Skip to main content

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 54))

  • 1864 Accesses

Abstract

Genetic manipulation of mycobacteria has historically been difficult. This is in large part due to the impenetrable nature of the cell wall, resulting in difficulty both in introducing DNA into the bacterium and subsequent isolation of intact plasmid DNA. In addition, the mycobacterial cell wall contains complex lipids and polysaccharides that can contaminate DNA preparations. The hydrophobic nature of the cell wall results in cells clumping in culture, hampering the isolation of clonal populations important for many molecular biological purposes. In spite of these obstacles, the advent of efficient mycobacterial transformation systems (1) resulted in an explosion of research into plasmid vectors and numerous genetic systems for Mycobacterium tuberculosis have now been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Snapper S. B., Lugosi L., Jekkel A., Melton R. E., Kieser T., Bloom B. R., and Jacobs W. R.,Jr. (1988) Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc. Natl. Acad. Sci. USA 85, 6987–6991.

    Article  CAS  PubMed  Google Scholar 

  2. Labidi A., Dauguet C., Goh K. S., and David H. L. (1984) Plasmid profiles of Mycobacterium fortuitum complex isolates. Curr. Microbiol. 11, 235–240.

    Article  CAS  Google Scholar 

  3. Snapper S. B., Melton R. E., Mustafa S., Kieser T., and Jacobs W. R.,Jr. (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4, 1911–1919.

    Article  CAS  PubMed  Google Scholar 

  4. Ranes M. G., Rauzier J., Lagranderie M., Gheorghiu M., and Gicquel B. (1990) Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a “mini” mycobacterium-Escherichia coli shuttle vector. J. Bacteriol. 172, 2793–2797.

    CAS  PubMed  Google Scholar 

  5. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H., Hatfull G. F., Snapper S. B., Barletta R. G., Jacobs W. R.,Jr., and Bloom B. R. (1991) New use of BCG for recombinant vaccines. Nature 351, 456–460.

    Article  CAS  PubMed  Google Scholar 

  6. Jacobs W. R.,Jr., Kalpana G. V., Cirillo J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., and Bloom B. R. (1991) Genetic systems for mycobacteria. Methods Enzymol. 204, 537–555.

    Article  CAS  PubMed  Google Scholar 

  7. Guilhot C., Gicquel B., and Martin C. (1992) Temperature-sensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol. Lett. 77, 181–186.

    Article  CAS  PubMed  Google Scholar 

  8. Beggs M. L., Crawford J. T., and Eisenach K. D. (1995) Isolation and sequencing of the replication region of Mycobacterium avium plasmid pLR7. J. Bacteriol. 177, 4836–4840.

    CAS  PubMed  Google Scholar 

  9. Goto Y., Taniguchi H., Udou T., Mizuguchi Y., and Tokunaga T. (1991) Development of a new host vector system in mycobacteria. FEMS Microbiol. Lett. 67, 277–282.

    Article  CAS  PubMed  Google Scholar 

  10. Gavigan J. A., Ainsa J. A., Perez E., Otal I., and Martin C. (1997) Isolation by genetic labeling of a new mycobacterial plasmid, pJAZ38, from Mycobacterium fortuitum. J. Bacteriol. 179, 4115–4122.

    CAS  PubMed  Google Scholar 

  11. Bachrach G., Colston M. J., Bercovier H., Dror B., Anderson C., and Papavinasasundaram K. G. (2000) A new single-copy plasmid, pMF 1, from Mycobacterium fortuitum which is compatible with the pAL5000 replicon. Microbiology 146, 297–303.

    CAS  PubMed  Google Scholar 

  12. Picardeau M., Le Dantec C., and Vincent V. (2000) Analysis of the internal replication region of a mycobacterial linear plasmid. Microbiology 146, 305–313.

    CAS  PubMed  Google Scholar 

  13. David M., Lubinsky-Mink S., Ben-Zvi A., Ulitzur S., Kuhn J., and Suissa M. (1992) A stable Escherichia coli-Mycobacterium smegmatis plasmid shuttle vector containing the mycobacteriophage D29 origin. Plasmid 28, 267–271.

