Skip to main content
Log in

Carnitine and Physical Exercise

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Carnitine plays a central role in fatty acid (FA) metabolism. It transports long-chain fatty acids into mitochondria for β-oxidation. Carnitine also modulates the metabolism of coenzyme-A (CoA).

It is not surprising that the use of supplementary carnitine to improve physical performance has become widespread in recent years, although there is no unequivocal support to this practice. However, critical reflections and current scientific-based knowledge are important because the implications of reduced or increased carnitine concentrations in vivo are not thoroughly understood.

Several rationales have been forwarded in support of the potential ergogenic effects of oral carnitine supplementation. However the following arguments derived from established scientific observations may be forwarded: (i) carnitine supplementation neither enhances FA oxidation in vivo nor spares glycogen or postpones fatigue during exercise. Carnitine supplementation does not unequivocally improve performance of athletes; (ii) carnitine supplementation does not reduce body fat or help to lose weight; (iii) in vivo pyruvate dehydrogenase complex (PDC) is fully active already after a few seconds of intense exercise. Carnitine supplementation induces no further activation of PDC in vivo; (iv) despite an increased acetyl-CoA/free CoA ratio, PDC is not depressed during exercise in vivo and therefore supplementary carnitine has no effect on lactate accumulation; (v) carnitine supplementation per se does not affect the maximal oxygen uptake (V̇O2max); (vi) during exercise there is a redistribution of free carnitine and acylcarnitines in the muscle but there is no loss of total carnitine. Athletes are not at risk for carnitine deficiency and do not have an increased need for carnitine.

Although there are some theoretical points favouring potential ergogenic effects of carnitine supplementation, there is currently no scientific basis for healthy individuals or athletes to use carnitine supplementation to improve exercise performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bremer J. Carnitine — metabolism and functions. Physiol Rev 1983; 63: 1420–80

    CAS  PubMed  Google Scholar 

  2. Goa KL, Brogden RN. L-Carnitine: a preliminary review of its pharmacokinetics and its therapeutic use in ischaemic cardiac disease and primary and secondary carnitine deficiencies in relationship to its role in fatty acid metabolism. Drugs 1987; 34: 1–24

    Article  CAS  PubMed  Google Scholar 

  3. Cerretelli P, Marconi C. L-carnitine supplementation in humans: the effects on physical performance. Int J Sports Med 1990; 11: 1–14

    Article  CAS  PubMed  Google Scholar 

  4. Wagenmakers AJM. L-Carnitine supplementation and performance in man. Med Sports Sci 1991; 32: 110–27

    Article  Google Scholar 

  5. Brass EP, Hiatt WR. Carnitine metabolism during exercise. Life Sci 1994; 54: 1383–93

    Article  CAS  PubMed  Google Scholar 

  6. Gulewitsch W, Krimberg R. Zur Kenntnis der Extraktivstoffe der Muskeln. II. Mitteilung. Über das Carnitin. Hoppe Seylers Z Physiol Chem 1905; 45: 326–30

    Article  CAS  Google Scholar 

  7. Kutscher F. Über Liebig’s Fleischextrakt. Mitteilung I. Z Untersuch Nahr Genussm 1905; 10: 528–37

    Article  Google Scholar 

  8. Tomita M, Sendju Y. Über die Oxyaminoverbindungen, welche die Biuretreaktion zeigen. III. Spaltung der γ-Amino-β-oxy-buttersäure in die optisch-aktiven Komponenten. Hoppe Seylers Z Physiol Chem 1927; 169: 263–77

    Article  CAS  Google Scholar 

  9. Kaneko T, Yoshida R. On the absolute configuration of L-carnitine (vitamin Bt). Bull Chem Soc Jpn 1962; 35: 1153–5

    Article  CAS  Google Scholar 

  10. Fraenkel G, Blewett M, Coles M. BT, a new vitamin of the B-group and its relation to the folic acid group, and other anti-anaemia factors. Nature 1948; 161: 981–3

    Article  CAS  PubMed  Google Scholar 

  11. Carter HE, Bhattacharyya PK, Weidman KR, et al. Chemical studies on vitamin Bt- Isolation and characterization as carnitine. Arch Biochem Biophys 1952; 38: 405–16

    Article  CAS  PubMed  Google Scholar 

  12. Fritz I. The effects of muscle extracts on the oxidation of palmitic acid by liver slices and homogenates. Acta Physiol Scand 1955; 34: 367–85

    Article  CAS  PubMed  Google Scholar 

  13. Friedmann S, Fraenkel G. Reversible enzymatic acetylation of carnitine. Arch Biochem Biophys 1955; 59: 491–501

    Article  Google Scholar 

  14. Fritz IB, Yue KTN. Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. J Lipid Res 1963; 4: 279–88

    CAS  PubMed  Google Scholar 

  15. Bremer J. Carnitine in intermediary metabolism. Reversible acetylation of carnitine by mitochondria. J Biol Chem 1962; 237: 2228–31

    CAS  PubMed  Google Scholar 

  16. Fritz IB, Kaplan E, Yue KTN. Specifity of carnitine action on fatty acid oxidation by heart muscle. Am J Physiol 1962; 202: 117–21

    CAS  PubMed  Google Scholar 

  17. Cederblad G, Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta 1972; 37: 235–43

    Article  CAS  PubMed  Google Scholar 

  18. Engel AG, Angelini C. Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 1973; 179: 899–902

    Article  CAS  PubMed  Google Scholar 

  19. Engel AG, Rebouche CJ. Carnitine metabolism and inborn errors. J Inherit Metab Dis 1984; 7(1 Suppl.): 38–43

    Article  CAS  PubMed  Google Scholar 

  20. Stanley CA. New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency. Adv Pediatr 1987; 34: 59–88

    CAS  PubMed  Google Scholar 

  21. Felig P, Wahren J. Fuel homeostasis in exercise. N Engl J Med 1975; 293: 1078–84

    Article  CAS  PubMed  Google Scholar 

  22. Cederblad G, Bylund A-C, Holm J, et al. Carnitine concentration in relation to enzyme activities and substrate utilization in human skeletal muscles. Scand J Clin Lab Invest 1976; 36: 547–52

    Article  CAS  PubMed  Google Scholar 

  23. Carnitine deficiency [editorial]. Lancet 1990; 335: 631–3

    Google Scholar 

  24. McGarry JD, Robles-Valdes C, Foster DW. Role of carnitine in hepatic ketogenesis. Proc Natl Acad Sci USA 1975; 72: 4385–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siliprandi N. Carnitine in physical exercise. In: Benzi G, Packer L, Siliprandi N, editors. Biochemical aspects of physical exercise. Amsterdam: Elsevier Science Publishers, 1986: 197–206

    Google Scholar 

  26. Rebouche CJ. Carnitine function an requirements during the life cycle. FASEB J 1992; 6: 3379–86

    CAS  PubMed  Google Scholar 

  27. Stumpf DA, Parker WD, Angelini C. Carnitine deficiency, organic acidemias, and Reye’s syndrome. Neurology 1985; 35: 1041–5

    Article  CAS  PubMed  Google Scholar 

  28. Constantin-Teodosiu D. Regulation of pyruvate dehydrogenase complex activity and acetyl group formation in skeletal muscle during exercise [dissertation]. Huddinge: Huddinge University Hospital, 1992

    Google Scholar 

  29. Hülsmann WC, Siliprandi D, Ciman M, et al. Effect of carnitine on the oxidation of α-oxoglutarate to succinate in the presence of acetoacetate or pyruvate. Biochim Biophys Acta 1964; 93: 166–8

    Article  Google Scholar 

  30. Uziel G, Garavaglia B, Di Donato S. Carnitine stimulation of pyruvate dehydrogenase complex (PDHC) in isolated human skeletal muscle mitochondria. Muscle Nerve 1988; 11: 720–4

    Article  CAS  PubMed  Google Scholar 

  31. Siliprandi N, Sartorelli L, Ciman M, et al. Carnitine: metabolism and clinical chemistry. Clin Chim Acta 1989; 183: 3–12

    Article  CAS  PubMed  Google Scholar 

  32. Lindstedt G. Hydroxylation of γ-butyrobetaine to carnitine in rat liver. Biochemistry 1967; 6: 1271–82

    Article  CAS  PubMed  Google Scholar 

  33. Lindstedt G, Lindstedt S. Cofactor requirements of γ-butyrobetaine hydroxylase from rat liver. J Biol Chem 1970; 245: 4178–86

    CAS  PubMed  Google Scholar 

  34. Cederblad G, Holm J, Lindstedt G et al. γ-Butyrobetaine hydroxylase activity in human and ovine liver and skeletal muscle tissue. FEBS Lett 1979; 98: 57–60

    Article  CAS  PubMed  Google Scholar 

  35. Rebouche CJ, Engel AG. Tissue distribution of carnitine biosynthetic enzymes in man. Biochim Biophys Acta 1980; 630: 22–9

    Article  CAS  PubMed  Google Scholar 

  36. Heinonen OJ. Carnitine: effect on palmitate oxidation, exercise capacity, and nitrogen balance. An experimental study with special reference to carnitine depletion and supplementation [dissertation]. Turku: University of Turku, 1992.

    Google Scholar 

  37. Rebouche CJ, Engel AG. Carnitine metabolism and deficiency syndromes. Mayo Clin Proc 1983; 58: 533–40

    CAS  PubMed  Google Scholar 

  38. Frohlich J, Seccombe DW, Hahn P, et al. Effect of fasting on free and esterified carnitine levels in human serum and urine: correlation with serum levels of free fatty acids and β-hydroxybutyrate. Metabolism 1978; 27: 555–61

    Article  CAS  PubMed  Google Scholar 

  39. Paulson DJ, Shug AL. Tissue specific depletion of L-carnitine in rat heart and skeletal muscle by D-carnitine. Life Sci 1981; 28: 2931–8

    Article  CAS  PubMed  Google Scholar 

  40. Negrao CE, Ji LL, Schauer JE, et al. Carnitine supplementation and depletion: tissue carnitines and enzymes in fatty acid oxidation. J Appl Physiol 1987; 63: 315–21

    CAS  PubMed  Google Scholar 

  41. Keith RE. Symptoms of carnitinelike deficiency in a trained runner taking DL-carnitine supplements. JAMA 1986; 255: 1137

    Article  CAS  PubMed  Google Scholar 

  42. Lennon DLF, Stratman FW, Shrago E, et al. Effects of acute moderate-intensity exercise on carnitine metabolism in men and women. J Appl Physiol 1983; 55: 489–95

    CAS  PubMed  Google Scholar 

  43. Carlin JI, Reddan WG, Sanjak M et al. Carnitine metabolism during prolonged exercise and recovery in humans. J Appl Physiol 1986; 61: 1275–8

    CAS  PubMed  Google Scholar 

  44. Beattie MA, Winder WW. Mechanism of training-induced attenuation of postexercise ketosis. Am J Physiol 1984; 247: R780–5

    CAS  PubMed  Google Scholar 

  45. Beattie MA, Winder WW. Attenuation of postexercise ketosis in fasted endurance-trained rats. Am J Physiol 1985; 248: R63–7

    CAS  PubMed  Google Scholar 

  46. Angelini C, Vergani L, Costa L, et al. Use of carnitine in exercise physiology. Adv Clin Enzymol 1986; 4: 103–10

    CAS  Google Scholar 

  47. Foster CVL, Harris RC. Formation of acetylcarnitine in muscle of horse during high intensity exercise. Eur J Appl Physiol 1987; 56: 639–42

    Article  CAS  Google Scholar 

  48. Harris RC, Foster CVL, Hultman E. Acetylcarnitine formation during intense muscular contraction in humans. J Appl Physiol 1987; 63: 440–2

    CAS  PubMed  Google Scholar 

  49. Soop M, Björkman O, Cederblad G, et al. Influence of carnitine supplementation on muscle substrate and carnitine metabolism during exercise. J Appl Physiol 1988; 64: 2394–9

    CAS  PubMed  Google Scholar 

  50. Hiatt WR, Regensteiner JG, Wolfel EE, et al. Carnitine and acylcarnitine metabolism during exercise in humans: dependence on skeletal muscle metabolic state. J Clin Invest 1989; 84: 1167–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Janssen GME, Scholte HR, Vaandrager-Verduin MHM, et al. Muscle carnitine level in endurance training and running a marathon. Int J Sports Med 1989; 10(3 Suppl.): S153–5

    Article  PubMed  Google Scholar 

  52. Sahlin K. Muscle carnitine metabolism during incremental dynamic exercise in humans. Acta Physiol Scand 1990; 138: 259–62

    Article  CAS  PubMed  Google Scholar 

  53. Arenas J, Ricoy JR, Encinas AR, et al. Carnitine in muscle, serum, and urine of nonprofessional athletes: effects of physical exercise, training, and L-carnitine administration. Muscle Nerve 1991; 14: 598–604

    Article  CAS  PubMed  Google Scholar 

  54. Decombaz J, Gmuender B, Sierro G, et al. Muscle carnitine after strenuous endurance exercise. J Appl Physiol 1992; 72: 423–7

    CAS  PubMed  Google Scholar 

  55. Spriet LL, MacLean DA, Dyck DJ, et al. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am J Physiol 1992; 262: E891–8

    CAS  PubMed  Google Scholar 

  56. Vukovich MD, Costill DL, Fink WJ. Carnitine supplementation: effect on muscle carnitine and glycogen content during exercise. Med Sci Sports Exerc 1994; 26: 1122–9

    Article  CAS  PubMed  Google Scholar 

  57. Constantin-Teodosiu C, Carlin JI, Cederblad G, et al. Acetyl group accumulation and pyruvate dehydrogenase activity in human muscle during incremental exercise. Acta Physiol Scand 1991; 143: 367–72

    Article  CAS  PubMed  Google Scholar 

  58. Constantin-Teodosiu C, Cederblad G, Hultman E. PDC activity and acetyl group accumulation in skeletal muscle during prolonged exercise. J Appl Physiol 1992; 73: 2403–7

    CAS  PubMed  Google Scholar 

  59. Constantin-Teodosiu C, Cederblad G, Hultman E. PDC activity and acetyl group accumulation in skeletal muscle during isometric contraction. J Appl Physiol 1993; 74: 1712–8

    CAS  PubMed  Google Scholar 

  60. Pearson DJ, Tubbs PK. Carnitine and derivates in rat tissues. Biochem J 1967; 105: 953–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Childress CC, Sacktor B, Traynor DR. Function of carnitine in the fatty acid oxidase-deficient insect flight muscle. J Biol Chem 1966; 242: 754–60

    Google Scholar 

  62. Alkonyi I, Kerner J, Sandor A. The possible role of carnitine and carnitine acetyltransferase in the contracting frog skeletal muscle. FEBS Lett 1975; 52: 265–8

    Article  CAS  PubMed  Google Scholar 

  63. Carter AL, Lennon DLF, Stratman FW. Increased acetyl carnitine in rat skeletal muscle as a result of high-intensity short-duration exercise: implications in the control of pyruvate dehydrogenase activity. FEBS Lett 1981; 126: 21–4

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Heigenhauser GJ, Wood CM. Integrated responses to exhaustive exercise and recovery in rainbow trout white muscle: acid-base, phosphagen, carbohydrate, lipid, ammonia, fluid volume and electrolyte metabolism. J Exp Biol 1994; 195: 227–58

    CAS  PubMed  Google Scholar 

  65. Lysiak W, Lilly K, DiLisa F, et al. Quantitation of the effect of L-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria. J Biol Chem 1988; 263: 1151–6

    CAS  PubMed  Google Scholar 

  66. Carlin JI, Harris RC, Cederblad G, et al. Association between muscle acetyl-CoA and acetylcarnitine levels in the exercising horse. J Appl Physiol 1990; 69: 42–5

    CAS  PubMed  Google Scholar 

  67. Harris RC, Foster CVL. Changes in muscle free carnitine and acetylcarnitine with increasing work intensity in the thoroughbred horse. Eur J Appl Physiol 1990; 60: 81–5

    Article  CAS  Google Scholar 

  68. Marconi C, Sassi G, Carpinelli A, et al. Effects of L-carnitine loading on the aerobic and anaerobic performance of endurance athletes. Eur J Appl Physiol 1985; 54: 131–5

    Article  CAS  Google Scholar 

  69. Cooper MB, Jones DA, Edwards RHT, et al. The effect of marathon running on carnitine metabolism and on some aspects of muscle mitochondrial activities and antioxidant mechanisms. J Sports Sci 1986; 4: 79–87

    Article  CAS  PubMed  Google Scholar 

  70. Gorostiaga EM, Maurer CA, Eclache JP. Decrease in respiratory quotient during exercise following L-carnitine supplementation. Int J Sports Med 1989; 10: 169–74

    Article  CAS  PubMed  Google Scholar 

  71. Oyono-Enguelle S, Freund H, Ott C, et al. Prolonged submaximal exercise and L-carnitine in humans. Eur J Appl Physiol 1988; 58: 53–61

    Article  CAS  Google Scholar 

  72. Siliprandi N, Di Lisa F, Pieralisi G, et al. Metabolic changes induced by maximal exercise in human subjects following L-carnitine administration. Biochim Biophys Acta 1990; 1034: 17–21

    Article  CAS  PubMed  Google Scholar 

  73. Arenas J, Ricoy JR, Encinas AR, et al. Carnitine in muscle, serum, and urine of nonprofessional athletes: effects of physical exercise, training, and L-carnitine administration. Muscle Nerve 1991; 14: 598–604

    Article  CAS  PubMed  Google Scholar 

  74. Trappe SW, Costill DL, Goodpaster B, et al. The effects of L-carnitine supplementation on performance during interval swimming. Int J Sports Med 1994; 15: 181–5

    Article  CAS  PubMed  Google Scholar 

  75. Friolet R, Hoppeler H, Krähenbühl S. Relationship between the coenzyme A and the carnitine pools in human skeletal muscle at rest and after exhaustive exercise under normoxic and acutely hypoxic conditions. J Clin Invest 1994; 94: 1490–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Arenas J, Huertas R, Campos Y, et al. Effects of L-carnitine on the pyruvate dehydrogenase complex and carnitine palmitoyl transferase activities in muscle of endurance athletes. FEBS Lett 1994; 341: 91–3

    Article  CAS  PubMed  Google Scholar 

  77. Huertas R, Campos Y, Diaz E, et al. Respiratory chain enzymes in muscle of endurance athletes: effect of L-carnitine. Biochem Biophys Res Commun 1992; 188: 102–7

    Article  CAS  PubMed  Google Scholar 

  78. Fröberg SO, Östman I, Sjöstrand NO. Effect of training on esterified fatty acids and carnitine in muscle and on lipolysis in adipose tissue in vitro. Acta Physiol Scand 1972; 86: 166–74

    Article  PubMed  Google Scholar 

  79. Askew EW, Hecker AL, Wise WR. Dietary carnitine and adipose tissue turnover rate in exercise trained rats. J Nutr 1977; 107: 132–42

    CAS  PubMed  Google Scholar 

  80. Spriet LL, Dyck DJ, Cederblad G, et al. Effects of fat availability on acetyl-CoA and acetylcarnitine metabolism in rat skeletal muscle. Am J Physiol 1992; 263: C653–9

    CAS  PubMed  Google Scholar 

  81. Ciman M, Rizzoli V, Siliprandi N. Effect of physical training on carnitine concentration in liver, heart and gastrocnemius muscle of rat. Int J Vitam Nutr Res 1980; 50: 40–3

    CAS  PubMed  Google Scholar 

  82. Ji LL, Miller RH, Nagle FJ, et al. Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of branched-chain amino acids. Metabolism 1987; 36: 748–52

    Article  CAS  PubMed  Google Scholar 

  83. Lennon DLF, Mance MJ. Interorgan cooperativity in carnitine metabolism in the trained state. J Appl Physiol 1986; 60: 1659–64

    CAS  PubMed  Google Scholar 

  84. Sanguq M, Paulson DJ, Frezosi R, et al. Effects of training on maximum oxygen consumption, mitochondrial respiration, cardiac performance and carnitine tissue levels. Fed Proc 1984; 43: 293

    Google Scholar 

  85. Foster CV, Harris RC. Total earnitine content of the middle gluteal muscle of thoroughbred horses: normal values, variability and effect of acute exercise. Equine Vet J 1992; 24: 52–7

    Article  CAS  PubMed  Google Scholar 

  86. Borum P. Plasma carnitine compartment and red blood cell carnitine compartment of healthy adults. Am J Clin Nutr 1987; 46: 437–41

    CAS  PubMed  Google Scholar 

  87. Suzuki M, Kanaya M, Muramatsu S, et al. Effects of carnitine administration, fasting, and exercise on urinary carnitine excretion in man. J Nutr Sci Vitaminol 1976; 22: 169–74

    Article  CAS  Google Scholar 

  88. Cederblad G, Lindstedt S. Excretion of L-carnitine in man. Clin Chim Acta 1971; 33: 117–23

    Article  CAS  PubMed  Google Scholar 

  89. Morgan HE, Cobb LA, Short FA, et al. Effects of long-term exercise on human muscle mitochondria. In: Pernow B, Saltin B, editors. Muscle metabolism during exercise. New York: Plenum, 1971: 87–95

    Chapter  Google Scholar 

  90. Bylund A-C, Bjurö T, Cederblad G, et al. Physical training in man: skeletal muscle metabolism in relation to muscle morphology and running ability. Eur J Appl Physiol 1977; 36: 151–69

    Article  CAS  Google Scholar 

  91. Reichman H. Disorders of lipid metabolism in muscle and their exercise implication. In: Taylor W, Gollnick PD, Green HJ, et al., editors. Biochemistry of exercise VII A. Champaign (IL): Human Kinetics Books, 1990: 243–9

    Google Scholar 

  92. Cederblad G, Lindstedt S, Lundholm K. Concentration of carnitine in human muscle tissue. Clin Chim Acta 1974; 53: 311–21

    Article  CAS  PubMed  Google Scholar 

  93. Harper P, Wadström C, Cederblad G. Carnitine measurements in liver, muscle tissue, and blood in normal subjects. Clin Chem 1993; 39: 592–9

    CAS  PubMed  Google Scholar 

  94. Greig C, Finch KM, Jones DA, et al. The effect of oral supplementation with L-carnitine on maximum and submaximum exercise capacity. Eur J Appl Physiol 1987; 56: 457–60

    Article  CAS  Google Scholar 

  95. Vecchiet L, Di Lisa F, Pieralisi G, et al. Influence of L-carnitine administration on maximal physical exercise. Eur J Appl Physiol 1990; 61: 486–90

    Article  CAS  Google Scholar 

  96. Hultman E, Cederblad G, Harper P. Carnitine administration as a tool of modify energy metabolism during exercise. Eur J Appl Physiol 1991; 62: 450

    Article  CAS  Google Scholar 

  97. Siliprandi N, Di Lisa F, Vecchiet L. Effect of exogenous carnitine on muscle metabolism: a reply to Hultman et al. (1991) [letter]. Eur J Appl Physiol 1992; 64: 278

    Article  CAS  Google Scholar 

  98. Natali A, Santoro D, Brandi LS, et al. Effects of acute hypercarnitinemia during increased fatty substrate oxidation in man. Metabolism 1993; 42: 594–600

