Home Functional inequalities for Gaussian hypergeometric function and generalized elliptic integral of the first kind
Article
Licensed
Unlicensed Requires Authentication

Functional inequalities for Gaussian hypergeometric function and generalized elliptic integral of the first kind

  • Shen-Yang Tan , Ti-Ren Huang and Yu-Ming Chu EMAIL logo
Published/Copyright: June 8, 2021
Become an author with De Gruyter Brill

Abstract

In the article, we present several new functional inequalities for the Gaussian hypergeometric function and generalized elliptic integral of the first kind.


This research was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11701176, 11626101, 11601485), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.17KJD110004) and The “Blue Project” of Universities in Jiangsu province.


  1. (Communicated by Tomasz Natkaniec)

References

[1] Abramowitz, M.—Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, U.S. Government Printing Office, Washington, 1964.Search in Google Scholar

[2] Alzer, H.—Richards, K.: A note on a function involving complete elliptic integrals: monotonicity, convexity, inequalities, Anal. Math. 41 (2015), 133–139.10.1007/s10476-015-0201-7Search in Google Scholar

[3] Anderson, G. D.—Barnard, R. W.—Richards, K. C.—Vamanamurthy, M. K.—Vuorinen, M.: Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 347 (1995), 1713–1723.10.1090/S0002-9947-1995-1264800-3Search in Google Scholar

[4] Biernacki, M.—Krzyż, J.: On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 9 (1995), 135–147.Search in Google Scholar

[5] Chu, Y.-M.—Qiu, Y.-F.—Wang, M.-K.: Hölder mean inequalities for the complete elliptic integrals, Integral Transforms Spec. Funct. 23 (2012), 521–527.10.1080/10652469.2011.609482Search in Google Scholar

[6] Chu, Y.-M.—Wang, M.-K.: Inequalities between arithmetic-geometric, Gini, and Toader means, Abstr. Appl. Anal. 2012 (2012), Art. ID 830585.10.1155/2012/830585Search in Google Scholar

[7] Chu, Y.-M.—Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean, Results Math. 61 (2012), 223–229.10.1007/s00025-010-0090-9Search in Google Scholar

[8] Chu, Y.-M.—Wang, M.-K.—Jiang, Y.-P.—Qiu, S.-L.: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl. 395 (2012), 637–642.10.1016/j.jmaa.2012.05.083Search in Google Scholar

[9] Chu, Y.-M.—Wang, M.-K.—Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci. 122 (2012), 41–51.10.1007/s12044-012-0062-ySearch in Google Scholar

[10] Chu, Y.-M.—Wang, M.-K.—Qiu, S.-L.—Jiang, Y.-P.: Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl. 63 (2012), 1177–1184.10.1016/j.camwa.2011.12.038Search in Google Scholar

[11] Chu, H.-H.—Ynag, Z.-H.—Zhang, W.—Chu, Y.-M.: Improvements of the bounds for Ramanujan constant function, J. Inequal. Appl. 2016 (2016), Art. ID 196.10.1186/s13660-016-1140-ySearch in Google Scholar

[12] Hai, G.-J.—Zhao, T.-H.: Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function, J. Inequal. Appl. 2020 (2020), Art. ID 66.10.1186/s13660-020-02327-7Search in Google Scholar

[13] He, Z.-Y.—Wang, M.-K.—Jiang, Y.-P.—Chu, Y.-M.: Bounds for the perimeter of an ellipse in terms of power means, J. Math. Inequal. 14 (2020), 887–899.10.7153/jmi-2020-14-58Search in Google Scholar

[14] Huang, T.-R.—Han, B.-W.—Ma, X.-Y.—Chu, Y.-M.: Optimal bounds for the generalized Euler-Mascheroni constant, J. Inequal. Appl. 2018 (2018), Art. ID 118.10.1186/s13660-018-1711-1Search in Google Scholar PubMed PubMed Central

[15] Huang, T.-R.—Qiu, S.-L.—Ma, X.-Y.: Monotonicity properties and inequalities for the generalized elliptic integral of the first of kind, J. Math. Anal. Appl. 469 (2019), 95–116.10.1016/j.jmaa.2018.08.061Search in Google Scholar

[16] Huang, T.-R.—Tan, S.-Y.—Ma, X.-Y.—Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl. 2018 (2018), Art. ID 239.10.1186/s13660-018-1828-2Search in Google Scholar

[17] Huang, X.-F.—Wang, M.-K.—Shao, H.—Zhao, Y.-F.—Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals, AIMS Math. 5 (2020), 7071–7086.10.3934/math.2020453Search in Google Scholar

[18] Qi, F.: A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math. 351 (2019), 1–5.10.1016/j.cam.2018.10.049Search in Google Scholar

[19] Qian, W.-M.—Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters, J. Inequal. Appl. 2017 (2017), Art. ID 274.10.1186/s13660-017-1550-5Search in Google Scholar PubMed PubMed Central

[20] Qian, W.-M.—He, Z.-Y.—Chu, Y.-M.: Approximation for the complete elliptic integral of the first kind, Exactas Fís. Nat. Ser. A Mat. 114 (2020), Art. No. 57.10.1007/s13398-020-00784-9Search in Google Scholar

[21] Qiu, S.-L.—Ma, X.-Y.—Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl. 474 (2019), 1306–1337.10.1016/j.jmaa.2019.02.018Search in Google Scholar

[22] Qiu, S.-L.—Vuorinen, M.: Landen inequalities for hypergeometric functions, Nagoya Math. J. 154 (1999), 31–56.10.1017/S0027763000025290Search in Google Scholar

[23] Shen, J.-M.—Yang, Z.-H.—Qian, W.-M.—Zhang, W.—Chu, Y.-M.: Sharp rational bounds for gamma function, Math. Inequal. Appl. 23 (2020), 843–853.10.7153/mia-2020-23-68Search in Google Scholar

[24] Sun, M.-B.—Chu, Y.-M.: Inequalities for the generalized weighted mean values of g-convex functions with applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114 (2020), Art. No. 172.10.1007/s13398-020-00908-1Search in Google Scholar

[25] Wang, M.-K.—Chu, Y.-M.: Refinements of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci. 37B (2017), 607–622.10.1016/S0252-9602(17)30026-7Search in Google Scholar

[26] Wang, M.-K.—Chu, Y.-M.: Landen inequalities for a class of hypergeometric functions with applications, Math. Inequal. Appl. 21 (2018), 521–537.10.7153/mia-2018-21-38Search in Google Scholar

[27] Wang, M.-K.—Chu, H.-H.—Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl. 480 (2019), Art. ID 123388.10.1016/j.jmaa.2019.123388Search in Google Scholar

[28] Wang, M.-K.—Chu, Y.-M.—Jiang, Y.-P.: Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky Mountain J. Math. 46 (2016), 679–691.10.1216/RMJ-2016-46-2-679Search in Google Scholar

[29] Wang, M.-K.—Chu, H.-H.—Li, Y.-M.—Chu, Y.-M.: Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math. 14 (2020), 255–271.10.2298/AADM190924020WSearch in Google Scholar

[30] Wang, M.-K.—Chu, Y.-M.—Li, Y.-M.—Zhang, W.: Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl. 23 (2020), 821–841.10.7153/mia-2020-23-67Search in Google Scholar

[31] Wang, M.-K.—Chu, Y.-M.—Qiu, S.-L.—Jiang, Y.-P.: Bounds for the perimeter of an ellipse, J. Approx. Theory 164 (2012), 928–937.10.1016/j.jat.2012.03.011Search in Google Scholar

[32] Wang, M.-K.—Chu, Y.-M.—Qiu, Y.-F.—Qiu, S.-L.: An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett. 24 (2011), 887–890.10.1016/j.aml.2010.12.044Search in Google Scholar

[33] Wang, M.-K.—Chu, Y.-M.—Song, Y.-Q.: Asymptotical formulas for Gaussian and generalized hypergeometric functions, Appl. Math. Comput. 276 (2016), 44–60.10.1016/j.amc.2015.11.088Search in Google Scholar

[34] Wang, M.-K.—Chu, Y.-M.—Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl. 22 (2019), 601–617.10.7153/mia-2019-22-42Search in Google Scholar

[35] Wang, M.-K.—He, Z.-Y.—Chu, Y.-M.: Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Methods Funct. Theory 20 (2020), 111–124.10.1007/s40315-020-00298-wSearch in Google Scholar

[36] Wang, M.-K.—Li, Y.-M.—Chu, Y.-M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J. 46 (2018), 189–200.10.1007/s11139-017-9888-3Search in Google Scholar

[37] Wang, J.-L.—Qian, W.-M.—He, Z.-Y.—Chu, Y.-M.: On approximating the Toader mean by other bivariate means, J. Funct. Spaces 2019 (2019), Art. ID 6082413.10.1155/2019/6082413Search in Google Scholar

[38] Wang, M.-K.—Qiu, S.-L.—Chu, Y.-M.: Infinite series formula for Hübner upper bound function with applications to Hersch-Pfluger distortion function, Math. Inequal. Appl. 21 (2018), 629–648.10.7153/mia-2018-21-46Search in Google Scholar

[39] Wang, M.-K.—Qiu, S.-L.—Chu, Y.-M.—Jiang, Y.-P.: Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl. 385 (2012), 221–229.10.1016/j.jmaa.2011.06.039Search in Google Scholar

[40] Wang, G.-D.—Zhang, X.-H.—Chu, Y.-M.: A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl. 14 (2011), 833–837.10.7153/mia-14-69Search in Google Scholar

[41] Wang, G.-D.—Zhang, X.-H.—Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals, Rocky Mountain J. Math. 44 (2014), 1661–1667.10.1216/RMJ-2014-44-5-1661Search in Google Scholar

