Abstract
In a noncancerous mammalian cell, the growth-promoting effects of proto-oncogenes are counterbalanced by the growth-constraining effects of tumor suppressor genes (TSGs). The net result is a masterfully orchestrated display of cell proliferation in the absence of tumorigenesis. The significance of this relationship is most evident in tumor cells, where the accumulation of genetic mutations has upset this critical balance of power.
Similar content being viewed by others
References
McMahon, G. (2000) VEGF receptor signaling in tumor angiogenesis. Oncologist, 5, 3–10.
Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.
Clackson, T. (1997) Controlling mammalian gene expression with small molecules. Curr. Opin. Chem. Biol. 1, 210–218.
Rossi, F. M. and Blau, H. M. (1998) Recent advances in inducible gene expression systems. Curr. Opin. Biotechnol. 9, 451–456.
Saez, E., No, D., West, A., and Evans, R. M. (1997) Inducible gene expression in mammalian cells and transgenic mice. Curr. Opin. Biotechnol. 8, 608–616.
Yao, T. P., Segraves, W. A., Oro, A. E., McKeown, M., and Evans, R. M. (1992) Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71, 63–72.
Yao, T. P., Forman, B. M., Jiang, Z., et al. (1993) Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366, 476–479.
No, D., Yao, T. P., and Evans, R. M. (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351.
Triezenberg, S. J., Kingsbury, R. C., and McKnight, S. L. (1988) Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 2, 718–729.
Triezenberg, S. J., LaMarco, K. L., and McKnight, S. L. (1988) Evidence of DNA: protein interactions that mediate HSV-1 immediate early gene activation by VP16. Genes Dev. 2, 730–742.
Sadowski, I., Ma, J., Triezenberg, S., and Ptashne, M. (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564.
Umesono, K. and Evans, R. M. (1989) Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57, 1139–1146.
Cress, W. D. and Triezenberg, S. J. (1991) Critical structural elements of the VP16 transcriptional activation domain. Science 251, 87–90.
Forman, B. M., Goode, E., Chen, J., et al. (1995) Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81, 687–693.
Underhill, T. M., Cash, D. E., and Linney, E. (1994) Constitutively active retinoid receptors exhibit interfamily and intrafamily promoter specificity. Mol. Endocrinol. 8, 274–285.
Perlmann, T., Rangarajan, P. N., Umesono, K., and Evans, R. M. (1993) Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dev. 7, 1411–1422.
Osborne, C. K., Zhao, H., and Fuqua, S. A. (2000) Selective estrogen receptor modulators: structure, function, and clinical use. J. Clin. Oncol. 18, 3172–3186.
Pratt, W. B. (1990) Interaction of hsp90 with steroid receptors: organizing some diverse observations and presenting the newest concepts. Mol. Cell. Endocrinol. 74, C69–C76.
Smith, D. F. and Toft, D. O. (1993) Steroid receptors and their associated proteins. Mol. Endocrinol. 7, 4–11.
Picard, D. (1993) Steroid-binding domains for regulating the functions of heterologous proteins in cis. Trends Cell Biol. 3, 278–280.
Berthois, Y., Katzenellenbogen, J. A., and Katzenellenbogen, B. S. (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. USA 83, 2496–2500.
Littlewood T. D., Hancock, D. C, Danielian, P. S., Parker, M. G., and Evan, G. I. (1995) A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690.
Danielian, P. S., White, R., Hoare, S. A., Fawell, S. E. and Parker, M. G. (1993) Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol. Endocrinol. 7, 232–240.
Vater, C. A., Bartle, L. M., Dionne, C. A., Littlewood T. D., and Goldmacher, V S. (1996) Induction of apoptosis by tamoxifen-activation of a p53-estrogen receptor fusion protein expressed in E1A and T24 H-ras transformed p53 −/− mouse embryo fibroblasts. Oncogene 13, 739–748.
Roemer, K. and Friedmann, T. (1993) Modulation of cell proliferation and gene expression by a p53-estrogen receptor hybrid protein. Proc. Natl. Acad. Sci. USA 90, 9252–9256.
Eilers, M., Picard D., Yamamoto, K. R., and Bishop, J. M. (1989) Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68.
Karin, M., Haslinger, A., Holtgreve, H., et al. (1984) Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature 308, 513–519.
Durnam, D. M. and Palmiter, R. D. (1981) Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J. Biol. Chem. 256, 5712–5716.
Friedman, R. L. and Stark, G. R (1985) alpha-Interferon-induced transcription of HLA and metallothionein genes containing homologous upstream sequences. Nature 314, 637–639.
Hager, L. J. and Palmiter, R D. (1981) Transcriptional regulation of mouse liver metallothionein-I gene by glucocorticoids. Nature 291, 340–342.
Karin, M., Imbra, R. J., Heguy, A., and Wong, G. (1985) Interleukin 1 regulates human metallothionein gene expression. Mol. Cell. Biol. 5, 2866–2869.
Westin, G. and Schaffner, W (1988) A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 7, 3763–3770.
Palmiter, R. D. (1998) The elusive function of metallothioneins. Proc. Natl. Acad. Sci. USA 95, 8428–8430.
Mulligan, R C. and Berg, P. (1981) Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc. Natl. Acad. Sci. USA 78, 2072–2076.
Wyborski, D. L. and Short, J. M. (1991) Analysis of inducers of the E. coli lac repressor system in mammalian cells and whole animals. Nucleic Acids Res. 19, 4647–4653.
Fieck, A., Wyborski, D. L., and Short, J. M. (1992) Modifications of the E. coli Lac repressor for expression in eukaryotic cells: effects of nuclear signal sequences on protein activity and nuclear accumulation. Nucleic Acids Res. 20, 1785–1791.
Chen, C. and Okayama, H. (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell Biol. 7, 2745–2752.
Chu, G., Hayakawa, H., and Berg, P. (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15, 1311–1326.
Saez, E., Nelson, M. C, Eshelman, B., et al. (2000) Identification of ligands and coligands for the ecdysone-regulated gene switch. Proc. Natl. Acad. Sci. USA 97, 14512–14517.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Humana Press Inc.
About this protocol
Cite this protocol
Dohn, M., Nozell, S., Willis, A., Chen, X. (2003). Tumor Suppressor Gene-Inducible Cell Lines. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:221
Download citation
DOI: https://doi.org/10.1385/1-59259-329-1:221
Publisher Name: Humana Press
Print ISBN: 978-0-89603-987-2
Online ISBN: 978-1-59259-329-3
eBook Packages: Springer Protocols