Abstract
We show that Grüss-type probabilistic inequalities for covariances can be considerably sharpened when the underlying random variables are quadrant dependent in expectation (QDE). The herein established covariance bounds not only sharpen the classical Grüss inequality but also improve upon recently derived Grüss-type bounds under the assumption of quadrant dependency (QD), which is stronger than QDE. We illustrate our general results with examples based on specially devised bivariate distributions that are QDE but not QD. Such results play important roles in decision making under uncertainty, and particularly in areas such as economics, finance, and insurance.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Balakrishnan N., Lai C.-D., Continuous Bivariate Distributions, 2nd ed., Springer, New York, 2009
Broll U., Egozcue M., Wong W.-K., Zitikis R., Prospect theory, indifference curves, and hedging risks, Appl. Math. Res. Express. AMRX, 2010, 2, 142–153
Cerone P., Dragomir S.S., Mathematical Inequalities, CRC Press, Boca Raton, 2011
Cuadras C.M., On the covariance between functions, J. Multivariate Anal., 2002, 81(1), 19–27
Denuit M., Dhaene J., Goovaerts M., Kaas R., Actuarial Theory for Dependent Risks: Measures, Orders and Models, John Wiley & Sons, Chichester, 2005
Dudley D.M., Norvaiša R., Differentiability of Six Operators on Nonsmooth Functions and p-Variation, Lecture Notes in Math., 1703, Springer, New York, 1999
Dudley D.M., Norvaiša R., Concrete Functional Calculus, Springer Monogr. Math., Springer, New York, 2011
Egozcue M., Fuentes Garcia L., Wong W.-K., On some covariance inequalities for monotonic and non-monotonic functions, JIPAM. J. Inequal. Pure Appl. Math., 2009, 10(3), #75
Egozcue M., Fuentes García L., Wong W.-K., Zitikis R., Grüss-type bounds for the covariance of transformed random variables, J. Inequal. Appl., 2010, ID 619423
Furman E., Zitikis R., Weighted risk capital allocations, Insurance Math. Econom., 2008, 43(2), 263–269
Furman E., Zitikis R., General Stein-type covariance decompositions with applications to insurance and finance, Astin Bull., 2010, 40(1), 369–375
Kowalczyk T., Pleszczynska E., Monotonic dependence functions of bivariate distributions, Ann. Statist., 1977, 5(6), 1221–1227
Lehmann E.L., Some concepts of dependence, Ann. Math. Statist., 1966, 37(5), 1137–1153
Matuła P., On some inequalities for positively and negatively dependent random variables with applications, Publ. Math. Debrecen, 2003, 63(4), 511–522
Matuła P., A note on some inequalities for certain classes of positively dependent random variables, Probab. Math. Statist., 2004, 24(1), 17–26
Matuła P., Ziemba M., Generalized covariance inequalities. Cent. Eur. J. Math., 2011, 9(2), 281–293
McNeil A.J., Frey R., Embrechts P., Quantitative Risk Management, Princet. Ser. Finance, Princeton University Press, Princeton, 2005
Niezgoda M., New bounds for moments of continuous random variables, Comput. Math. Appl., 2010, 60(12), 3130–3138
Wright R., Expectation dependence of random variables, with an application in portfolio theory, Theory and Decision, 1987, 22(2), 111–124
Zitikis R., Grüss’s inequality, its probabilistics interpretation, and a sharper bound, J. Math. Inequal., 2009, 3(1), 15–20
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Egozcue, M., García, L.F., Wong, WK. et al. Grüss-type bounds for covariances and the notion of quadrant dependence in expectation. centr.eur.j.math. 9, 1288–1297 (2011). https://doi.org/10.2478/s11533-011-0088-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11533-011-0088-x
MSC
Keywords
Profiles
- Luis Fuentes García View author profile