[42] Wang, M.-K.—Zhang, W.—Chu, Y.-M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci. 39B (2019), 1440–1450.10.1007/s10473-019-0520-zSearch in Google Scholar

[43] Yang, Z.-H.—Chu, Y.-M.: A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl. 20 (2017), 729–735.10.7153/mia-2017-20-46Search in Google Scholar

[44] Yang, Z.-H.—Chu, Y.-M.—Wang, M.-K.: Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl. 428 (2015), 587–604.10.1016/j.jmaa.2015.03.043Search in Google Scholar

[45] Yang, Z.-H.—Chu, Y.-M.—Zhang, X.-H.: Sharp bounds for psi function, Appl. Math. Comput. 268 (2015), 1055–1063.10.1016/j.amc.2015.07.012Search in Google Scholar

[46] Yang, Z.-H.—Chu, Y.-M.—Zhang, X.-H.: Necessary and sufficient conditions for functions involving the psi function to be completely monotonic, J. Inequal. Appl. 2015 (2015), Art. ID 157.10.1186/s13660-015-0674-8Search in Google Scholar

[47] Yang, Z.-H.—Chu, Y.-M.—Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind, Appl. Math. Comput. 348 (2019), 552–564.10.1016/j.amc.2018.12.025Search in Google Scholar

[48] Yang, Z.-H.—Qian, W.-M.—Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl. 21 (2018), 1185–1199.10.7153/mia-2018-21-82Search in Google Scholar

[49] Yang, Z.-H.—Qian, W.-M.—Chu, Y.-M.—Zhang, W.: Monotonicity rule for the quotient of two functions and its application, J. Inequal. Appl. 2017 (2017), Art. ID 106.10.1186/s13660-017-1383-2Search in Google Scholar PubMed PubMed Central

[50] Yang, Z.-H.—Qian, W.-M.—Chu, Y.-M.—Zhang, W.: On rational bounds for the gamma function, J. Inequal. Appl. 2017 (2017), Art. ID 210.10.1186/s13660-017-1484-ySearch in Google Scholar PubMed PubMed Central

[51] Yang, Z.-H.—Qian, W.-M.—Chu, Y.-M.—Zhang, W.: On approximating the error function, Math. Inequal. Appl. 21 (2018), 469–479.10.7153/mia-2018-21-32Search in Google Scholar

[52] Yang, Z.-H.—Qian, W.-M.—Chu, Y.-M.—Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl. 462 (2018), 1714–1726.10.1016/j.jmaa.2018.03.005Search in Google Scholar

[53] Yang, Z.-H.—Qian, W.-M.—Zhang, W.—Chu, Y.-M.: Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl. 23 (2020), 77–93.10.7153/mia-2020-23-07Search in Google Scholar

[54] Yang, Z.-H.—Tian, J.-F.: Sharp inequalities for the generalized elliptic integrals of the first kind, Ramanujan J. 48 (2019), 91–116.10.1007/s11139-018-0061-4Search in Google Scholar

[55] Yang, Z.-H.—Zhang, W.—Chu, Y.-M.: Sharp Gautschi inequality for parameter 0 < p < 1 with applications, Math. Inequal. Appl. 20 (2017), 1107–1120.10.7153/mia-2017-20-71Search in Google Scholar

[56] Zhao, T.-H.—Chu, Y.-M.—Wang, H.: Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal. 2011 (2011), Art. ID 896483.10.1155/2011/896483Search in Google Scholar

[57] Zhao, T.-H.—He, Z.-Y.—Chu, Y.-M.: On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Math. 5 (2020), 6479–6495.10.3934/math.2020418Search in Google Scholar

[58] Zhao, T.-H.—Shi, L.—Chu, Y.-M.—Zhang, W.: Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114 (2020), Art. No. 96.10.1007/s13398-020-00825-3Search in Google Scholar

[59] Zhao, T.-H.—Wang, M.-K.—Chu, Y.-M.: A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math. 5 (2020), 4512–4528.10.3934/math.2020290Search in Google Scholar

[60] Zhao, T.-H.—Wang, M.-K.—Zhang, W.—Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl. 2018 (2018), Art. ID 251.10.1186/s13660-018-1848-ySearch in Google Scholar PubMed PubMed Central

[61] Zhao, T.-H.—Yang, Z.-H.—Chu, Y.-M.: Monotonicity properties of a function involving the psi function with applications, J. Inequal. Appl. 2015 (2015), Art. ID 193.10.1186/s13660-015-0724-2Search in Google Scholar

[62] Zhao, T.-H.—Zhou, B.-C.—Wang, M.-K.—Chu, Y.-M.: On approximating the quasi-arithmetic mean, J. Inequal. Appl. 2019 (2019), Art. ID 42.10.1186/s13660-019-1991-0Search in Google Scholar

Received: 2020-01-16
Accepted: 2020-09-09
Published Online: 2021-06-08
Published in Print: 2021-06-25

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 21.6.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0012/html
Scroll to top button