    Article  CAS  PubMed  Google Scholar 

  14. Bardarov S., Kriakov J., Carriere C., Yu S., Vaamonde C., McAdam R.A., Bloom B. R., Hatfull G. F., and Jacobs W. R.,Jr. (1997) Conditionally replicating mycobacteriophages: A system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94, 10,961–10,966.

    Article  CAS  PubMed  Google Scholar 

  15. Radford A. J. and Hodgson A. L. (1991) Construction and characterization of a Mycobacterium-Escherichia coli shuttle vector. Plasmid 25, 149–153.

    Article  CAS  PubMed  Google Scholar 

  16. Zainuddin Z. F., Kunze Z. M., and Dale J. W. (1989) Transformation of Mycobacterium smegmatis with Escherichia coli plasmids carrying a selectable resistance marker. Mol. Microbiol. 3, 29–34.

    Article  CAS  PubMed  Google Scholar 

  17. Gormley E. P. and Davies J. (1991) Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis. J. Bacteriol. 173, 6705–6708.

    CAS  PubMed  Google Scholar 

  18. Hermans J., Martin C., Huijberts G. N., Goosen T., and de Bont J. A. (1991) Transformation of Mycobacterium aurum and Mycobacterium smegmatis with the broad host-range gram-negative cosmid vector pJRD215. Mol. Microbiol. 5, 1561–1566.

    Article  CAS  PubMed  Google Scholar 

  19. Jacobs W. R.,Jr., Tuckman M., and Bloom B. R. (1987) Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327, 532–535.

    Article  CAS  PubMed  Google Scholar 

  20. Lee M. H., Pascopella L., Jacobs W. R.,Jr., and Hatfull G. F. (1991) Site-specific integration of mycobacteriophage L5, Integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis and bacille Calmette-Guerin. Proc. Natl. Acad. Sci. USA 88, 3111–3115.

    Article  CAS  PubMed  Google Scholar 

  21. Anes E., Portugal I., and Moniz-Pereira J. (1992) Insertion into the Mycobacterium smegmatis genome of the aph gene through lysogenization with the temperate mycobacteriophage Ms6. FEMS Microbiol. Lett. 74, 21–25.

    Article  CAS  PubMed  Google Scholar 

  22. Martin C., Mazodier P., Mediola M. V., Gicquel B., Smokvina T., Thompson C. J., and Davies J. (1991) Site-specific integration of the Streptomyces plasmid pSAM2 in Mycobacterium smegmatis. Mol. Microbiol. 5, 2499–2502.

    Article  CAS  PubMed  Google Scholar 

  23. England P. M., Wall S., and McFadden J. (1991) IS900-promoted stable integration of a foreign gene into mycobacteria. Mol. Microbiol. 5, 2047–2052.

    Article  CAS  PubMed  Google Scholar 

  24. Dellagostin O. A., Wall S., Norman E., O’Shaughnessy T., Dale J. W., and McFadden J. (1993) Construction and use of integrative vectors to express foreign genes in mycobacteria. Mol. Microbiol. 10, 983–993.

    Article  CAS  PubMed  Google Scholar 

  25. Paget E. and Davies J. (1996) Apramycin resistance as a selective marker for gene transfer in mycobacteria. J. Bacteriol. 178, 6357–6360.

    CAS  PubMed  Google Scholar 

  26. Marklund B. I., Speert D. P., and Stokes R. W. (1995) Gene replacement through homologous recombination in Mycobacterium intracellulare. J. Bacteriol. 177, 6100–6105.

    CAS  PubMed  Google Scholar 

  27. Ho Y. I., Chan C. Y., and Cheng A. F. (1997) In vitro activities of aminoglycoside-aminocyclitols against mycobacteria. J. Antimicrob. Chemother. 40, 27–32.

    Article  CAS  PubMed  Google Scholar 

  28. Pelicic V., Jackson M., Reyrat J. M., Jacobs W. R.,Jr., Gicquel B., and Guilhot C. (1997) Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94, 10,955–10,960.

    Article  CAS  PubMed  Google Scholar 

  29. Guilhot C., Otal I., Van Rompaey I., Martin C., and Gicquel B. (1994) Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis inser-tional mutant libraries. J. Bacteriol. 176, 535–539.

    CAS  PubMed  Google Scholar 

  30. Garbe T. R., Barathi J., Barnini S., Zhang Y., Abou Zeid C., Tang D., Mukherjee R., and Young D. B. (1994) Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology 140, 133–138.

    Article  CAS  PubMed  Google Scholar 

  31. Donnelly-Wu M. K., Jacobs W. R.,Jr., and Hatfull G. F. (1993) Superinfection immunity of mycobacteriophage L5, applications for genetic transformation of mycobacteria. Mol. Microbiol. 7, 407–417.

    Article  CAS  PubMed  Google Scholar 

  32. Baulard A., Escuyer V., Haddad N., Kremer L., Locht C., and Berche P. (1995) Mercury resistance as a selective marker for recombinant mycobacteria. Microbiology 141, 1045–1050.

    Article  CAS  PubMed  Google Scholar 

  33. Pelicic V., Reyrat J. M., and Gicquel B. (1996) Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J. Bacteriol. 178, 1197–1199.

    CAS  PubMed  Google Scholar 

  34. Sander P., Meier A., and Beottger E. C. (1995) rpsL +: a dominant selectable marker for gene replacement in mycobacteria. Mol. Microbiol. 16, 991–1000.

    Article  CAS  PubMed  Google Scholar 

  35. Norman E., Dellagostin O. A., McFadden J., and Dale J. W. (1995) Gene replacement by homologous recombination in Mycobacterium bovis BCG. Mol. Microbiol. 16, 755–760.

    Article  CAS  PubMed  Google Scholar 

  36. Matsuo K., Yamaguchi R., Yamazaki A., Tasaka H., Terasaka K., Totsuka M., Kobayashi K., Yukitake H., and Yamada T. (1990) Establishment of a foreign antigen secretion system in mycobacteria. Infect. Immun. 58, 4049–4054.

    CAS  PubMed  Google Scholar 

  37. Stover C. K., Bansal G. P., Hanson M. S., Burlein J. E., Palaszynski S. R., Young J. F., Koenig S., Young D. B., Sadziene A., and Barbour A. G. (1993) Protective immunity elicited by recombinant bacille Calmette-Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate Lyme disease vaccine. J. Exp. Med. 178, 197–209.

    Article  CAS  PubMed  Google Scholar 

  38. Haeseleer F. (1994) Structural instability of recombinant plasmids in mycobacteria. Res. Microbiol. 145, 683–687.

    Article  CAS  PubMed  Google Scholar 

  39. Triccas J.A., Parish T., Britton W. J., and Gicquel B. (1998) An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol. Lett. 167, 151–156.

    Article  CAS  PubMed  Google Scholar 

  40. Murray P. J., Aldovini A., and Young R. A. (1996) Manipulation and potentiation of antimycobacterial immunity using recombinant bacille Calmette-Guerin strains that secrete cytokines. Proc. Natl. Acad. Sci. USA 93, 934–939.

    Article  CAS  PubMed  Google Scholar 

  41. Heithoff D. M., Conner C. P., and Mahan M. J. (1997) Dissecting the biology of a pathogen during infection. Trends Microbiol. 5, 509–513.

    Article  CAS  PubMed  Google Scholar 

  42. Timm J., Lim E. M., and Gicquel B. (1994) Escherichia coli-mycobacteria shuttle vectors for operon and gene fusions to lacZ: The pJEM series. J. Bacteriol. 176, 6749–6753.

    CAS  PubMed  Google Scholar 

  43. Dellagostin O. A., Esposito G., Eales L. J., Dale J. W., and McFadden J. (1995) Activity of mycobacterial promoters during intracellular and extracellular growth. Microbiology 141, 1785–1792.

    Article  CAS  PubMed  Google Scholar 

  44. Das Gupta S. K., Bashyam M. D., and Tyagi A. K. (1993) Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J. Bacteriol. 175, 5186–5192.

    CAS  PubMed  Google Scholar 

  45. Parish T., Mahenthiralingam E., Draper P., Davis E. O., and Colston M. J. (1997) Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143, 2267–2276.

    Article  CAS  PubMed  Google Scholar 

  46. Curcic R., Dhandayuthapani S., and Deretic V. (1994) Gene expression in myco-bacteria: Transcriptional fusions based on xylE and analysis of the promoter region of the response regulator mtrA from Mycobacterium tuberculosis. Mol. Microbiol. 13, 1057–1064.

    Article  CAS  PubMed  Google Scholar 

  47. Lim E. M., Rauzier J., Timm J., Torrea G., Murray A., Gicquel B., and Portnoi D. (1995) Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by using phoA gene fusions. J. Bacteriol. 177, 59–65.

    CAS  PubMed  Google Scholar 

  48. Downing K. J., McAdam R. A., and Mizrahi V. (1999) Staphylococcus aureus nuclease is a useful secretion reporter for mycobacteria. Gene 239, 293–299.

    Article  CAS  PubMed  Google Scholar 

  49. Andrew P. W. and Roberts I. S. (1993) Construction of a bioluminescent mycobacterium and its use for assay of antimycobacterial agents. J. Clin. Microbiol. 31, 2251–2254.

    CAS  PubMed  Google Scholar 

  50. Jacobs W. R.,Jr., Barletta R. G., Udani R., Chan J., Kalkut G., Sosne G., Kieser T., Sarkis G. J., Hatfull G. F., and Bloom B. R. (1993) Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of lucif erase reporter phages. Science 260, 819–822.

    Article  CAS  PubMed  Google Scholar 

  51. Gordon S., Parish T., Roberts I. S., and Andrew P. W. (1994) The application of lucif erase as a reporter of environmental regulation of gene expression in mycobacteria. Lett. Appl. Microbiol. 19, 336–340.

    Article  CAS  PubMed  Google Scholar 

  52. Hickey M. J., Arain T. M., Shawar R. M., Humble D. J., Langhorne M. H., Morgenroth J. N., and Stover C. K. (1996) Luciferase in vivo expression technology: use of recombinant mycobacterial reporter strains to evaluate antimycobacterial activity in mice. Antimicrob. Agents Chemother. 40, 400–407.

    CAS  PubMed  Google Scholar 

  53. Kremer L., Baulard A., Estaquier J., Poulain-Godefroy O., and Locht C. (1995) Green fluorescent protein as a new expression marker in mycobacteria. Mol. Microbiol. 17, 913–922.

    Article  CAS  PubMed  Google Scholar 

  54. Dhandayuthapani S., Via L. E., Thomas C. A., Horowitz P. M., Deretic D., and Deretic V. (1995) Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Mol. Microbiol. 17, 901–912.

    Article  CAS  PubMed  Google Scholar 

  55. Parker A. E., and Bermudez L. E. (1997) Expression of the green fluorescent protein (GFP) in Mycobacterium avium as a tool to study the interaction between mycobacteria and host cells. Microb. Path. 22, 193–198.

    Article  CAS  Google Scholar 

  56. Barker L. P., Porcella S. F., Wyatt R. G., and Small P. L. (1999) The Mycobacterium marinum G1 3 promoter is a strong sigma 70-like promoter that is expressed in Escherichia coli and mycobacteria species. FEMS Microbiol. Lett. 175, 79–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Casali, N., Ehrt, S. (2001). Plasmid Vectors. In: Parish, T., Stoker, N.G. (eds) Mycobacterium tuberculosis Protocols. Methods in Molecular Medicine, vol 54. Humana Press. https://doi.org/10.1385/1-59259-147-7:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-147-7:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-776-2

  • Online ISBN: 978-1-59259-147-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics