Abstract
A functional centromere is formed by a chromosomal domain that very often, but not always, is recognizable by a primary constriction in metaphasic chromosomes. It is associated with a kinetochore through which a link is established with the microtubules, which pull the sister chromatids toward the poles of the two daughter cells during cell division. Centromeres therefore mediate chromosome segregation during mitosis and meiosis, but in ways that are relatively different. For instance, binding of the two sister chromatids is normally destroyed at anaphase in mitosis whereas binding is maintained in meiosis all along the first division until anaphase of the second is reached. The same locus is, however, in charge of the two distinct processes.
Similar content being viewed by others
References
Clarke, L. (1998) Centromeres: Proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr. Opin. Genet. Dev. 8, 212–218.
Baum, M., Ngan, V. K., and Clarke, L. (1994) The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol. Cell Biol. 5, 747–761.
Partridge, J. F., Borgstrom, B., and Allshire, R. C. (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791.
Sun, X., Wahlstrom, J., and Karpen, G. (1997) Molecular structure of a functional Drosophila centromere. Cell 91, 1007–1019.
Copenhaver, G. P., Nickel, K., Kuromori, T., Benito, M.-I., Kaul, S., Lin, X., et al. (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468–2474.
Harrington, J. J., Van Bokkelen, G., Mays, R. W., Gustahaw, K., and Willard, H. F. (1997) Formation of de novo centromeres and construction of first-generation human artificial chromosomes. Nat. Genet. 15, 345–355.
Ikeno, M., Grimes, T., Nakano, M., Saitoh, K., Hoshino, H., McGill, N. I., et al. (1998) Construction of YAC-based mammalian artificial chromosomes. Nat. Biotech. 16, 431–439.
Trowell, H. E., Nagy, A., Vissel, B., and Choo, K. H. A. (1993) Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: Identification of a narrow domain containing two key centromeric DNA elements. Hum. Mol. Genet. 2, 1639–1649.
Ikeno, M., Masumoto, H., and Okazaki, T. (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range α-satellite DNA arrays of human chromosome 21. Hum. Mol. Genet. 3, 1245–1257.
Devilee, P., Cremer, T., Slagboom, P., Bakker, E., Scholl, H. P., Hager, H. D., et al. (1986) Two subsets of human alphoid repetitive DNA show distinct preferential localization in the pericentric regions of chromosomes 13, 18, and 21. Cytogenet. Cell Genet. 41, 193–201.
Jorgensen, A. L., Bostock, C. J., and Bak, A. L. (1987) Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes. Proc. Natl. Acad. Sci. USA 84, 1075–1079.
Marcais, B., Gerard, A., Bellis, M., and Roizés, G. (1991) TaqI reveals two independent alphoid polymorphisms on human chromosomes 13 and 21. Hum. Genet. 86, 307–310.
Greig, G. M., Warburton, P. E., and Willard, H.F (1993) Organization and evolution of an alpha satellite DNA subset shared by human chromosomes 13 and 21. J. Mol. Evol. 37, 464–475.
Lee, C., Wevrick, R., Fisher, R. B., Ferguson-Smith, M. A., and Lin, C. C. (1997) Human centromeric DNAs. Hum. Genet. 100, 291–304.
Alexandrov, I., Kazakov, A., Tumeneva, I., Shepelev, V., and Yurov, Y. (2001) Alphα-satellite DNA of primates: old and new families. Chromosoma 110, 253–266.
Lo, A. W., Liao, G. C., Rocchi, M., and Choo, K. H. (1999) Extreme reduction of chromosome-specific alphα-satellite array is unusually common in human chromosome 21. Genome Res. 9, 895–908.
Marcais, B., Bellis, M., Gerard, A., Pages, M., Boublik, Y., and Roizés G. (1991) Structural organization and polymorphism of the alpha satellite DNA sequences of chromosomes 13 and 21 as revealed by pulse field gel electrophoresis. Hum. Genet. 86, 311–316.
Mashkova, T., Oparina, N., Alexandrov, I., Zinovieva, O., Marusina, A., Yurov, Y., et al. (1998) Unequal cross-over is involved in human alpha satellite DNA rearrangements on a border of the satellite domain. FEBS Lett. 441, 451–457.
Horvath, J. E., Viggiano, L., Loftus, B. J., Adams, M. D., Archidiacono, N., Rocchi, M., et al. (2000) Molecular structure and evolution of an alpha satellite/non-alpha satellite junction at 16p11. Hum. Mol. Genet. 9, 113–123.
Greig, G. M., England, S. B., Bedford, H. M., and Willard, H. F. (1989) Chromosome-specific alpha satellite DNA from the centromere of human chromosome 16. Am. J. Hum. Genet. 45, 862–872.
Alexandrov, I., Kazakov, A., Tumeneva, I., Shepelev, V., and Yurov, Y. (2001) Alphα-satellite of primates: Old and new families. Chromosoma 110, 253–266.
Schueler, M. G., Higgins, A. W., Rudd, M. K., Gustahaw, K., and Willard H. F. (2001) Genomic and genetic definition of a functional human centromere. Science 294, 109–115.
Guy, J., Spalluto, C., McMurray, A., Heran, T., Crosier, M., Viggiano, L., et al. (2000) Genomic sequence and transcriptional profile of the boundary between pericentromeric satellites and genes on human chromosome 10q. Hum. Mol. Genet. 9, 2029–2042.
Horvath, J. E., Viggiano, L., Loftus, B. J., Adams, M. D., Archidiacono, N., Rocchi, M., et al. (2000) Molecular structure and evolution of an alpha satellite/non-alpha satellite junction at 16p11. Hum. Mol. Genet. 9, 113–123.
Hattori M., Fujiyama A., Taylor T. D., Watanabe H., Yada T., Park H. S., et al. (2000) The DNA sequence of human chromosome 21. Nature 405, 311–319.
Mashkova, T. D., Tyumeneva, I. G., Zinoveva, O. L., Romanova, L. Y., Jabs, E., and Aleksandrov, I. A. (1996) Centromeric alphα-satellite DNA at euchromatin/heterochromatin boundary of human chromosome 21. Mol. Biol. 30, 617–625.
Laurent A. M., Puechberty, J., Prades, C., Gimenez, S., and Roizés G. (1997) Site-specific retrotransposition of L1 elements within human alphoid satellite sequences. Genomics 46, 127–132.
Puechberty, J., Laurent, A. M., Gimenez, S., Billault, A., Brun-Laurent, M. E., Calenda, A., et al. (1999) Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: Recombination across 5cen. Genomics 56, 274–287.
Laurent, A. M., Puechberty, J., and Roizés, G. (1999) Hypothesis: For the worst and for the best, L1Hs retrotransposons actively participate in the evolution of the human centromeric alphoid sequences. Chrom. Res. 7, 305–317.
Eichler, E. E. (2001) Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17, 661–669.
Horvath, J. E., Bailey, J. A., Locke, D. P., and Eichler, E. E. (2001) Lessons from the human genome: Transitions between euchromatin and heterochromatin. Hum. Mol. Genet. 10, 2215–2223.
Brewer, C., Holloway, S., Zawalnyski, P., Schinzel, A., and FitzPatrick, D. (1999) A chromosomal duplication map of malformations: Regions of suspected haplo—and triplolethality—and tolerance of segmental aneuploidy. Am. J. Hum. Genet. 64, 172–1708.
Hilliker, A. J. and Appels, R. (1982) Pleiotropic effects associated with the deletion of heterochromatin surrounding rDNA on the X chromosome of Drosophila. Chromosoma 86, 469–490.
Wu, C. I., True, J., and Johnson, N. (1989) Fitness reduction associated with the deletion of a satellite DNA array. Nature 341, 248–251.
Brun, M. E., Ruault, M., Ventura, M., Roizés, G., and De Sario, A. (2003) Juxtacentromeric region of human chromosome 21: a boundary between centromeric and heterochromatic and euchromatic chromosome arms. Gene, in press.
Gatti, M. and Pimpinelli, S. (1992) Functional elements in Drosophila melanogaster heterochromatin. Annu. Rev. Genet. 26, 239–275.
Eberl, D. F., Duyf, B. J., and Hilliker, A. J. (1993) The role of heterochromatin in the expression of heterochromatic gene, the rolled focus of Drosophila melanogaster. Genetics 134, 277–292.
Howe, M., Dimitri, P., and Wakimoto, B. T. (1995) Cis-effects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster. Genetics 140, 1033–1045.
Guipponi, M., Yaspo, M. L., Riesselman, L., Chen, H., De Sario, A., Roizés, G., et al. (2000) Genomic structure of a copy of the human TPTE gene which encompasses 87 kb on the short arm of chromosome 21. Hum. Genet. 107, 127–131.
Ruault, M., Van den Bruggen, P., Brun, M. E., Boyle, S., Roizés, G., and De Sario, A. (2002) New BAGE (B melanoma antigens) genes mapping to the juxtacentromeric regions of human chromosomes 13 and 21 have a cancer/testis expression profile. Eur. J. Hum. Genet. 10, 833–840.
Therman, E., Sarto, G. E., and Patau, K. (1974) Apparently isodicentric but functionally monocentric X chromosome in man. Am. J. Hum. Genet. 26, 83–92.
Sullivan, B. A. and Willard H. F. (1998) Stable dicentric X chromosomes with two functiona centromeres. Nat. Genet. 20, 227–228.
Agudo, M., Abad, J. P., Molina, I., Losada, A., Ripoli, P., and Villasante A. (2000) A dicentric chromosome of Drosophila melanogaster showing alternate centromere inactivation. Chromosoma 109, 190–196.
Sullivan, B. A. and Schwartz, S. (1995) Idenditification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4, 2189–2197.
Warburton, P. E. (2001) Epigenetic analysis of kinetochore assembly on variant human centromeres. Trends Genet. 17, 243–247.
Voullaire, L. E., Slater, H. R., Petrovic, V., and Choo, K. H.A. (1993) A functional marker centromere with no detectable alphα-satellite, satellite III, or CENP-B protein: Activation of a latent centromere. Am. J. Hum. Genet. 52, 1153–1163.
Barry A. E., Bateman M., Howman E. V., Cancilla M. R., Tainton K. M., Irvine D. V., et al. (2000) The 10q25 neocentromere and its inactive progenitor have identical primary nucleotide sequence: Further evidence for epigenetic modification. Genome Res. 10, 832–838.
Warburton P. E., Dolled M., Mahmood R., Alonso A., Li S., Naritomi K., et al. (2000) Molecular cytogenetic analysis of eight inversion duplications of human chromosome 13q that each contain a neocentromere. Am. J. Hum. Genet. 66, 1794–1806.
Koch, J. (2000) Neocentromeres and alpha satellite: A proposed structural code for functional human centromere DNA. Hum. Mol. Genet. 9, 149–154.
Fitzgerald, D. J., Dryden, G. L., Bronson, E. C., Williams, J. S., and Anderson, J. N. (1994) Conserved patterns of bending in satellite and nucleosome positioning DNA. J. Biol. Chem. 269, 303–314.
Lo, A. W. I., Craig, J. M., Saffery, R., Kalitsis, P., Irvine, D. V., Earle, E., et al. (2001) A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J. 20, 2087–2096.
Lo, A. W. I., Magliano, D. J., Sibson, M. C., Kalitsis, P., Craig, J. M., and Choo, K. H.A. (2001) A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res. 11, 448–457.
Saffery R., Irvine D. V., Griffiths B., Kalitsis P., Wordeman L., and Choo K. H. (2000) Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum. Mol. Genet. 9, 175–185.
Hudson, D. F., Fowler, K. J., Earle, E., Saffery, R., Kalitsis, P., Trowell, H., et al. (1998) Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J. Cell Biol. 141, 309–319.
Williams, B. C., Murphy, T. D., Goldberg, M. L., and Karpen, G. H. (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat. Genet. 18, 30–37.
Yu, H. G., Hiatt, E. N., Chan, A., Sweeney, M., and Dawe, R. K. (1997) Neocentromere-mediated chromosome movement in maize. J. Cell Biol. 139, 831–840.
Tyler-Smith, C., Ginelli, G., Giglio, S., Floridia, G., Pandya, A., Terzoli, G., et al. (1999) Transmission of a fully functional human neocentromere through three generations. Am. J. Hum. Genet. 64, 1440–1444.
Saffery R., Wong L. H., Irvine D. V., Bateman M. A., Griffiths B., Cutts S. M., et al. (2001) Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc. Natl. Acad. Sci. USA 98, 5705–5710.
Hassold, T. and Hunt P. (2001) To err (meiotically) is human: The genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291.
Hassold, T., Merrill, M., Adkins, K., Freeman, S., and Sherman, S. (1995) Recombination and maternal age-dependent non-disjunction: Molecular studies of trisomy 16. Am. J. Hum. Genet. 57, 867–874.
Mahtani M. M. and Willard H. F. (1998) Physical and genetic mapping of the human X chromosome centromere: Repression of recombination. Genome Res. 8, 100–110.
Lima-de-Faria, A. and Jaworska, H. (1968) Late DNA synthesis in heterochromatin. Nature 217, 138–142.
Dupraw, E. J. (1968) Cell and Molecular Biology. Academic Publishing Co., New York, p. 892.
McCarroll, R. M. and Fangman, W. L. (1988) Time of replication of yeast centromeres and telomeres. Cell 54, 505–513.
Ahmad, K. and Henikoff, S. (2001) Centromeres are specialised replication domains in heterochromatin. J. Cell Biol. 153, 101–109.
Sullivan, B. and Karpen, G. (2001) Centromere identity in Drosophila is not determined in vivo by replicating timing. J. Cell Biol. 154, 683–690.
Ten Hagen K. G., Gilbert D. M., Willard H. F., and Cohen S. N. (1990) Replication timing of DNA sequences associated with human centromeres and telomeres. Mol. Cell Biol. 10, 6348–6355.
O’Keefe R. T., Henderson S. C., and Spector D. L. (1992) Dynamic organization of DNA replication in mammalian cell nuclei: Spatially and temporally defined replication of chromosome-specific alphα-satellite DNA sequences. J. Cell Biol. 116, 1095–1110.
Selig, S., Ariel, M., Goitein, R., Marcus, M., and Cedar, H. (1988) Regulation of mouse satellite DNA replication time. EMBO J. 7, 419–426.
Jasencakova, Z., Meister, A., and Schubert, I. (2001) Chromatin organisation and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110, 83–92.
Shelby, R. D., Monier, K., and Sullivan, K. F. (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151, 1113–1118.
Henikoff, S., Kami, A., and Malik, H. S. (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102.
Litmanovitch, T., Altaras, M. M., Dotan, A., and Avivi, L. (1998) Asynchronous replication of homologous alphα-satellite DNA loci in man is associated with nondisjunction. Cytogenet. Cell Genet. 81, 26–35.
Archidiacano, N., Antonacci, R., Marzella, R., Finelli, P., Lonoce, A., and Rocchi, M. (1995) Comparative mapping of human alphoid sequences in great apes using fluorescence in situ hybridization. Genomics 25, 477–484.
Montefalcone, G., Tempesta, S., Rocchi, M., and Archidiacano, N. (1999) Centromere repositioning. Genome Res. 9, 1184–1188.
Ventura, M., Archidiacono, N., and Rocchi, M. (2000) Centromere emergence in evolution. Genome Res. 11, 595–599.
Malik, H. S. and Henikoff, S. (2001) Adaptative evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157, 1293–1298.
Smith, G. P. (1976) Evolution of repeated DNA sequences by unequal crossingover. Science 191, 528–535.
Stephan, W. (1989) Tandem-repetitive noncoding DNA: Forms and forces. Mol. Biol. Evol. 6, 198–212.
Walsh, J. B. (1987) Persistence of tandem arrays: Implications for satellite and simple-sequence DNAs. Genetics 115, 553–567.
Fletcher, H. L. and Rafferty, J. A. (1993) The effects of unequal sister chromatid exchange on length of arrays of repeated sequences. J. Theor. Biol. 164, 507–514.
Marcais, B., Charlieu, J. P., Allain, B., Brun, E., Bellis, M., and Roizés, G. (1991) On the mode of evolution of alpha satellite DNA in human populations. J. Mol. Evol. 33, 42–48.
Marcais, B., Laurent, A. M., Charlieu, J. P., and Roizés, G. (1993) Organization of the variant domains of alpha satellite DNA on human chromosome 21. J. Mol. Evol. 37, 171–178.
Shelby, R. D., Vafa, O., and Sullivan, K. F. (1997) Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 136, 501–513.
Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41–45.
Junewein, T. (2000) Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 11, 266–273.
Razin, A. and Kafri, T. (1994) DNA methylation from embryo to adult. Prog. Nucleic Acids Res. Mol. Biol. 48, 53–81.
Miniou, P., Jeanpierre, M., Bourc’his, D., {mnCoutinho Barbosa}, A. C., Blanquet, V., and Viegas-Péquignot, E. (1997) Alphα-satellite DNA methylation in normal individuals and in ICF patients: Heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Hum. Genet. 99, 738–745.
Xu, G-L., Bestor, T. H., Bourc’his, D., Hsieh, C-L., Tommerup, N., Bugge, M., et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191.
Okano, M., Bell, D. W., Haber, A., and Li, E. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.
Bernardi, G. (1993) The isochore organization of the human genome and its evolutionary history-a review. Gene 135, 57–66.
International Human Genome Consortium. (2001) Initial sequencing and analysis of the human genome, Nature, 409, 860–921.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Humana Press Inc.
About this protocol
Cite this protocol
Roizés, G., Grunau, C., Buard, J., De Sario, A., Puechberty, J. (2004). Centromeres and Neocentromeres. In: Sgaramella, V., Eridani, S. (eds) Mammalian Artificial Chromosomes. Methods in Molecular Biology, vol 240. Humana Press. https://doi.org/10.1385/1-59259-434-4:77
Download citation
DOI: https://doi.org/10.1385/1-59259-434-4:77
Publisher Name: Humana Press
Print ISBN: 978-1-58829-096-0
Online ISBN: 978-1-59259-434-4
eBook Packages: Springer Protocols