Abstract
The main rotor operation is studied of the Mi-8 single-rotor helicopter in steep descent modes at the rotor angles of attack αR = 90−30 deg. The study resulted in total and distributed aerodynamic performance, rotor wake patterns and flow patterns. The vortex ring state area is designed based on the result analysis in terms of some features. The calculation results are compared with the experimental data and calculations of other authors.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Stewart, W., Flight Testing of Helicopters, The Aeronautical Journal, 1948, vol. 52, iss. 449, pp. 261–304.
Drees, J.M. and Hendal, W.P., The Field of Flow through a Helicopter Rotor Obtained from Wind Tunnel Smoke Tests, J. of Aircraft Engineering, 1951, vol. 23 (266), pp. 107–111.
Azuma, A., Koo, J., Oka, T., and Washizu, K., Experiments on a Model Helicopter Rotor Operating in the Vortex Ring State, Journal of Aircraft, 1966, vol. 3, no. 3, pp. 225–230.
Empey, R.W. and Ormiston, R.A., Tail-Rotor Thrust on a 5.5-Foot Helicopter Model in Ground Effect, Proc. 30th Annual National Forum of the American Helicopter Society, Washington, 1974.
Akimov, A.I., Aerodinamika i letnye kharakteristiki vertoletov (Aerodynamics and Performance of Helicopters), Moscow: Mashinostroenie, 1988.
Xin, H. and Gao, Z., An Experimental Investigation of Model Rotors Operating in Vertical Descent, Proc. 19th European Rotorcraft Forum, Cernobbio, Italy, 1993.
Betzina, M.D., Tiltrotor Descent Aerodynamics: A Small-Scale Experimental Investigation of Vortex Ring State, Proc. American Helicopter Society 57th Annual Forum, Washington, USA, 2001.
Taghizad, A., Jimenez, J., Binet, L., and Heuze, D., Experimental and Theoretical Investigations to Develop a Model of Rotor Aerodynamics Adapted to Steep Descents, Proc. American Helicopter Society 58th Annual Forum, Montreal, Canada, 2002.
Vozhdaev, E.S., Helicopter Aerodynamics, Mashinostroenie (Machine Building), Encyclopedia in 40 volumes, Frolov, K.V., Ed., Moscow: Mashinostroenie, 2002, vol. 4–21, Samolety i vertolety (Airplanes and Helicopters), Part 1, Aerodinamika, dinamika poleta i prochnost’ (Aerodynamics, Flight Dynamics and Strength).
Petrosyan, E.A., Aerodinamika soosnogo vertoleta: Balansirovka. Ustoichivost’. Upravlenie, manevrorovanie, avtomaticheskaya stabilizatsiya i upravlenie (Aerodynamics of Coaxial-Rotor Helicopter: Balance, Stability. Control, Maneuvering, Automatic Stabilization and Control), Moscow: Polygon-Press, 2004.
Johnson, W., Model for Vortex Ring State Influence on Rotorcraft Flight Dynamics, NASA/TP-2005-213477, URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060024029.pdf.
Shaidakov, V.I., Theoretical Research into Helicopter Rotor Operation in Vertical Descent States, Izv. Vuz. Av. Tekhnika, 1960, vol. 3, no. 1, pp. 43–51.
Vozhdaev, E.S., Rotor Theory for the Vortex Ring States, Trudy TsAGI, 1970, no. 1184, pp. 3–20.
Wolkovitch, J., Analytical Prediction of Vortex-Ring State Boundaries for Helicopters in Steep Descents, J. of the American Helicopter Society, 1972, vol. 17, no. 3, pp. 13–19.
Belotserkovskii, S.M., Loktev, B.E., and Nisht, M.I., Issledovanie na EVM aerodinamicheskikh i aerouprugikh kharakteristik vintov vertoleta (Computer-Assisted Research of the Aerodynamic and Elastic Properties of Helicopter Rotors), Moscow, Mashinostroenie, 1992.
Tyabrisova, N.U. and Ivchin, V.A., Computational Modeling of Induced Velocities at Positive-Value Rotor Angles of Attack, and Calculations of Ring Vortex Boundaries, Trudy MVZ im. M.L. Milya, Moscow, 1997, pp. 97–106.
Benoit, B., Dequin, A.-M., Kampa, K., Grünhagen, W., Basset, P.-M., and Gimonet, B., HOST, A General Helicopter Simulation Tool for Germany and France, Proc. 56th American Helicopter Society Annual Forum, Virginia Beach, US, 2000.
Leishman, J.G., Bhagwat, M.J., and Ananthan, S., Free-Vortex Wake Predictions of the Vortex Ring State for Single Rotor and Multi-Rotor Configurations, Proc. 58th American Helicopter Society International Annual Forum, Montreal, Canada, 2002, vol. 2, pp. 956–985.
Newman, S., Brown, R., Perry, J., Lewis, S., Orchard, M., and Modha, A., Predicting the Onset of Wake Breakdown for Rotors in Descending Flight, J. of the American Helicopter Society, 2003, vol. 48, no. 1, pp. 28–38.
Celi, R. and Ribera, M., Time Marching Simulation Modeling in Axial Descending through the Vortex Ring State, Proc. 63rd American Helicopter Society International Annual Forum, Virginia Beach, USA, 2007, vol. 1.
Ignatkin, Yu.M., Makeev, P.V., Shomov, A.I., and Konstantinov, S.G., Computational Modeling of Vortex Ring State Modes of Helicopter Main Rotor on the Basis of Free Wake Vortical Model, Trudy MAI, 2012, no. 59, URL: http://trudymai.ru/published.php?ID=34410.
Shcheglova, V.M., Non-Stationary Rotor Flow in the Steep Descent State and the VRS, Uchenye Zapiski TsAGI, 2012, vol. 43, no. 3, pp. 51–58.
Garipova, L.I., Batrakov, A.S., Kusyumov, A.N., Mikhailov, S.A., and Barakos, G.N., Estimates of Hover Aerodynamics Performance of Rotor Model, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 7–13 [Russian Aeronautics (Engl. Transl.), 2014, vol. 57, no. 3, pp. 223–231].
Bailly, J., A Qualitative Analysis of Vortex Ring State Entry Using a Fully Time Marching Unsteady Wake Model, Proc. 36th European Rotorcraft Forum, Paris, France, 2010, vol. 1, pp. 1177–1187.
Nik Ahmad Ridhwan Nik Mohd and Barakos, G.N., Performance and Wake Analysis of Rotors in Axial Flight Using Computational Fluid Dynamics, J. of Aerospace Technologies and Management, 2017, vol. 9, no. 2, pp. 193–202.
Ignatkin, Yu.M., Makeev, P.V., Shaidakov, V.I., and Shomov, A.I., Computational Research of the Main Rotor Hover and Vertical Descent States Based on the Nonlinear Blade Vortex Model, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 3, pp. 73–80 [Russian Aeronautics (Engl. Transl.), 2018, vol. 61, no. 3, pp. 396–403].
Ignatkin, Yu.M., Makeev, P.V., Grevtsov, B.S., Shomov, A.I., A Nonlinear Blade Vortex Propeller Theory and Its Applications to Estimate Aerodynamic Characteristics for Helicopter Main Rotor and Anti-Torque Rotor. Vestnik MAI, 2009, vol. 16, no. 5, pp. 24–31.
Dehaeze, F., Barakos, G.N., Kusyumov, A.N., Kusyumov, S.A., and Mikhailov, S.A., Exploring the Detached-Eddy Simulation for Main Rotor Flows, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 1, pp. 40–46 [Russian Aeronautics (Engl. Transl.), 2018, vol. 61, no. 1, pp. 37–44].
Aparinov, A.A., Kritskii, B.S., and Setukha, A.V., Numerical Modeling of Helicopter Main Rotor Behavior near a Small-Scale Helideck by the Vortex Method, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 4, pp. 21–27 [Russian Aeronautics (Engl. Transl.), 2017, vol. 60, no. 4, pp. 500–507].
Author information
Authors and Affiliations
Corresponding author
Additional information
Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2019, No. 2, pp. 68–77.
About this article
Cite this article
Ignatkin, Y.M., Makeev, P.V., Shaidakov, V.I. et al. Computational Research of the Main Rotor Steep Descent Modes Based on the Nonlinear Blade Vortex Model. Russ. Aeronaut. 62, 244–253 (2019). https://doi.org/10.3103/S1068799819020107
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S1068799819020107