Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Poliarileterketonlardan yapılmış implantların stres dağılımı: 3 boyutlu Sonlu Elemanlar Analizi

Year 2025, Volume: 42 Issue: 2, 65 - 74, 05.05.2025
https://doi.org/10.17214/gaziaot.1420859

Abstract

AMAÇ: Bu çalışmanın amacı, üç boyutlu (3D) sonlu elemanlar analizi (SEA) kullanarak Polietereterekketon (PEEK), Polieterketonketon (PEKK) ve titanyum implant/dayanakların kemik-implant yapılarında neden olduğu stres dağılımını araştırmak.
GEREÇ VE YÖNTEM: Dikey (250 N) ve 45˚ oblik (100 N) yükleme altında titanyum, PEEK ve PEKK implant/dayanaklardan oluşan altı model üzerinde çalışıldı. Modellerden elde edilen principal ve von Mises stres değerleri değerlendirildi.
BULGULAR: von Mises gerilme değerlerinin dikey ve oblik yükler altında titanyum implantlarda ve dayanaklarda en yüksek olduğu bulundu. Poliarileterketon (PAEK) modellerin vidalarında titanyum modellere göre son derece yüksek stres değerleri gözlendi. Dikey ve oblik yükler altında spongioz ve kortikal kemikte titanyum modellerde PAEK modellerine göre daha düşük principal gerilim değerleri gözlendi.
SONUÇ: PAEK'ler implant çevresindeki kemiğe daha fazla stres aktardı. Titanyum modellerde stres dağılımı daha homojen iken PAEK'lerde stres implantların koronal kısmına komşu kemikte ve implant boynunda yoğunlaşmıştır.

References

  • 1. Wang Y, Baumer D, Ozga AK, Korner G, Baumer A. Patient satisfaction and oral health-related quality of life 10 years after implant placement. BMC Oral Health 2021;21:30.
  • 2. Neumann EA, Villar CC, Franca FM. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiberreinforced polyetheretherketone. Braz Oral Res 2014;28: S1806.
  • 3. Tretto PHW, Dos Santos MBF, Spazzin AO, Pereira GKR, Bacchi A. Assessment of stress/strain in dental implants and abutments of alternative materials compared to conventional titanium alloy-3D nonlinear finite element analysis. Comput Methods Biomech Biomed Engin 2020;23:372-83.
  • 4. Kaleli N, Sarac D, Kulunk S, Ozturk O. Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: A three-dimensional finite element analysis study. J Prosthet Dent 2018;119:437-45
  • 5. Bataineh K, Al Janaideh M. Effect of different biocompatible implantmaterials on the mechanical stability of dental implants under excessive oblique load. Clin Implant Dent Relat Res 2019;21:1206-17.
  • 6. Korabi R, Shemtov-Yona K, Rittel D. On stress/strain shielding and the material stiffness paradigm for dental implants. Clin Implant Dent Relat Res 2017;19:935-43.
  • 7. AlOtaibi N, Naudi K, Conway D, Ayoub A. The current state of PEEK implant osseointegration and future perspectives: a systematic review. Eur Cell Mater 2020; 40:1-20.
  • 8. Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl Biomater 2012;100:1044-52.
  • 9. Knaus J, Schaffarczyk D, Colfen H. On the Future Design of Bio-Inspired Polyetheretherketone Dental Implants. Macromol Biosci 2020;20:1900239.
  • 10. Zhang F, Meyer Zur Heide C, Chevalier J, Vleugels J, Van Meerbeek B, Wesemann C, et al. Reliability of an injection-moulded two-piece zirconia implant with PEKK abutment after long-term thermomechanical loading. J Mech Behav Biomed Mater 2020; 110:103967.
  • 11. Yuan B, Cheng Q, Zhao R, Zhu X, Yang X, Yang X, et al. Comparison of osteointegration property between PEKK and PEEK: Effects of surface structure and chemistry. Biomaterials 2018; 170:116-26.
  • 12. Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Muller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech 2015;48:1-7.
  • 13. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007;28:4845-69.
  • 14. Ramenzoni LL, Attin T, Schmidlin PR. In Vitro Effect of Modified Polyetheretherketone (PEEK) Implant Abutments on Human Gingival Epithelial Keratinocytes Migration and Proliferation. Materials (Basel) 2019;12:1401.
  • 15. Dawson JH, Hyde B, Hurst M, Harris BT, Lin WS. Polyetherketoneketone (PEKK), a framework material for complete fixed and removable dental prostheses: A clinical report. J Prosthet Dent 2018;119:867-72.
  • 16. Hu X, Mei S, Wang F, Qian J, Xie D, Zhao J, et al. Implantable PEKK/tantalum microparticles composite with improved surface performances for regulating cell behaviors, promoting bone formation and osseointegration. Bioact Mater 2021;6:928-40.
  • 17. Sun F, Shen X, Zhou N, Gao Y, Guo Y, Yang X, et al. A speech bulb prosthesis for a soft palate defect with a polyetherketoneketone (PEKK) framework fabricated by multiple digital techniques: A clinical report. J Prosthet Dent 2020;124:495-99.
  • 18. Abdullah MR, Goharian A, Abdul Kadir MR, Wahit MU. Biomechanical and bioactivity concepts of polyetheretherketone composites for use in orthopedic implants-a review. J Biomed Mater Res A 2015;103:3689-702.
  • 19. Kersten RF, van Gaalen SM, de Gast A, Öner FC. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J 2015;15:1446-60.
  • 20. Togawa D, Bauer TW, Lieberman IH, Sakai H. Lumbar intervertebral body fusion cages: histological evaluation of clinically failed cages retrieved from humans. J Bone Joint Surg Am 2004;86:70-9.
  • 21. von Wilmowsky C, Vairaktaris E, Pohle D, Rechtenwald T, Lutz R, Münstedt H, et al. Effects of bioactive glass and beta-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro. J Biomed Mater Res A 2008;87:896-902.
  • 22. Walsh WR, Bertollo N, Christou C, Schaffner D, Mobbs RJ. Plasmasprayed titanium coating to polyetheretherketone improves the boneimplant interface. Spine J 2015;15:1041-9.
  • 23. Xu A, Liu X, Gao X, Deng F, Deng Y, Wei S. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite. Mater Sci Eng C Mater Biol Appl 2015;48:592-8.
  • 24. Torstrick FB, Evans NT, Stevens HY, Gall K, Guldberg RE. Do surface porosity and pore size influence mechanical properties and cellular response to PEEK? Clin Orthop Relat Res 2016;474:2373-83.
  • 25. Akca K, Iplikcioglu H. Finite element stress analysis of the influence of staggered versus straight placement of dental implants. Int J Oral Maxillofac Implants 2001;16:722-30.
  • 26. Nelson SJ, Ash M, M. Wheeler’s dental anatomy, physiology and occlusion-e-book. Occlusion. Elsevier Health Sciences 2014;9 275- 307.
  • 27. Morneburg TR, Pröschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont 2002;15:20-7.
  • 28. Vidya Bhat S, Premkumar P, Kamalakanth Shenoy K. Stress distribution around single short dental implants: A Finite Element Study. J Indian Prosthodont Soc 2014;14:161-7.
  • 29. Akhavan S, Matthiesen MM, Schulte L, Penoyar T, Kraay MJ, Rimnac CM, et al. Clinical and histologic results related to a lowmodulus composite total hip replacement stem. J Bone Joint Surg Am 2006;88:1308-14.
  • 30. Brantigan JW, Neidre A, Toohey JS. The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a Food and Drug Administration clinical trial. Spine J 2004;4:681-8.
  • 31. Wiskott HW, Belser UC. Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res 1999;10:429-44.
  • 32. Sarot JR, Contar CM, Cruz AC, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med 2010;21:2079-85.
  • 33. Gomes SG, Custodio W, Faot F, Cury AA, Garcia RC. Chewing side, bite force symmetry, and occlusal contact area of subjects with different facial vertical patterns. Braz Oral Res 2011;25:446-52.
  • 34. Ciftci Y, Canay S. The effect of veneering materials on stress distribution in implant-supported fixed prosthetic restorations. Int J Oral Maxillofac Implants 2000;15:571-82.
  • 35. Fontijn-Tekamp FA, Slagter AP, Van Der Bilt A, Van ‘T Hof MA, Witter DJ, Kalk W, et al. Biting and chewing in overdentures, full dentures, and natural dentitions. J Dent Res 2000;79:1519-24.
  • 36. Liao SH, Tong RF, Dong JX. Influence of anisotropy on peri-implant stress and strain in complete mandible model from CT. Comput Med Imaging Graph 2008;32:53-60.
  • 37. Ding X, Zhu XH, Liao SH, Zhang XH, Chen H. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis. J Prosthodont 2009;18:393-402.
  • 38. Takahashi JMFK, Dayrell AC, Consani RLX, de Arruda Nobilo MA, Henriques GEP, Mesquita MF. Stress evaluation of implant-abutment connections under different loading conditions: a 3D finite element study. J Oral Implantol 2015;41:133-7.
  • 39. de Faria Almeida DA, Pellizzer EP, Verri FR, Santiago JF Jr, de Carvalho PSP. Influence of tapered and external hexagon connections on bone stresses around tilted dental implants: three-dimensional finite element method with statistical analysis. J Periodontol 2014; 85:261-9.
  • 40. Sevimay M, Turhan F, Kılıçaslan MA, Eskitasçıoglu G. Three dimensional finite element analysis of the different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 2005; 93:227-34.
  • 41. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymerinfiltrated ceramic-network material. Dent Mater 2014; 30:564-9.

The stress distribution of implants made of Polyaryletherketones: A 3D Finite Element Analysis

Year 2025, Volume: 42 Issue: 2, 65 - 74, 05.05.2025
https://doi.org/10.17214/gaziaot.1420859

Abstract

OBJECTIVE: To explore the stress distribution on the bone-implant structures caused by the Polyetheretherketone (PEEK), Polyetherketoneketone (PEKK), and titanium fixture/abutments by using the three-dimensional (3D) finite element analysis (FEA).
MATERIALS AND METHODS: Six models composed of titanium, PEEK, and PEKK implant/abutments under vertical (250 N) and 45˚ oblique (100 N) loading were studied. The obtained principal and von Mises stress values from the models were evaluated.
RESULTS: von Mises stresses were found to be highest in titanium implants and abutments under vertical and oblique loads. Extremely increased stress values were observed in the screws of the Polyaryletherketone (PAEK) models compared to titanium models. Lower principal stresses were observed in titanium models than PAEK models in the cancellous and cortical bone under vertical and oblique loads.
CONCLUSION: PAEKs transmitted more stress to the peri-implant bone. Stress distribution in titanium models were more homogenous while stress concentrated in the bone adjacent to the coronal part of the implants and neck of the implants in PAEKs.

References

  • 1. Wang Y, Baumer D, Ozga AK, Korner G, Baumer A. Patient satisfaction and oral health-related quality of life 10 years after implant placement. BMC Oral Health 2021;21:30.
  • 2. Neumann EA, Villar CC, Franca FM. Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiberreinforced polyetheretherketone. Braz Oral Res 2014;28: S1806.
  • 3. Tretto PHW, Dos Santos MBF, Spazzin AO, Pereira GKR, Bacchi A. Assessment of stress/strain in dental implants and abutments of alternative materials compared to conventional titanium alloy-3D nonlinear finite element analysis. Comput Methods Biomech Biomed Engin 2020;23:372-83.
  • 4. Kaleli N, Sarac D, Kulunk S, Ozturk O. Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: A three-dimensional finite element analysis study. J Prosthet Dent 2018;119:437-45
  • 5. Bataineh K, Al Janaideh M. Effect of different biocompatible implantmaterials on the mechanical stability of dental implants under excessive oblique load. Clin Implant Dent Relat Res 2019;21:1206-17.
  • 6. Korabi R, Shemtov-Yona K, Rittel D. On stress/strain shielding and the material stiffness paradigm for dental implants. Clin Implant Dent Relat Res 2017;19:935-43.
  • 7. AlOtaibi N, Naudi K, Conway D, Ayoub A. The current state of PEEK implant osseointegration and future perspectives: a systematic review. Eur Cell Mater 2020; 40:1-20.
  • 8. Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl Biomater 2012;100:1044-52.
  • 9. Knaus J, Schaffarczyk D, Colfen H. On the Future Design of Bio-Inspired Polyetheretherketone Dental Implants. Macromol Biosci 2020;20:1900239.
  • 10. Zhang F, Meyer Zur Heide C, Chevalier J, Vleugels J, Van Meerbeek B, Wesemann C, et al. Reliability of an injection-moulded two-piece zirconia implant with PEKK abutment after long-term thermomechanical loading. J Mech Behav Biomed Mater 2020; 110:103967.
  • 11. Yuan B, Cheng Q, Zhao R, Zhu X, Yang X, Yang X, et al. Comparison of osteointegration property between PEKK and PEEK: Effects of surface structure and chemistry. Biomaterials 2018; 170:116-26.
  • 12. Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Muller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech 2015;48:1-7.
  • 13. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007;28:4845-69.
  • 14. Ramenzoni LL, Attin T, Schmidlin PR. In Vitro Effect of Modified Polyetheretherketone (PEEK) Implant Abutments on Human Gingival Epithelial Keratinocytes Migration and Proliferation. Materials (Basel) 2019;12:1401.
  • 15. Dawson JH, Hyde B, Hurst M, Harris BT, Lin WS. Polyetherketoneketone (PEKK), a framework material for complete fixed and removable dental prostheses: A clinical report. J Prosthet Dent 2018;119:867-72.
  • 16. Hu X, Mei S, Wang F, Qian J, Xie D, Zhao J, et al. Implantable PEKK/tantalum microparticles composite with improved surface performances for regulating cell behaviors, promoting bone formation and osseointegration. Bioact Mater 2021;6:928-40.
  • 17. Sun F, Shen X, Zhou N, Gao Y, Guo Y, Yang X, et al. A speech bulb prosthesis for a soft palate defect with a polyetherketoneketone (PEKK) framework fabricated by multiple digital techniques: A clinical report. J Prosthet Dent 2020;124:495-99.
  • 18. Abdullah MR, Goharian A, Abdul Kadir MR, Wahit MU. Biomechanical and bioactivity concepts of polyetheretherketone composites for use in orthopedic implants-a review. J Biomed Mater Res A 2015;103:3689-702.
  • 19. Kersten RF, van Gaalen SM, de Gast A, Öner FC. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J 2015;15:1446-60.
  • 20. Togawa D, Bauer TW, Lieberman IH, Sakai H. Lumbar intervertebral body fusion cages: histological evaluation of clinically failed cages retrieved from humans. J Bone Joint Surg Am 2004;86:70-9.
  • 21. von Wilmowsky C, Vairaktaris E, Pohle D, Rechtenwald T, Lutz R, Münstedt H, et al. Effects of bioactive glass and beta-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro. J Biomed Mater Res A 2008;87:896-902.
  • 22. Walsh WR, Bertollo N, Christou C, Schaffner D, Mobbs RJ. Plasmasprayed titanium coating to polyetheretherketone improves the boneimplant interface. Spine J 2015;15:1041-9.
  • 23. Xu A, Liu X, Gao X, Deng F, Deng Y, Wei S. Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite. Mater Sci Eng C Mater Biol Appl 2015;48:592-8.
  • 24. Torstrick FB, Evans NT, Stevens HY, Gall K, Guldberg RE. Do surface porosity and pore size influence mechanical properties and cellular response to PEEK? Clin Orthop Relat Res 2016;474:2373-83.
  • 25. Akca K, Iplikcioglu H. Finite element stress analysis of the influence of staggered versus straight placement of dental implants. Int J Oral Maxillofac Implants 2001;16:722-30.
  • 26. Nelson SJ, Ash M, M. Wheeler’s dental anatomy, physiology and occlusion-e-book. Occlusion. Elsevier Health Sciences 2014;9 275- 307.
  • 27. Morneburg TR, Pröschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont 2002;15:20-7.
  • 28. Vidya Bhat S, Premkumar P, Kamalakanth Shenoy K. Stress distribution around single short dental implants: A Finite Element Study. J Indian Prosthodont Soc 2014;14:161-7.
  • 29. Akhavan S, Matthiesen MM, Schulte L, Penoyar T, Kraay MJ, Rimnac CM, et al. Clinical and histologic results related to a lowmodulus composite total hip replacement stem. J Bone Joint Surg Am 2006;88:1308-14.
  • 30. Brantigan JW, Neidre A, Toohey JS. The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a Food and Drug Administration clinical trial. Spine J 2004;4:681-8.
  • 31. Wiskott HW, Belser UC. Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res 1999;10:429-44.
  • 32. Sarot JR, Contar CM, Cruz AC, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med 2010;21:2079-85.
  • 33. Gomes SG, Custodio W, Faot F, Cury AA, Garcia RC. Chewing side, bite force symmetry, and occlusal contact area of subjects with different facial vertical patterns. Braz Oral Res 2011;25:446-52.
  • 34. Ciftci Y, Canay S. The effect of veneering materials on stress distribution in implant-supported fixed prosthetic restorations. Int J Oral Maxillofac Implants 2000;15:571-82.
  • 35. Fontijn-Tekamp FA, Slagter AP, Van Der Bilt A, Van ‘T Hof MA, Witter DJ, Kalk W, et al. Biting and chewing in overdentures, full dentures, and natural dentitions. J Dent Res 2000;79:1519-24.
  • 36. Liao SH, Tong RF, Dong JX. Influence of anisotropy on peri-implant stress and strain in complete mandible model from CT. Comput Med Imaging Graph 2008;32:53-60.
  • 37. Ding X, Zhu XH, Liao SH, Zhang XH, Chen H. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis. J Prosthodont 2009;18:393-402.
  • 38. Takahashi JMFK, Dayrell AC, Consani RLX, de Arruda Nobilo MA, Henriques GEP, Mesquita MF. Stress evaluation of implant-abutment connections under different loading conditions: a 3D finite element study. J Oral Implantol 2015;41:133-7.
  • 39. de Faria Almeida DA, Pellizzer EP, Verri FR, Santiago JF Jr, de Carvalho PSP. Influence of tapered and external hexagon connections on bone stresses around tilted dental implants: three-dimensional finite element method with statistical analysis. J Periodontol 2014; 85:261-9.
  • 40. Sevimay M, Turhan F, Kılıçaslan MA, Eskitasçıoglu G. Three dimensional finite element analysis of the different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 2005; 93:227-34.
  • 41. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymerinfiltrated ceramic-network material. Dent Mater 2014; 30:564-9.
There are 41 citations in total.

Details

Primary Language English
Subjects Oral Implantology, Prosthodontics
Journal Section Original Research Article
Authors

Ahmet Serkan Küçükekenci

Mehmet Güler

Muhammed Bekci

Publication Date May 5, 2025
Submission Date January 16, 2024
Acceptance Date July 4, 2024
Published in Issue Year 2025 Volume: 42 Issue: 2

Cite

APA Küçükekenci, A. S., Güler, M., & Bekci, M. (2025). The stress distribution of implants made of Polyaryletherketones: A 3D Finite Element Analysis. Acta Odontologica Turcica, 42(2), 65-74. https://doi.org/10.17214/gaziaot.1420859
AMA Küçükekenci AS, Güler M, Bekci M. The stress distribution of implants made of Polyaryletherketones: A 3D Finite Element Analysis. Acta Odontol Turc. May 2025;42(2):65-74. doi:10.17214/gaziaot.1420859
Chicago Küçükekenci, Ahmet Serkan, Mehmet Güler, and Muhammed Bekci. “The Stress Distribution of Implants Made of Polyaryletherketones: A 3D Finite Element Analysis”. Acta Odontologica Turcica 42, no. 2 (May 2025): 65-74. https://doi.org/10.17214/gaziaot.1420859.
EndNote Küçükekenci AS, Güler M, Bekci M (May 1, 2025) The stress distribution of implants made of Polyaryletherketones: A 3D Finite Element Analysis. Acta Odontologica Turcica 42 2 65–74.
IEEE A. S. Küçükekenci, M. Güler, and M. Bekci, “The stress distribution of implants made of Polyaryletherketones: A 3D Finite Element Analysis”, Acta Odontol Turc, vol. 42, no. 2, pp. 65–74, 2025, doi: 10.17214/gaziaot.1420859.
ISNAD Küçükekenci, Ahmet Serkan et al. “The Stress Distribution of Implants Made of Polyaryletherketones: A 3D Finite Element Analysis”. Acta Odontologica Turcica 42/2 (May 2025), 65-74. https://doi.org/10.17214/gaziaot.1420859.
JAMA Küçükekenci AS, Güler M, Bekci M. The stress distribution of implants made of Polyaryletherketones: A 3D Finite Element Analysis. Acta Odontol Turc. 2025;42:65–74.
MLA Küçükekenci, Ahmet Serkan et al. “The Stress Distribution of Implants Made of Polyaryletherketones: A 3D Finite Element Analysis”. Acta Odontologica Turcica, vol. 42, no. 2, 2025, pp. 65-74, doi:10.17214/gaziaot.1420859.
Vancouver Küçükekenci AS, Güler M, Bekci M. The stress distribution of implants made of Polyaryletherketones: A 3D Finite Element Analysis. Acta Odontol Turc. 2025;42(2):65-74.