EPR) spectroscopy methodology is a highly selective and sensitive assay for detecting paramagnetic species. Owing to the unpaired electron in the outer orbit, free radicals are paramagnetic species and, when in sufficient quantity, are directly detectable and measurable using EPR spectroscopy. However, many free-radicals species are highly reactive, with relatively short half-lives, and the concentrations found in biochemical systems are usually inadequate for direct detection by EPR spectroscopy. Spin-trapping is a chemical reaction that provides an approach to help overcome this problem. Spin traps are compounds that react covalently with highly transient free radicals to form relatively stable, persistent spin adducts that also possess paramagnetic resonance spectra detectable by EPR spectroscopy. When a spin trap is added to a free radical-generating biochemical reaction, a growing pool of relatively long-lived spin adducts is created as the free radicals react with the spin trap. Detectable EPR spectra are generated by the reaction when the signal strength of the accumulation of adducts reaches the lower limit of sensitivity of the particular spectrometer being utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. McCay, P B (1987) Application of ESR spectroscopy in toxicology Arch Toxicol. 60, 133–137.

    Article  PubMed  CAS  Google Scholar 

  2. Bolli, R., Patel, B S., Jeroudi, M. O., Lai, E. K., and McCay, P. B. (1988) Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap α-phenyl N-tert-butyl nitrone J. Clin Invest. 82, 476–485

    Article  PubMed  CAS  Google Scholar 

  3. Zweier, J L. (1988) Measurement of superoxide-derived free radicals in the reperfused heart. J Biol Chem 263, 1353–1357

    PubMed  CAS  Google Scholar 

  4. McCay, P B and Poyer, J. L (1989) General mechanisms of spin trapping in vitro and in vivo, in CRC Handbook of Free Radicals and Antioxidants in Biomedicine (Miquel, J., Quintamlha, A. T., and Weber, H., eds), CRC Press, Boca Raton, FL, pp 187–191

    Google Scholar 

  5. Brackett, D. J., Lerner, M. R., Wilson, M F., and McCay, P B. (1994) Evaluation of in vivo free radical activity during endotoxic shock using scavengers, electron microscopy, spin traps, and electron paramagnetic resonance spectroscopy, in Free Radicals in Diagnostic Medicine (Armstrong, D., ed.), Plenum Press, NY, pp 407–409.

    Google Scholar 

  6. Ayscough, P. B (1967) Numerical double integration of the first derivative curve, in Electron Spin Resonance in Chemistry, Methuen Press, London, pp. 442, 443.

    Google Scholar 

  7. Brackett, D. J., Lai, E. K., Lerner, M. R., Wilson, M. F., and McCay, P. B. (1989) Spin trapping of free radicals produced in vivo in heart and liver during endotoxemia Free Rad Res. Comm 7, 315–324.

    Article  CAS  Google Scholar 

  8. Wallis, G., Brackett, D., Lerner, M. R., Kotake, Y., Bolli, R., and McCay, P B (1996) In vivo spin trapping of nitric oxide generated in the small intestine, liver, and kidney during the development of endotoxemia: a time-course study. Shock 6(4), 274–278.

    Article  PubMed  CAS  Google Scholar 

  9. Poyer, J. L., McCay, P. B., Lai, E. K., Janzen, E. G., and Davis, E R. (1980) Confirmation of assignment of the trichloromethyl radical spin adduct detected by spin trapping during 13C-carbon tetrachloride metabolism in vitro and in vivo. Biochem Biophys. Res. Commun 94, 1154–1160

    Article  PubMed  CAS  Google Scholar 

  10. Janzen, E. G., Stronks, H. J., DuBose, C. M., Poyer, J. L., and McCay, P. B. (1985) Chemistry and biology of spin-trapping radicals associated with halocarbon metabolism in vitro and in vivo. Environ. Health Perspect. 64, 151–170.

    Article  PubMed  CAS  Google Scholar 

  11. Allen, D R., Wallis, G. L., and McCay, P. B. (1994) Catechol adrenergic agents enhance hydroxyl radical generation in xanthine oxidase systems containing ferritin: Implications for i ischemia /reperfusion. Arch. Bwchem. Biophys. 315, 235–243.

    Article  CAS  Google Scholar 

  12. Reinke, L. A., Rau, J. M, and McCay, P. B. Possible roles of free radicals in alcoholic tissue damage Free Rad. Res. Comms. 9, 205–211.

    Google Scholar 

  13. McCay, P. B., Lai, E. K., Poyer, J. L., DuBose, C. M., and Jensen, E G (1984) Oxygen-and carbon-centered free radical formation during carbon tetrachloride metabolism J. Biol. Chem. 259, 2135–2143.

    PubMed  CAS  Google Scholar 

  14. Lowry, O. H., Posebrough, M J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Brackett, D.J., Wallis, G., Wilson, M.F., McCay, P.B. (1998). Spin Trapping and Electron Paramagnetic Resonance Spectroscopy. In: Armstrong, D. (eds) Free Radical and Antioxidant Protocols. Methods in Molecular Biology™, vol 108. Humana Press. https://doi.org/10.1385/0-89603-472-0:15

Download citation

  • DOI: https://doi.org/10.1385/0-89603-472-0:15

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-472-3

  • Online ISBN: 978-1-59259-254-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics