Skip to main content
Log in

Grüss-type bounds for covariances and the notion of quadrant dependence in expectation

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

We show that Grüss-type probabilistic inequalities for covariances can be considerably sharpened when the underlying random variables are quadrant dependent in expectation (QDE). The herein established covariance bounds not only sharpen the classical Grüss inequality but also improve upon recently derived Grüss-type bounds under the assumption of quadrant dependency (QD), which is stronger than QDE. We illustrate our general results with examples based on specially devised bivariate distributions that are QDE but not QD. Such results play important roles in decision making under uncertainty, and particularly in areas such as economics, finance, and insurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Balakrishnan N., Lai C.-D., Continuous Bivariate Distributions, 2nd ed., Springer, New York, 2009

    MATH  Google Scholar 

  2. Broll U., Egozcue M., Wong W.-K., Zitikis R., Prospect theory, indifference curves, and hedging risks, Appl. Math. Res. Express. AMRX, 2010, 2, 142–153

    MathSciNet  Google Scholar 

  3. Cerone P., Dragomir S.S., Mathematical Inequalities, CRC Press, Boca Raton, 2011

    MATH  Google Scholar 

  4. Cuadras C.M., On the covariance between functions, J. Multivariate Anal., 2002, 81(1), 19–27

    Article  MathSciNet  MATH  Google Scholar 

  5. Denuit M., Dhaene J., Goovaerts M., Kaas R., Actuarial Theory for Dependent Risks: Measures, Orders and Models, John Wiley & Sons, Chichester, 2005

    Book  Google Scholar 

  6. Dudley D.M., Norvaiša R., Differentiability of Six Operators on Nonsmooth Functions and p-Variation, Lecture Notes in Math., 1703, Springer, New York, 1999

    Google Scholar 

  7. Dudley D.M., Norvaiša R., Concrete Functional Calculus, Springer Monogr. Math., Springer, New York, 2011

    Google Scholar 

  8. Egozcue M., Fuentes Garcia L., Wong W.-K., On some covariance inequalities for monotonic and non-monotonic functions, JIPAM. J. Inequal. Pure Appl. Math., 2009, 10(3), #75

  9. Egozcue M., Fuentes García L., Wong W.-K., Zitikis R., Grüss-type bounds for the covariance of transformed random variables, J. Inequal. Appl., 2010, ID 619423

  10. Furman E., Zitikis R., Weighted risk capital allocations, Insurance Math. Econom., 2008, 43(2), 263–269

    Article  MathSciNet  MATH  Google Scholar 

  11. Furman E., Zitikis R., General Stein-type covariance decompositions with applications to insurance and finance, Astin Bull., 2010, 40(1), 369–375

    Article  MATH  Google Scholar 

  12. Kowalczyk T., Pleszczynska E., Monotonic dependence functions of bivariate distributions, Ann. Statist., 1977, 5(6), 1221–1227

    Article  MathSciNet  MATH  Google Scholar 

  13. Lehmann E.L., Some concepts of dependence, Ann. Math. Statist., 1966, 37(5), 1137–1153

    Article  MathSciNet  MATH  Google Scholar 

  14. Matuła P., On some inequalities for positively and negatively dependent random variables with applications, Publ. Math. Debrecen, 2003, 63(4), 511–522

    MathSciNet  MATH  Google Scholar 

  15. Matuła P., A note on some inequalities for certain classes of positively dependent random variables, Probab. Math. Statist., 2004, 24(1), 17–26

    MathSciNet  MATH  Google Scholar 

  16. Matuła P., Ziemba M., Generalized covariance inequalities. Cent. Eur. J. Math., 2011, 9(2), 281–293

    Article  MathSciNet  MATH  Google Scholar 

  17. McNeil A.J., Frey R., Embrechts P., Quantitative Risk Management, Princet. Ser. Finance, Princeton University Press, Princeton, 2005

    Google Scholar 

  18. Niezgoda M., New bounds for moments of continuous random variables, Comput. Math. Appl., 2010, 60(12), 3130–3138

    Article  MathSciNet  MATH  Google Scholar 

  19. Wright R., Expectation dependence of random variables, with an application in portfolio theory, Theory and Decision, 1987, 22(2), 111–124

    Article  MathSciNet  MATH  Google Scholar 

  20. Zitikis R., Grüss’s inequality, its probabilistics interpretation, and a sharper bound, J. Math. Inequal., 2009, 3(1), 15–20

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Egozcue.

About this article

Cite this article

Egozcue, M., García, L.F., Wong, WK. et al. Grüss-type bounds for covariances and the notion of quadrant dependence in expectation. centr.eur.j.math. 9, 1288–1297 (2011). https://doi.org/10.2478/s11533-011-0088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-011-0088-x

MSC

Keywords

Profiles

  1. Luis Fuentes García