Skip to main content

Tumor Suppressor Gene-Inducible Cell Lines

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 223))

  • 919 Accesses

  • 10 Citations

Abstract

In a noncancerous mammalian cell, the growth-promoting effects of proto-oncogenes are counterbalanced by the growth-constraining effects of tumor suppressor genes (TSGs). The net result is a masterfully orchestrated display of cell proliferation in the absence of tumorigenesis. The significance of this relationship is most evident in tumor cells, where the accumulation of genetic mutations has upset this critical balance of power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. McMahon, G. (2000) VEGF receptor signaling in tumor angiogenesis. Oncologist, 5, 3–10.

    Article  PubMed  CAS  Google Scholar 

  2. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  3. Clackson, T. (1997) Controlling mammalian gene expression with small molecules. Curr. Opin. Chem. Biol. 1, 210–218.

    Article  PubMed  CAS  Google Scholar 

  4. Rossi, F. M. and Blau, H. M. (1998) Recent advances in inducible gene expression systems. Curr. Opin. Biotechnol. 9, 451–456.

    Article  PubMed  CAS  Google Scholar 

  5. Saez, E., No, D., West, A., and Evans, R. M. (1997) Inducible gene expression in mammalian cells and transgenic mice. Curr. Opin. Biotechnol. 8, 608–616.

    Article  PubMed  CAS  Google Scholar 

  6. Yao, T. P., Segraves, W. A., Oro, A. E., McKeown, M., and Evans, R. M. (1992) Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71, 63–72.

    Article  PubMed  CAS  Google Scholar 

  7. Yao, T. P., Forman, B. M., Jiang, Z., et al. (1993) Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366, 476–479.

    Article  PubMed  CAS  Google Scholar 

  8. No, D., Yao, T. P., and Evans, R. M. (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351.

    Article  PubMed  CAS  Google Scholar 

  9. Triezenberg, S. J., Kingsbury, R. C., and McKnight, S. L. (1988) Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 2, 718–729.

    Article  PubMed  CAS  Google Scholar 

  10. Triezenberg, S. J., LaMarco, K. L., and McKnight, S. L. (1988) Evidence of DNA: protein interactions that mediate HSV-1 immediate early gene activation by VP16. Genes Dev. 2, 730–742.

    Article  PubMed  CAS  Google Scholar 

  11. Sadowski, I., Ma, J., Triezenberg, S., and Ptashne, M. (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564.

    Article  PubMed  CAS  Google Scholar 

  12. Umesono, K. and Evans, R. M. (1989) Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57, 1139–1146.

    Article  PubMed  CAS  Google Scholar 

  13. Cress, W. D. and Triezenberg, S. J. (1991) Critical structural elements of the VP16 transcriptional activation domain. Science 251, 87–90.

    Article  PubMed  CAS  Google Scholar 

  14. Forman, B. M., Goode, E., Chen, J., et al. (1995) Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81, 687–693.

    Article  PubMed  CAS  Google Scholar 

  15. Underhill, T. M., Cash, D. E., and Linney, E. (1994) Constitutively active retinoid receptors exhibit interfamily and intrafamily promoter specificity. Mol. Endocrinol. 8, 274–285.

    Article  PubMed  CAS  Google Scholar 

  16. Perlmann, T., Rangarajan, P. N., Umesono, K., and Evans, R. M. (1993) Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dev. 7, 1411–1422.

    Article  PubMed  CAS  Google Scholar 

  17. Osborne, C. K., Zhao, H., and Fuqua, S. A. (2000) Selective estrogen receptor modulators: structure, function, and clinical use. J. Clin. Oncol. 18, 3172–3186.

    PubMed  CAS  Google Scholar 

  18. Pratt, W. B. (1990) Interaction of hsp90 with steroid receptors: organizing some diverse observations and presenting the newest concepts. Mol. Cell. Endocrinol. 74, C69–C76.

    Article  PubMed  CAS  Google Scholar 

  19. Smith, D. F. and Toft, D. O. (1993) Steroid receptors and their associated proteins. Mol. Endocrinol. 7, 4–11.

    Article  PubMed  CAS  Google Scholar 

  20. Picard, D. (1993) Steroid-binding domains for regulating the functions of heterologous proteins in cis. Trends Cell Biol. 3, 278–280.

    Article  PubMed  CAS  Google Scholar 

  21. Berthois, Y., Katzenellenbogen, J. A., and Katzenellenbogen, B. S. (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. USA 83, 2496–2500.

    Article  PubMed  CAS  Google Scholar 

  22. Littlewood T. D., Hancock, D. C, Danielian, P. S., Parker, M. G., and Evan, G. I. (1995) A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690.

    Article  PubMed  CAS  Google Scholar 

  23. Danielian, P. S., White, R., Hoare, S. A., Fawell, S. E. and Parker, M. G. (1993) Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol. Endocrinol. 7, 232–240.

    Article  PubMed  CAS  Google Scholar 

  24. Vater, C. A., Bartle, L. M., Dionne, C. A., Littlewood T. D., and Goldmacher, V S. (1996) Induction of apoptosis by tamoxifen-activation of a p53-estrogen receptor fusion protein expressed in E1A and T24 H-ras transformed p53 −/− mouse embryo fibroblasts. Oncogene 13, 739–748.

    PubMed  CAS  Google Scholar 

  25. Roemer, K. and Friedmann, T. (1993) Modulation of cell proliferation and gene expression by a p53-estrogen receptor hybrid protein. Proc. Natl. Acad. Sci. USA 90, 9252–9256.

    Article  PubMed  CAS  Google Scholar 

  26. Eilers, M., Picard D., Yamamoto, K. R., and Bishop, J. M. (1989) Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68.

    Article  PubMed  CAS  Google Scholar 

  27. Karin, M., Haslinger, A., Holtgreve, H., et al. (1984) Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature 308, 513–519.

    Article  PubMed  CAS  Google Scholar 

  28. Durnam, D. M. and Palmiter, R. D. (1981) Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J. Biol. Chem. 256, 5712–5716.

    PubMed  CAS  Google Scholar 

  29. Friedman, R. L. and Stark, G. R (1985) alpha-Interferon-induced transcription of HLA and metallothionein genes containing homologous upstream sequences. Nature 314, 637–639.

    Article  PubMed  CAS  Google Scholar 

  30. Hager, L. J. and Palmiter, R D. (1981) Transcriptional regulation of mouse liver metallothionein-I gene by glucocorticoids. Nature 291, 340–342.

    Article  PubMed  CAS  Google Scholar 

  31. Karin, M., Imbra, R. J., Heguy, A., and Wong, G. (1985) Interleukin 1 regulates human metallothionein gene expression. Mol. Cell. Biol. 5, 2866–2869.

    PubMed  CAS  Google Scholar 

  32. Westin, G. and Schaffner, W (1988) A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J. 7, 3763–3770.

    PubMed  CAS  Google Scholar 

  33. Palmiter, R. D. (1998) The elusive function of metallothioneins. Proc. Natl. Acad. Sci. USA 95, 8428–8430.

    Article  PubMed  CAS  Google Scholar 

  34. Mulligan, R C. and Berg, P. (1981) Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc. Natl. Acad. Sci. USA 78, 2072–2076.

    Article  PubMed  CAS  Google Scholar 

  35. Wyborski, D. L. and Short, J. M. (1991) Analysis of inducers of the E. coli lac repressor system in mammalian cells and whole animals. Nucleic Acids Res. 19, 4647–4653.

    Article  PubMed  CAS  Google Scholar 

  36. Fieck, A., Wyborski, D. L., and Short, J. M. (1992) Modifications of the E. coli Lac repressor for expression in eukaryotic cells: effects of nuclear signal sequences on protein activity and nuclear accumulation. Nucleic Acids Res. 20, 1785–1791.

    Article  PubMed  CAS  Google Scholar 

  37. Chen, C. and Okayama, H. (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell Biol. 7, 2745–2752.

    PubMed  CAS  Google Scholar 

  38. Chu, G., Hayakawa, H., and Berg, P. (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15, 1311–1326.

    Article  PubMed  CAS  Google Scholar 

  39. Saez, E., Nelson, M. C, Eshelman, B., et al. (2000) Identification of ligands and coligands for the ecdysone-regulated gene switch. Proc. Natl. Acad. Sci. USA 97, 14512–14517.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Dohn, M., Nozell, S., Willis, A., Chen, X. (2003). Tumor Suppressor Gene-Inducible Cell Lines. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 223. Humana Press. https://doi.org/10.1385/1-59259-329-1:221

Download citation

  • DOI: https://doi.org/10.1385/1-59259-329-1:221

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-987-2

  • Online ISBN: 978-1-59259-329-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics