Skip to main content
Log in

Computational Research of the Main Rotor Steep Descent Modes Based on the Nonlinear Blade Vortex Model

  • Aero- and Gas-Dynamics of Flight Vehicles and Their Engines
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The main rotor operation is studied of the Mi-8 single-rotor helicopter in steep descent modes at the rotor angles of attack αR = 90−30 deg. The study resulted in total and distributed aerodynamic performance, rotor wake patterns and flow patterns. The vortex ring state area is designed based on the result analysis in terms of some features. The calculation results are compared with the experimental data and calculations of other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Stewart, W., Flight Testing of Helicopters, The Aeronautical Journal, 1948, vol. 52, iss. 449, pp. 261–304.

    Article  Google Scholar 

  2. Drees, J.M. and Hendal, W.P., The Field of Flow through a Helicopter Rotor Obtained from Wind Tunnel Smoke Tests, J. of Aircraft Engineering, 1951, vol. 23 (266), pp. 107–111.

    Article  Google Scholar 

  3. Azuma, A., Koo, J., Oka, T., and Washizu, K., Experiments on a Model Helicopter Rotor Operating in the Vortex Ring State, Journal of Aircraft, 1966, vol. 3, no. 3, pp. 225–230.

    Article  Google Scholar 

  4. Empey, R.W. and Ormiston, R.A., Tail-Rotor Thrust on a 5.5-Foot Helicopter Model in Ground Effect, Proc. 30th Annual National Forum of the American Helicopter Society, Washington, 1974.

  5. Akimov, A.I., Aerodinamika i letnye kharakteristiki vertoletov (Aerodynamics and Performance of Helicopters), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  6. Xin, H. and Gao, Z., An Experimental Investigation of Model Rotors Operating in Vertical Descent, Proc. 19th European Rotorcraft Forum, Cernobbio, Italy, 1993.

  7. Betzina, M.D., Tiltrotor Descent Aerodynamics: A Small-Scale Experimental Investigation of Vortex Ring State, Proc. American Helicopter Society 57th Annual Forum, Washington, USA, 2001.

  8. Taghizad, A., Jimenez, J., Binet, L., and Heuze, D., Experimental and Theoretical Investigations to Develop a Model of Rotor Aerodynamics Adapted to Steep Descents, Proc. American Helicopter Society 58th Annual Forum, Montreal, Canada, 2002.

  9. Vozhdaev, E.S., Helicopter Aerodynamics, Mashinostroenie (Machine Building), Encyclopedia in 40 volumes, Frolov, K.V., Ed., Moscow: Mashinostroenie, 2002, vol. 4–21, Samolety i vertolety (Airplanes and Helicopters), Part 1, Aerodinamika, dinamika poleta i prochnost’ (Aerodynamics, Flight Dynamics and Strength).

    Google Scholar 

  10. Petrosyan, E.A., Aerodinamika soosnogo vertoleta: Balansirovka. Ustoichivost’. Upravlenie, manevrorovanie, avtomaticheskaya stabilizatsiya i upravlenie (Aerodynamics of Coaxial-Rotor Helicopter: Balance, Stability. Control, Maneuvering, Automatic Stabilization and Control), Moscow: Polygon-Press, 2004.

    Google Scholar 

  11. Johnson, W., Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics, NASA/TP-2005-213477, URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060024029.pdf.

  12. Shaidakov, V.I., Theoretical Research into Helicopter Rotor Operation in Vertical Descent States, Izv. Vuz. Av. Tekhnika, 1960, vol. 3, no. 1, pp. 43–51.

    Google Scholar 

  13. Vozhdaev, E.S., Rotor Theory for the Vortex Ring States, Trudy TsAGI, 1970, no. 1184, pp. 3–20.

  14. Wolkovitch, J., Analytical Prediction of Vortex-Ring State Boundaries for Helicopters in Steep Descents, J. of the American Helicopter Society, 1972, vol. 17, no. 3, pp. 13–19.

    Article  Google Scholar 

  15. Belotserkovskii, S.M., Loktev, B.E., and Nisht, M.I., Issledovanie na EVM aerodinamicheskikh i aerouprugikh kharakteristik vintov vertoleta (Computer-Assisted Research of the Aerodynamic and Elastic Properties of Helicopter Rotors), Moscow, Mashinostroenie, 1992.

  16. Tyabrisova, N.U. and Ivchin, V.A., Computational Modeling of Induced Velocities at Positive-Value Rotor Angles of Attack, and Calculations of Ring Vortex Boundaries, Trudy MVZ im. M.L. Milya, Moscow, 1997, pp. 97–106.

  17. Benoit, B., Dequin, A.-M., Kampa, K., Grünhagen, W., Basset, P.-M., and Gimonet, B., HOST, A General Helicopter Simulation Tool for Germany and France, Proc. 56th American Helicopter Society Annual Forum, Virginia Beach, US, 2000.

  18. Leishman, J.G., Bhagwat, M.J., and Ananthan, S., Free-Vortex Wake Predictions of the Vortex Ring State for Single Rotor and Multi-Rotor Configurations, Proc. 58th American Helicopter Society International Annual Forum, Montreal, Canada, 2002, vol. 2, pp. 956–985.

  19. Newman, S., Brown, R., Perry, J., Lewis, S., Orchard, M., and Modha, A., Predicting the Onset of Wake Breakdown for Rotors in Descending Flight, J. of the American Helicopter Society, 2003, vol. 48, no. 1, pp. 28–38.

    Article  Google Scholar 

  20. Celi, R. and Ribera, M., Time Marching Simulation Modeling in Axial Descending through the Vortex Ring State, Proc. 63rd American Helicopter Society International Annual Forum, Virginia Beach, USA, 2007, vol. 1.

  21. Ignatkin, Yu.M., Makeev, P.V., Shomov, A.I., and Konstantinov, S.G., Computational Modeling of Vortex Ring State Modes of Helicopter Main Rotor on the Basis of Free Wake Vortical Model, Trudy MAI, 2012, no. 59, URL: http://trudymai.ru/published.php?ID=34410.

  22. Shcheglova, V.M., Non-Stationary Rotor Flow in the Steep Descent State and the VRS, Uchenye Zapiski TsAGI, 2012, vol. 43, no. 3, pp. 51–58.

    Google Scholar 

  23. Garipova, L.I., Batrakov, A.S., Kusyumov, A.N., Mikhailov, S.A., and Barakos, G.N., Estimates of Hover Aerodynamics Performance of Rotor Model, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 7–13 [Russian Aeronautics (Engl. Transl.), 2014, vol. 57, no. 3, pp. 223–231].

    Google Scholar 

  24. Bailly, J., A Qualitative Analysis of Vortex Ring State Entry Using a Fully Time Marching Unsteady Wake Model, Proc. 36th European Rotorcraft Forum, Paris, France, 2010, vol. 1, pp. 1177–1187.

  25. Nik Ahmad Ridhwan Nik Mohd and Barakos, G.N., Performance and Wake Analysis of Rotors in Axial Flight Using Computational Fluid Dynamics, J. of Aerospace Technologies and Management, 2017, vol. 9, no. 2, pp. 193–202.

    Article  Google Scholar 

  26. Ignatkin, Yu.M., Makeev, P.V., Shaidakov, V.I., and Shomov, A.I., Computational Research of the Main Rotor Hover and Vertical Descent States Based on the Nonlinear Blade Vortex Model, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 3, pp. 73–80 [Russian Aeronautics (Engl. Transl.), 2018, vol. 61, no. 3, pp. 396–403].

    Google Scholar 

  27. Ignatkin, Yu.M., Makeev, P.V., Grevtsov, B.S., Shomov, A.I., A Nonlinear Blade Vortex Propeller Theory and Its Applications to Estimate Aerodynamic Characteristics for Helicopter Main Rotor and Anti-Torque Rotor. Vestnik MAI, 2009, vol. 16, no. 5, pp. 24–31.

    Google Scholar 

  28. Dehaeze, F., Barakos, G.N., Kusyumov, A.N., Kusyumov, S.A., and Mikhailov, S.A., Exploring the Detached-Eddy Simulation for Main Rotor Flows, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 1, pp. 40–46 [Russian Aeronautics (Engl. Transl.), 2018, vol. 61, no. 1, pp. 37–44].

    Google Scholar 

  29. Aparinov, A.A., Kritskii, B.S., and Setukha, A.V., Numerical Modeling of Helicopter Main Rotor Behavior near a Small-Scale Helideck by the Vortex Method, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 4, pp. 21–27 [Russian Aeronautics (Engl. Transl.), 2017, vol. 60, no. 4, pp. 500–507].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Makeev.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2019, No. 2, pp. 68–77.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatkin, Y.M., Makeev, P.V., Shaidakov, V.I. et al. Computational Research of the Main Rotor Steep Descent Modes Based on the Nonlinear Blade Vortex Model. Russ. Aeronaut. 62, 244–253 (2019). https://doi.org/10.3103/S1068799819020107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799819020107

Keywords