Novi Sad J. Math. Vol. 52, No. 2, 2022, 111-126.
https://doi.org/10.30755/NSJOM.11897

Existence and multiplicity results for critical and subcritical $p$-fractional elliptic equations via Nehari manifold method

Kamel Akrout1, Corresponding author

kamel.akrout@univ-tebessa.dz

Mounira Azouzi2

mouniramath2020@gmail.com

Hasna Yousfi1

madahasna@gmail.com


Abstract:


Key words and phrases: fractional operator; Nehari manifold; fibering method

AMS Mathematics Subject Classfication (2010): 35P30; 35J35; 35J60

Document type: article


1 LAMIS Laboratory, Larbie Tebessi University, Tebessa, Algeria
2 Operator theory, PDE and Applications, Echahid Hamma Lakhdar University, El Oued, Algeria
Corresponding author Corresponding author



References:

[1]Abdellaoui, B., Colorado, E., and Peral, I. Effect of the boundary conditions in the behavior of the optimal constant of some Caffarelli-Kohn-Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems. Adv. Differential Equations 11, 6 (2006), 667–720.  MathSciNet
[2]Alberti, G., Bouchitté, G., and Seppecher, P. Phase transition with the line-tension effect. Arch. Rational Mech. Anal. 144, 1 (1998), 1–46.  MathSciNet  DOI
[3]Ambrosetti, A., Brezis, H., and Cerami, G. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 2 (1994), 519–543.  MathSciNet  DOI
[4]Barrios, B., Colorado, E., Servadei, R., and Soria, F. A critical fractional equation with concave-convex power nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 4 (2015), 875–900.  MathSciNet  DOI
[5]Bates, P. W. On some nonlocal evolution equations arising in materials science. In Nonlinear dynamics and evolution equations, vol. 48 of Fields Inst. Commun. Amer. Math. Soc., Providence, RI, 2006, pp. 13–52.  MathSciNet
[6]Biler, P., Karch, G., and Woyczyński, W. A. Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 5 (2001), 613–637.  MathSciNet  DOI
[7]Boccardo, L., Escobedo, M., and Peral, I. A Dirichlet problem involving critical exponents. Nonlinear Anal. 24, 11 (1995), 1639–1648.  MathSciNet  DOI
[8]Brezis, H. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree]. Masson, Paris, 1983. Théorie et applications. [Theory and applications].  MathSciNet
[9]Brown, K. J., and Wu, T.-F. A fibering map approach to a semilinear elliptic boundary value problem. Electron. J. Differential Equations (2007), No. 69, 9.  MathSciNet
[10]Brown, K. J., and Zhang, Y. The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Differential Equations 193, 2 (2003), 481–499.  MathSciNet  DOI
[11]Caffarelli, L., and Silvestre, L. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, 7-9 (2007), 1245–1260.  MathSciNet  DOI
[12]Charro, F., Colorado, E., and Peral, I. Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave-convex right-hand side. J. Differential Equations 246, 11 (2009), 4221–4248.  MathSciNet  DOI
[13]Colorado, E., and Peral, I. Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions. J. Funct. Anal. 199, 2 (2003), 468–507.  MathSciNet  DOI
[14]Craig, W., and Nicholls, D. P. Travelling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal. 32, 2 (2000), 323–359.  MathSciNet  DOI
[15]Craig, W., and Nicholls, D. P. Travelling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal. 32, 2 (2000), 323–359.  MathSciNet  DOI
[16]Drábek, P., and Pohozaev, S. I. Positive solutions for the p-Laplacian: application of the fibering method. Proc. Roy. Soc. Edinburgh Sect. A 127, 4 (1997), 703–726.  MathSciNet  DOI
[17]García Azorero, J., and Peral Alonso, I. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Amer. Math. Soc. 323, 2 (1991), 877–895.  MathSciNet  DOI
[18]Ghanmi, A., and Saoudi, K. The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator. Fract. Differ. Calc. 6, 2 (2016), 201–217.  MathSciNet  DOI
[19]Servadei, R., and Valdinoci, E. Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 2 (2012), 887–898.  MathSciNet  DOI
[20]Servadei, R., and Valdinoci, E. Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 5 (2013), 2105–2137.  MathSciNet  DOI
[21]Servadei, R., and Valdinoci, E. The Brezis-Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 367, 1 (2015), 67–102.  MathSciNet  DOI
[22]Sire, Y., and Valdinoci, E. Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256, 6 (2009), 1842–1864.  MathSciNet  DOI
[23]Willem, M. Minimax theorems, vol. 24 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 1996.  MathSciNet  DOI
[24]Yin, H. Existence results for classes of quasilinear elliptic systems with sign-changing weight. Int. J. Nonlinear Sci. 10, 1 (2010), 53–60.  MathSciNet