Combined Effects of Magnetized Irrigation and Water Source on Italian Lettuce (Lactuca sativa L. var. ramosa Hort.) Growth and Gene Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Experimental Design
2.3. Measurement Indicators and Analytical Methods
2.3.1. Irrigation Water Quality
2.3.2. Mineral Content of Lettuce
2.3.3. Effects on Lettuce Quality, Yield, and WPc
2.3.4. Lettuce Transcriptome Sequencing
2.4. Data Processing
3. Results
3.1. Effect of Magnetization Treatment on the Water Quality
3.2. Effect of Magnetized Water Irrigation with Different Water Sources on the Content of Mineral Elements in Lettuce
3.3. Effect of Magnetized Water Irrigation with Different Water Sources on Quality, Yield, and WPc of Lettuce
3.4. Transcriptome Analysis of Lettuce with Magnetic Irrigation
3.4.1. Correlation Analysis of Gene Expression and PCA Among Sequencing Samples
3.4.2. Screening and Statistics of DEGs
3.4.3. Go Enrichment Analysis of DEGs
3.4.4. Kegg Enrichment Analysis of DEGs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, B.F.; Tian, F.Y.; Zhang, M.; Piao, S.L.; Zeng, H.W.; Zhu, W.W.; Liu, J.G.; Elnashar, A.; Lu, Y.M. Quantifying global agricultural water appropriation with data derived from earth observations. J. Clean. Prod. 2022, 358, 131891. [Google Scholar] [CrossRef]
- Yadav, M.; Vashisht, B.B.; Jalota, S.K.; Jyolsna, T.; Singh, S.P.; Kumar, A.; Kumar, A.; Singh, G. Improving Water Efficiencies in Rural Agriculture for Sustainability of Water Resources: A Review. Water Resour. Manag. 2024, 38, 3505–3526. [Google Scholar] [CrossRef]
- Pang, X.F.; Deng, B. Investigation of changes in properties of water under the action of a magnetic field. Sci. China Ser. Phys. Mech. Astron. 2008, 51, 1621–1632. [Google Scholar] [CrossRef]
- Pang, X.F.; Deng, B.; Tang, B. Influences of magneitc field on macroscopic properties of water. Mod. Phys. Lett. B 2012, 26, 1250069. [Google Scholar] [CrossRef]
- Toledo, E.J.L.; Ramalho, T.C.; Magriotis, Z.M. Influence of magnetic field on physical-chemical properties of the liquid water: Insights from experimental and theoretical models. J. Mol. Struct. 2008, 888, 409–415. [Google Scholar] [CrossRef]
- Hamza, J.N.; Al-Sulttani, A.O. Impact of using magnetic water on the micro structure of leached saline-sodic soil. Environ. Monit. Assess. 2022, 194, 608. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.W.; Zhang, L.; Zhang, J.Z.; Li, W.H.; Li, H.Q.; Liang, Y.H.; Han, Y.; Luo, P.C.; Wang, Z.H. Effect of Magnetized Brackish Water Drip Irrigation on Water and Salt Transport Characteristics of Sandy Soil in Southern Xinjiang, China. Water 2023, 15, 577. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, Y.; Wang, Y.; Wang, L. Magnetization and oxidation of irrigation water to improve winter wheat (Triticum aestivum L.) production and water-use efficiency. Agric. Water Manag. 2022, 259, 107254. [Google Scholar] [CrossRef]
- Zhang, J.H.; Wei, K.; Wang, Q.J.; Sun, Y.; Mu, W.Y. Effects of magnetized fresh water on seed germination and seeding growth of cotton. Water Supply 2021, 21, 2863–2874. [Google Scholar] [CrossRef]
- Zhou, B.B.; Liang, C.F.; Chen, X.P.; Ye, S.T.; Peng, Y.; Yang, L.; Duan, M.L.; Wang, X.P. Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China. Agric. Water Manag. 2022, 263, 107487. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Wang, Q.; Wang, J.; Wang, Y.; Li, M.; Liu, Y.; Guo, Y. Effects of magnetoelectric water irrigation combined with foliar iron fertilizer on the growth characteristics and iron absorption of spinach. Sci. Hortic. 2024, 327, 112824. [Google Scholar] [CrossRef]
- El-Ssawy, W.; Abuarab, M.; El-Mogy, M.; Kassem, M.; Wasef, E.; Sultan, W.; Rady, M.M. The Impact of Advanced Static Magnetic Units on Water Properties and the Performance of Aeroponic and NFT Systems for Lettuce. Pol. J. Environ. Stud. 2020, 29, 2641–2652. [Google Scholar] [CrossRef]
- Ordones Lemos, L.T.; de Deus, F.P.; de Andrade Junior, V.C.; Thebaldi, M.S.; Mesquita, M.; de Almeida, R.C. Development and production of iceberg lettuce irrigated with magnetically treated water. Water SA 2021, 47, 437–445. [Google Scholar] [CrossRef]
- Ordones Lemos, L.T.; de Deus, F.P.; Thebaldi, M.S.; Diotto, A.V.; de Andrade Junior, V.C.; de Almeida, R.C. Influence of the soil water retention curve type and magnetic water treatment on lettuce irrigation management responses. Water Supply 2021, 21, 2850–2862. [Google Scholar] [CrossRef]
- Markland, S.M.; Ingram, D.; Kniel, K.E.; Sharma, M. Water for Agriculture: The Convergence of Sustainability and Safety. Microbiol. Spectr. 2017, 5, 14–2016. [Google Scholar] [CrossRef]
- Esmaeilnezhad, E.; Choi, H.J.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M. Characteristics and applications of magnetized water as a green technology. J. Clean. Prod. 2017, 161, 908–921. [Google Scholar] [CrossRef]
- Lin, S.D.; Wang, Q.J.; Zhao, X.; Gu, Y.N.; Wei, K.; Luo, P.C.; Deng, M.J. Enhancing salt tolerance and crop growth in agricultural systems: The impact of magnetized-ionized water irrigation on soil properties, microbial communities, and cotton growth. J. Sci. Food Agric. 2024, 104, 7214–7227. [Google Scholar] [CrossRef]
- Song, T.; Yang, F.; Das, D.; Chen, M.X.; Hu, Q.J.; Tian, Y.; Cheng, C.L.; Liu, Y.; Zhang, J.H. Transcriptomic analysis of photosynthesis-related genes regulated by alternate wetting and drying irrigation in flag leaves of rice. Food Energy Secur. 2020, 9, e221. [Google Scholar] [CrossRef]
- Xi, W.; Qiulan, H.; Zhengwei, W.; Jing, L.; Meirong, H.; Wei, Z. Differential Expression Analysis of Genes Related to Starch and Sucrose Metabolic Pathways in Potato Tubers Under Drought Stress Simulated Based on Transcriptome Sequencing. Genom. Appl. Biol. 2023, 42, 44–59. [Google Scholar]
- Liu, X.; Huang, J.; Qin, L.; Liu, Z.; Liu, Z. Preliminary analysis of transcription factors associated with tomato response to infection of Meloidogyne incognita. J. Huazhong Agric. Univ. 2024, 43, 62–69. [Google Scholar]
- He, X.; Ma, S.; Luo, Z. Explanation of beijing local standard of discharge standard of water pollutants for municipal wastewater treatment plants. Water Wastewater Eng. 2013, 39, 123–127. [Google Scholar] [CrossRef]
- Helmke, P.A.; Sparks, D.L. Methods of sOil Analysis, Part 3—Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Besharati, M.; Fathi, L.; Amirdahri, S.; Nemati, Z.; Palangi, V.; Lorenzo, J.M.; Maggiolino, A.; Centoducati, G. Reserves of Calcium, Copper, Iron, Potassium, Magnesium, Manganese, Sodium, Phosphorus, Strontium and Zinc in Goose Egg Yolk during Embryo Development. Animals 2023, 13, 1925. [Google Scholar] [CrossRef]
- Ross, C.W. Plant Physiology Laboratory Manual; Wadsworth Series in Biology; Wadsworth Pub. Co.: Belmont, CA, USA, 1974. [Google Scholar]
- Sun, W.J.; Hao, J.H.; Fan, S.X.; Liu, C.J.; Han, Y.Y. Transcriptome and Metabolome Analysis Revealed That Exogenous Spermidine-Modulated Flavone Enhances the Heat Tolerance of Lettuce. Antioxidants 2022, 11, 2332. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Jiao, C.; Sun, H.; Rosli, H.G.; Pombo, M.A.; Zhang, P.; Banf, M.; Dai, X.; Martin, G.B.; Giovannoni, J.J.; et al. iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. Mol. Plant 2016, 9, 1667–1670. [Google Scholar] [CrossRef] [PubMed]
- Kishore, G.; Singh, R.K.; Saxena, C.; Rajwade, Y.A.; Singh, K.; Bab, B. Magnetic treatment of irrigation water: Its effect on water properties and characteristics of eggplant (Solanum melongena). Emir. J. Food Agric. 2022, 34, 784–791. [Google Scholar] [CrossRef]
- Kishore, G.; Singh, R.K.; Saxena, C.K.; Al-Ansari, N.; Vishwakarma, D.K.; Heddam, S. Magnetic treatment of irrigation water and its effect on French bean (Phaseolus vulgaris). Water Reuse 2023, 13, 545–558. [Google Scholar] [CrossRef]
- Selim, D.A.F.H.; Zayed, M.; Ali, M.M.E.; Eldesouky, H.S.; Bonfill, M.; El-Tahan, A.M.; Ibrahim, O.M.; El-Saadony, M.T.; El-Tarabily, K.A.; AbuQamar, S.F.; et al. Germination, physio-anatomical behavior, and productivity of wheat plants irrigated with magnetically treated seawater. Front. Plant Sci. 2022, 13, 923872. [Google Scholar] [CrossRef]
- Surendran, U.; Sandeep, O.; Joseph, E.J. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agric. Water Manag. 2016, 178, 21–29. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Q.; Ning, S.; Lin, S.; Hu, X.; Song, Z. Application of Magnetized Ionized Water and Bacillus subtilis Improved Saline Soil Quality and Cotton Productivity. Plants 2024, 13, 2458. [Google Scholar] [CrossRef]
- Xiao-Feng, P.; Bo, D. The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Phys. Condens. Matter 2008, 403, 3571–3577. [Google Scholar] [CrossRef]
- Malekzadeh, A.; Pouranfard, A.R.; Hatami, N.; Banari, A.K.; Rahimi, M.R. Experimental Investigations on the Viscosity of Magnetic Nanofluids under the Influence of Temperature, Volume Fractions of Nanoparticles and External Magnetic Field. J. Appl. Fluid Mech. 2016, 9, 693–697. [Google Scholar] [CrossRef]
- Mashhour, A.M.A.; Shahin, M.M.; Bd-Elhady, E.S.E.A. Effect of Magnetized Irrigation Water and Seeds on Some Water Properties, Growth Parameter and Yield Productivity of Cucumber Plants. Curr. Sci. Int. 2016, 5, 152–164. [Google Scholar]
- Pang, X.F.; Shen, G.F. The changes of physical properties of water arising from the magnetic field and it’s mechanism. Mod. Phys. Lett. B 2013, 27, 1350228. [Google Scholar] [CrossRef]
- Hosseini, H.; Mozafari, V.; Roosta, H.R.; Shirani, H.; van de Vlasakker, P.C.H.; Farhangi, M. Nutrient Use in Vertical Farming: Optimal Electrical Conductivity of Nutrient Solution for Growth of Lettuce and Basil in Hydroponic Cultivation. Horticulturae 2021, 7, 283. [Google Scholar] [CrossRef]
- de Oliveira, F.D.; Carrilho, M.; de Medeiros, J.F.; Maracajá, P.B.; de Oliveira, M.K.T. Performance of lettuce cultivars under different salinity levels of irrigation water. Rev. Bras. Eng. Agric. Ambient. 2011, 15, 771–777. [Google Scholar]
- Guo, Y.; Wang, Q.; Zhao, X.; Li, Z.; Li, M.; Zhang, J.; Wei, K. Field irrigation using magnetized brackish water affects the growth and water consumption of Haloxylon ammodendron seedlings in an arid area. Front. Plant Sci. 2022, 13, 929021. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, A.P.R.; Assis, R.M.A.; Boeira, L.d.S.; Leite, J.J.F.; Rocha, J.P.M.; Diotto, A.V.; Bertolucci, S.K.V.; Pinto, J.E.B.P. Magnetically treated water affects Melissa officinalis L growth, nutritional status and essential oil compounds. J. Clean. Prod. 2023, 428, 139311. [Google Scholar] [CrossRef]
- Yi, G.; Wang, Q.; Kang, W.; Zhang, J.; Kai, W.; Yang, L. Spring irrigation with magnetized water affects soil water-salt distribution, emergence, growth, and photosynthetic characteristics of cotton seedlings in Southern Xinjiang, China. BMC Plant Biol. 2023, 23, 174. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Wei, K.; Guo, Y.; Mu, W.; Sun, Y. Magnetic Water Treatment: An Eco-Friendly Irrigation Alternative to Alleviate Salt Stress of Brackish Water in Seed Germination and Early Seedling Growth of Cotton (Gossypium hirsutum L.). Plants 2022, 11, 1397. [Google Scholar] [CrossRef]
- Zhang, J.H.; Wang, Q.J.; Wei, K.; Sun, Y.; Mu, W.Y. Effects of magnetized brackish water on seed germination, seedling growth, photosynthesis and dry matter distribution of cotton (Gossypium hirsutum L.). Appl. Ecol. Environ. Res. 2021, 19, 683–697. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Wu, X. Effects of drip irrigation with different magnetic water on soil salinity, maize yield and quality. Soils 2018, 50, 762–768. [Google Scholar]
- Yang, X.T.; Fan, J.; Ge, J.M.; Luo, Z.B. Effect of Irrigation with Activated Water on Root Morphology of Hydroponic Rice and Wheat Seedlings. Agronomy 2022, 12, 1068. [Google Scholar] [CrossRef]
- Wang, Y.; Mu, Y.; Yang, S.; Wang, L. Effects of activated water irrigation on the growth, water consumption and water use efficiency of winter wheat. Int. J. Plant Prod. 2022, 16, 705–721. [Google Scholar] [CrossRef]
- Ghanati, F.; Mohamadalikhani, S.; Soleimani, M.; Afzalzadeh, R.; Hajnorouzi, A. Change of growth pattern, metabolism, and quality and quantity of maize plants after irrigation with magnetically treated water. Electromagn. Biol. Med. 2015, 34, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Zlotopolski, V. Magnetic Treatment Reduces Water Usage in Irrigation Without Negatively Impacting Yield, Photosynthesis and Nutrient Uptake in Lettuce. Int. J. Appl. Agric. Sci. 2017, 3, 117. [Google Scholar] [CrossRef]
- Zlotopolski, V.M. Effect of Magnetic Treatment on Water Permeability Through a Semi-Permeable Membrane. Am. J. Water Sci. Eng. 2017, 3, 28–33. [Google Scholar] [CrossRef]
- Atak, Q.; Çelik, ö.; Olgun, A.; Alikamanoglu, S.; Rzakoulieva, A. Effect of magnetic field on peroxidase activities of soybean tissue culture. Biotechnol. Biotechnol. Equip. 2007, 21, 166–171. [Google Scholar] [CrossRef]
- Ma, C.; Li, Q.; Song, Z.; Su, L.; Tao, W.; