Skip to main content

Ier1 p: A Kinase and Site-Specific Endoribonuclease

  • Protocol
Nuclease Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 160))

  • 1148 Accesses

  • 13 Citations

Abstract

The lumen of the endoplasmic reticulum (ER) is a highly specialized compartment in eukaryotic cells. Here, secretory and most membrane proteins are folded, covalently modified, and oligomerized with the assistance of specialized ER resident proteins (1). Perturbation of the ER lumen interferes with the production of many essential cellular components and can thus be highly deleterious. Indeed, in humans, defects in protein folding in the ER can lead to devastating diseases, such as cystic fibrosis, alpha1-antitrypsin deficiency, and osteogenesis imperfecta (2). One way in which cells cope with the accumulation of unfolded proteins in the ER is by activating the unfolded protein response (UPR), an ER-to-nucleus signal transduction pathway (35). In the yeast Saccharomyces cerevisiae, Ire1p is an essential component of this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Gething, M.-J. and Sambrook, J. (1992) Protein folding in the cell. Nature 355, 33–45.

    Article  PubMed  CAS  Google Scholar 

  2. Kuznetsov, G. and Nigam, S. K. (1998) Folding of secretory and membrane proteins. N. Engl. J. Med. 339, 1688–1695.

    Article  PubMed  CAS  Google Scholar 

  3. Shamu, C. E., Cox, J. S., and Walter, P. (1994) The unfolded protein response pathway in yeast. Trends Cell Biol. 4, 56–60.

    Article  PubMed  CAS  Google Scholar 

  4. Chapman, R., Sidrauski, C., and Walter, P. (1998) Intracellular signaling from the endo-plasmic reticulum to the nucleus. Annu. Rev. Cell Dev. Biol. 14, 459–485.

    Article  PubMed  CAS  Google Scholar 

  5. Sidrauski, C., Chapman, R., and Walter, P. (1998) The unfolded protein response: an intra-cellular signalling pathway with many surprising features. Trends Cell Biol. 8, 245–249.

    Article  PubMed  CAS  Google Scholar 

  6. Cox, J. S., Shamu, C. E., and Walter, P. (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  7. Mori, K., Ma, W., Gething, M. J., and Sambrook, J. (1993) A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74, 743–756.

    Article  PubMed  CAS  Google Scholar 

  8. Bork, P. and Sander, C. (1993) A hybrid protein kinase-RNase in an interferon-induced pathway? FEBS Lett. 334, 149–152.

    Article  PubMed  CAS  Google Scholar 

  9. Sidrauski, C. and Walter, P. (1997) The transmembrane kinase Ire1p is a site-specific endo-nuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1–20.

    Article  Google Scholar 

  10. Shamu, C. E. and Walter, P. (1996) Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 15, 3028–3039.

    PubMed  CAS  Google Scholar 

  11. Mori, K., Sant, A., Kohno, K., Normington, K., Gething, M. J., and Sambrook, J. F. (1992) A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J. 11, 2583–2593.

    PubMed  CAS  Google Scholar 

  12. Kohno, K., Normington, K., Sambrook, J., Gething, M. J., and Mori, K. (1993) The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol. Cell Biol. 13, 877–890.

    PubMed  CAS  Google Scholar 

  13. Cox, J. S. and Walter, P. (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87, 391–404.

    Article  PubMed  CAS  Google Scholar 

  14. Nikawa, J., Akiyoshi, M., Hirata, S., and Fukuda, T. (1996) Saccharomyces cerevisiae IRE2/HAC1 is involved in IRE1-mediated KAR2 expression. Nucleic Acids Res. 24, 4222–4226.

    Article  PubMed  CAS  Google Scholar 

  15. Kawahara, T., Yanagi, H., Yura, T., and Mori, K. (1997) Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol. Biol. Cell 8, 1845–1862.

    PubMed  CAS  Google Scholar 

  16. Chapman, R. E. and Walter, P. (1997) Translational attenuation mediated by an mRNA intron. Curr. Biol. 7, 850–859.

    Article  PubMed  CAS  Google Scholar 

  17. Gonzalez, T. N., Sidrauski, C., Dörfler, S., and Walter, P. (1999) Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J. 18, 3119–3132.

    Article  PubMed  CAS  Google Scholar 

  18. Moore, M. J., Query, C. C., and Sharp, P. A. (1993) Splicing of precursors to mRNA by the spliceosome, in The RNA World (Gesteland, R. F. and Atkins, J. F., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 303–357.

    Google Scholar 

  19. Westaway, S. K. and Abelson, J. (1995) Splicing of tRNA precursors, in tRNA: Structure, Biosynthesis, and Function (Söll, D. and RajBhandary, U., eds.), ASM Press, Washington, DC, pp. 79–92.

    Google Scholar 

  20. Abelson, J., Trotta, C. R., and Li, H. (1998) tRNA splicing. J. Biol. Chem. 273, 12,685–12,688.

    Article  PubMed  CAS  Google Scholar 

  21. Dong, B. and Silverman, R. H. (1997) A bipartite model of 2–5A-dependent RNase L. J. Biol. Chem. 272, 22,236–22,242.

    Article  PubMed  CAS  Google Scholar 

  22. Dong, B., Xu, L., Zhou, A., Hassel, B. A., Lee, X., Torrence, P. F., and Silverman, R. H. (1994) Intrinsic molecular activities of the interferon-induced 2–5A-dependent RNase. J. Biol. Chem. 269, 14,153–14,158.

    PubMed  CAS  Google Scholar 

  23. Dong, B. and Silverman, R. H. (1999) Alternative function of a protein kinase homology domain in 2′, 5′-oligoadenylate dependent RNase L. Nucleic Acids Res. 27, 439–445.

    Article  PubMed  CAS  Google Scholar 

  24. Milligan, J. F., Groebe, D. R., Witherell, G. W., and Ulhlenbeck, O. C. (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Gonzalez, T.N., Walter, P. (2001). Ier1 p: A Kinase and Site-Specific Endoribonuclease. In: Schein, C.H. (eds) Nuclease Methods and Protocols. Methods in Molecular Biology™, vol 160. Humana Press. https://doi.org/10.1385/1-59259-233-3:025

Download citation

  • DOI: https://doi.org/10.1385/1-59259-233-3:025

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-679-6

  • Online ISBN: 978-1-59259-233-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics