Czech J. Genet. Plant Breed., 2024, 60(4):223-236 | DOI: 10.17221/39/2024-CJGPB

Molecular identification of yellow rust resistance genes in some wheat and triticale cultivars and their resistance to Puccinia striiformis f.sp. triticiOriginal Paper

Emad Mahmood Al-Maaroof* ORCID..., Sarkawt Hama Salih Ali
Department of Biotechnology and Crop Science, Faculty of Agricultural Sciences, University of Sulaimani, Sulaimani, IKR, Iraq

Yellow rust (YR), caused by Puccinia striiformis f.sp. tritici (Pst), is a global threat to wheat production. In this study the response of 46 wheat and triticale cultivars to Pst at the adult plant stage (APS) was evaluated during two successive growing seasons at Sulaimania, Iraq. Also, we used a molecular analysis to find the yellow rust resistance (Yr) genes present in the individual cultivars. The results revealed large differences in the response to Pst between the cultivars. Most of the cultivars were susceptible to YR; the mean coefficients of infection (CI) varied from 0.23 in cv. Sarah to 83.33 in Hsad. High resistance levels were found in Al-Wand, Kalar 1, Rezan, and Sarahat APS, while Al-Rashid, Charmo, Faris 1, Maaroof, Rabiea, and Iratom displayed moderate resistance. The level of Yellow rust infection was higher in 2023 than in 2022 in most tested cultivars. Molecular analysis revealed the highest number of Yr genes (Yr2, Yr5, Yr7, Yr9, Yrvav, Yr15, Yr24, Yr26, and Yr32) in the cv. Al-Wand, followed by Sulaimani 2 with eight Yr genes (Yr2, Yr5, Yr7, Yr9, Yr15, Yr24, Yr26, and Yr32). Only one Yr gene was found in Iratom and Tamuz 3. Yr2 was the most frequently identified gene, present in the majority of tested cultivars (87%), followed by Yr7 (76%) and Yr9 (74%), respectively.

Keywords: DNA extraction; PCR; stripe rust; Triticum aestivum; Yr genes

Received: April 11, 2024; Revised: July 18, 2024; Accepted: July 19, 2024; Prepublished online: August 22, 2024; Published: September 16, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Al-Maaroof EM, Ali SHS. Molecular identification of yellow rust resistance genes in some wheat and triticale cultivars and their resistance to Puccinia striiformis f.sp. tritici. Czech J. Genet. Plant Breed.. 2024;60(4):223-236. doi: 10.17221/39/2024-CJGPB.
Download citation

Supplementary files:

Download fileAl_Maaroof_ESM.pdf

File size: 150.52 kB

References

  1. Ali S., Rodriguez-Algaba J., Thach T., Sørensen C.K., Hansen J.G., Lassen P., Nazari K., Hodson D.P., Justesen A.F., Hovmøller M.S. (2017): Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Frontiers in Plant Science, 20: 1057. Go to original source... Go to PubMed...
  2. Al-Maaroof E.M. (2022): Wheat yellow rust in Iraq - current status and future challenges. Chapter 5. In: Li M., Ali S. (eds.): Wheat Stripe Rust in the Middle East and the Extended Himalayan Regions. Beijing, China Agriculture Press: 90-115.
  3. Al-Maaroof E.M., Nori A. (2018): Yellow rust development on different wheat genotypes. Second International Conference of Agricultural Sciences. Journal of Zankoy Sulaimani, Part-A, Special: 177-188. Go to original source...
  4. Al-Maaroof E.M., Salih R.M. (2022): Physiological and molecular characterization of Ascochyta rabiei isolates from various chickpea areas across IKR, Iraq. Iraqi Journal of Agricultural Sciences, 53: 297-314. Go to original source...
  5. Al-Maaroof E.M., Hakim M., Ahyaoui A. (2003): Isolation and identification of two physiological races of wheat yellow rust pathogen Puccinia striiformis West f.sp. tritici in Iraq. Iraqi Journal for Agricultural Sciences, 34: 157-164.
  6. Al-Maaroof E.M., Hovemoler M., Ali R., Mahmood H., Naser A., Muhammed L. (2015): Detection of Yr27 virulence in Puccinia striiformis f.sp. tritici populations on wheat in Iraq. Journal of Wheat Research, 7: 39-47.
  7. Al-Maaroof E., Saleh R., Mahmood H., Nefel A., Abdulrahman N. (2020a): Developing the new multi-rust-resistant bread wheat cultivar "Maaroof" for the irrigated and rain-fed zones of Iraq. Applied Ecology and Environmental Research, 18: 2247-2258. Go to original source...
  8. Al-Maaroof E.M., Hassan S., Taha P., Said P., Aziz S. (2020b): Performance of some promising rust resistant bread wheat genotypes under rain-fed conditions. Journal of Life and Bio Sciences Research, 1: 61-67. Go to original source...
  9. Al-Maaroof E.M., Fayadh A.H., Hovemoler M. (2022): Pathogenic divergence in Puccinia striiformis f.sp. tritici population on wheat in Iraq. ProEnvironment, 15: 252-263.
  10. Almajidy L., Hashim I., Hamdan M., Hadi B. (2017): Estimation of some genetic parameters in durum wheat. Iraqi Journal of Agricultural Sciences, 48: 636-643. Go to original source...
  11. Bariana H., Brown G., Ahmed N., Khatkar S., Conner R., Wellings C., Haley S., Sharp P.A., Laroche A. (2002): Characterisation of Triticum vavilovii - derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker-assisted selection. Theoretical and Applied Genetics, 104: 315-320. Go to original source... Go to PubMed...
  12. Bariana H., Bansal U., Schmidt A., Lehmensiek A., Kaur J., Miah H., Howes N., McIntyre C. (2010): Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica, 176: 251-260. Go to original source...
  13. Bartoš P., Hanzalova A., Blažková V. (2000): Leaf rust resistance of winter wheat cultivars registered in the Czech Republic. Acta Phytopathologica et Entomologica Hungarica, 35: 149-151.
  14. Basnet B.R. (2012): Molecular characterization of durable yellow and leaf rust resistance in two wheat populations. [Pd.D. Thesis.] Texas A&M University. Available on https://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11167
  15. Beddow J.M., Pardey P.G., Chai Y., Hurley T.M., Kriticos D.J., Braun H.J., Park R.F., Cuddy W.S, Yonow T. (2015): Research investment implications of shifts in the global geography of wheat stripe rust. Nature Plants, 1: 1-5. Go to original source... Go to PubMed...
  16. Bhavani S., Singh R.P., Hodson D.P., Huerta-Espino J., Randhawa M.S. (2022): Wheat rusts: Current status, prospects of genetic control and integrated approaches to enhance resistance durability. In: Reynolds M.P., Braun H.-J. (eds.): Wheat Improvement: Food Security in a Changing Climate. Cham, Springer International Publishing: 125-141. Go to original source...
  17. Bux H., Rasheed A., Siyal M.A., Kazi A.G., Napar A.A., Mujeeb-Kazi A. (2012): An overview of stripe rust of wheat (Puccinia striiformis f.sp. tritici) in Pakistan. Archives of Phytopathology and Plant Protection, 45: 2278-2289. Go to original source...
  18. Chen C.W., Chiang W.L., Hsiao F.H. (2004): Stability analysis of T-S fuzzy models for nonlinear multiple time-delay interconnected systems. Mathematics and Computers in Simulation, 66: 523-537. Go to original source...
  19. Chen X.M. (2005): Epidemiology and control of stripe rust Puccinia striiformis f.sp. tritici on wheat. Canadian Journal of Plant Pathology, 27: 314-337. Go to original source...
  20. Chen X., Moore M., Milus E.A., Long D.L., Line R.F., Marshall D., Jackson L. (2002): Wheat stripe rust epidemics and races of Puccinia striiformis f.sp. tritici in the United States in 2000. Plant Diseases, 86: 39-46. Go to original source... Go to PubMed...
  21. Dang C., Zhang J., Dubcovsky J. (2022): High-resolution mapping of Yr78, an adult plant resistance gene to wheat stripe rust. The Plant Genome, 15: e20212. Go to original source... Go to PubMed...
  22. Deng M., Long L., Cheng Y., Yao F., Guan F., Wang Y., Li H., Pu Z., Li W., Jiang Q., Wei Y., Ma J., Kang H., Qi P., Wang J., Zheng Y., Jiang Y., Chen G. (2022): Mapping a stable adult-plant stripe rust resistance QTL on chromosome 6AL in Chinese wheat landrace Yibinzhuermai. The Crop Journal, 10: 1111-1119. Go to original source...
  23. Fayadh A., Awad S. (2017): Identification of some stem and yellow rust resistance genes in some Iraqi wheat varieties by using PCR markers. Iraq Journal of Agricultural Research, 22: 192-199.
  24. Gulmorodov R.A. (2023): Study on the effect of wheat yellow rust disease on grain yield. In: IOP Conference Series: Earth and Environmental Science, 2023, Vol. 1142: 012095. Go to original source...
  25. Hovmøller M.S., Sørensen C.K., Walter S., Justesen A.F. (2011): Diversity of Puccinia striiformis on cereals and grasses. Annual Review of Phytopathology, 49: 197-217. Go to original source... Go to PubMed...
  26. Intikhab A., Awan S.I., Mur L.A., Saeed M.S., Ahmed M.S. (2021): Molecular and phenotypic analysis of bread wheat varieties in relation to durable rust resistance. International Journal of Agriculture and Biology, 26: 329‒336. Go to original source...
  27. Iqbal M., Ejaz M., Ahmad I., Shazad A., Ali G. (2016): Molecular genetic variation for stripe rust resistance in spring wheat. Pakistan Journal for Agriculture 53: 143-150. Go to original source...
  28. Kim K.M., Cho S.W., Kang C.S., Kim K.H., Choi C.H., Son J.H., Park C.S., Mo Y. (2020): Research advances in wheat breeding and genetics for stripe rust resistance. Korean Society of Breeding Science, 52: 93-103. Go to original source...
  29. Kokhmetova A., Rsaliyev A., Malysheva A., Atishova M., Kumarbayeva M., Keishilov Z. (2021): Identification of stripe rust resistance genes in common wheat cultivars and breeding lines from Kazakhstan. Plants, 10: 2303. Go to original source... Go to PubMed...
  30. Lewellen R., Sharp E., Hehn E. (1967): Major and minor genes in wheat for resistance to Puccinia striiformis and their responses to temperature changes. Canadian Journal of Botany, 45: 2155-2172. Go to original source...
  31. Liu R., Lu J., Zhou M., Zheng S., Liu Z., Zhang C., Du M., Wang M., Li Y., Wu Y., Zhang L. (2020): Developing stripe rust resistance wheat (Triticum aestivum L.) lines with gene pyramiding strategy and marker assisted selection. Genetic Resource for Crop Evolution, 67: 381-391. Go to original source...
  32. Loladze A. (2006): Identification of stripe rust resistance in wheat relatives and landraces. [MSc Thesis.] Pullman, Department of Crop and Soil Sciences, Washington State University.
  33. Milus E.A., Kristensen K., Hovmøller M.S. (2009): Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f.sp. tritici causing stripe rust of wheat. Phytopathology, 99: 89-94. Go to original source... Go to PubMed...
  34. Nazari K., Al-Maaroof E.M., Kurtulus E., Kavas H., Hodson D., Ozseven I. (2021): First report of Ug99 race TTKTT of wheat stem rust (Puccinia graminis f.sp. tritici) in Iraq. Plant Disease, 105: 2719. Go to original source... Go to PubMed...
  35. Periyannan S. (2017): Wheat Rust Diseases: Methods and Protocol. New York, Humana Press. Go to original source...
  36. Porras R., Miguel-Rojas C., Pérez-de-Luque A., Sillero J.C. (2022): Macro-and microscopic characterization of components of resistance against Puccinia striiformis f.sp. tritici in a collection of Spanish bread wheat cultivars. Agronomy, 12: 1239. Go to original source...
  37. Pourkhorshid Z., Dadkhodaie A., Niazi A., Heidari B., Ebrahimi E. (2014): Identification of wheat stripe rust resistance genes in Iranian wheat cultivars using molecular markers. Annual Research & Review in Biology, 4: 2766-2778. Go to original source...
  38. Rahmatov M., Otambekova M., Muminjanov H., Rouse M.N., Hovmøller M.S., Nazari K., Steffenson B.J., Johansson E. (2019): Characterization of stem, stripe and leaf rust resistance in Tajik bread wheat accessions. Euphytica, 215: 1-22. Go to original source...
  39. Rani R., Singh R.A., Yadav N.R. (2019): Evaluating stripe rust resistance in Indian wheat genotypes and breeding lines using molecular markers. Comptes Rendus Biologies, 342: 154-174. Go to original source... Go to PubMed...
  40. Saleem K., Hovmøller M.S., Labouriau R., Justesen A.F., Orabi J., Andersen J.R., Sørensen C.K. (2022): Macroscopic and microscopic phenotyping using diverse yellow rust races increased the resolution of seedling and adult plant resistance in wheat breeding lines. Agronomy Journal, 12: 1062. Go to original source...
  41. Somers D.J., Isaac P., Edwards K. (2004): A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 109: 1105-1114. Go to original source... Go to PubMed...
  42. Tahir S., Zia I., Dilshad I., Fayyaz M., Noureen N., Farrakh S. (2020): Identification of stripe rust resistant genes and their validation in seedling and adult plant glass house tests. Genetic Resources and Crop Evolution, 67: 1025-1036. Go to original source...
  43. Tene M., Adhikari E., Cobo N., Jordan K.W., Matny O., del Blanco I.A., Roter J., Ezrati S., Govta L., Manisterski J. (2022): GWAS for stripe rust resistance in wild emmer wheat (Triticum dicoccoides) population: Obstacles and solutions. Crops, 2: 42-61. Go to original source...
  44. Wu J., Wang Q., Chen X., Wang M., Mu J., Lv X., Huang L., Han D., Kang Z. (2016): Stripe rust resistance in wheat breeding lines developed for central Shaanxi, an overwintering region for Puccinia striiformis f.sp. tritici in China. Canadian Journal of Plant Pathology, 38: 317-324. Go to original source...
  45. Zahid G., Begum S., Almani S., Khattak S.H., Soothar R.K., Soomro S.A. (2022). Utilization of SSR markers to identify slow rusting genes in spring wheat (Triticum aestivum L.). Pakistan Journal of Agricultural Research, 35: 85-92. Go to original source...
  46. Zeng Q., Han D.J., Wang Q.L., Yuan F.P., Wu J.H., Zhang L., Wang X.J., Huang L.L., Chen X.M., Kang Z.S. (2014): Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica, 196: 271-284. Go to original source...
  47. Zhang N., Liao Z., Wu S., Nobis M.P., Wang J., Wu N. (2022): Impact of climate change on wheat security through an alternate host of stripe rust. Food and Energy Security, 11: e356. Go to original source...
  48. Zheng S., Li Y., Lu L., Liu Z., Zhang C., Ao D., Li L., Zhang C., Liu R., Luo C. (2017): Evaluating the contribution of Yr genes to stripe rust resistance breeding through marker-assisted detection in wheat. Euphytica, 213: 1-16. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.