    Article  CAS  PubMed  Google Scholar 

  99. Wyss V, Ganzit GP, Rienzi A. Effects of L-carnitine administration on V̇O2max and the aerobic-anaerobic threshold in normoxia and acute hypoxia. Eur J Appl Physiol 1990; 60: 1–6

    Article  CAS  Google Scholar 

  100. Decombaz J, Deriaz O, Acheson K, et al. Effect of L-carnitine on submaximal exercise metabolism after depletion of muscle glycogen. Med Sci Sports Exerc 1993; 25: 733–40

    Article  CAS  PubMed  Google Scholar 

  101. Decombaz JE, Reffet B, Bloemhard Y. Effect of L-carnitine and stimulated lipolysis on muscle substrates in the exercising rat. Experientia 1990; 46: 457–8

    Article  CAS  PubMed  Google Scholar 

  102. Heinonen OJ, Takala J, Kvist M. Effect of food restriction on tissue carnitine concentration in rats. Clin Nutr 1991; 10: 85–90

    Article  CAS  PubMed  Google Scholar 

  103. Heinonen OJ, Takala J. Experimental carnitine depletion in rats. Clin Nutr 1991; 10: 91–6

    Article  CAS  PubMed  Google Scholar 

  104. Heinonen OJ, Takala J, Kvist MH. Effect of earnitine loading on long-chain fatty acid oxidation, maximal exercise capacity, and nitrogen balance. Eur J Appl Physiol 1992; 65: 13–7

    Article  CAS  Google Scholar 

  105. Heinonen OJ, Takala J. Moderate carnitine depletion and long-chain fatty acid oxidation, exercise capacity, and nitrogen balance in the rat. Pediatr Res 1994; 36: 288–92

    Article  CAS  PubMed  Google Scholar 

  106. Askew EW, Dohm GL, Weiser PC, et al. Supplemental dietary carnitine and lipid metabolism in exercising rats. Nutr Metab 1980; 24: 32–42

    Article  CAS  PubMed  Google Scholar 

  107. Long CS, Haller RG, Foster DW, et al. Kinetics of carnitinedependent fatty acid oxidation: implications for human carnitine deficiency. Neurology 1982; 32: 663–6

    Article  CAS  PubMed  Google Scholar 

  108. Rebouche CJ, Paulson DJ. Carnitine metabolism and function in humans. Ann Rev Nutr 1986; 6: 41–66

    Article  CAS  Google Scholar 

  109. Dubelaar M-L, Lucas CMHB, Hülsmann WC. Acute effect of L-carnitine on skeletal muscle force tests in dogs. Am J Physiol 1991; 260: E189–93

    CAS  PubMed  Google Scholar 

  110. Broderick TL, Quinney HA, Lopaschuk GD. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. J Biol Chem 1992; 267: 3758–63

    CAS  PubMed  Google Scholar 

  111. Brass EP, Scarrow AM, Ruff LJ, et al. Carnitine delays rat skeletal muscle fatigue in vitro. J Appl Physiol 1993; 75: 1595–600

    CAS  PubMed  Google Scholar 

  112. Brass EP, Hoppel CL, Hiatt WR. Effect of intravenous L-carnitine on carnitine homeostasis and fuel metabolism during exercise in humans. Clin Pharmacol Ther 1994; 55: 681–92

    Article  CAS  PubMed  Google Scholar 

  113. Grunewald KK, Bailey RS. Commercially marketed supplements for bodybuilding athletes. Sports Med 1993; 15: 90–103

    Article  CAS  PubMed  Google Scholar 

  114. Williams MH. Ergogenic and ergolytic substances. Med Sci Sports Exerc 1992; 24 Suppl.: S344–8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olli J. Heinonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinonen, O.J. Carnitine and Physical Exercise. Sports Med 22, 109–132 (1996). https://doi.org/10.2165/00007256-199622020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199622020-00005

Keywords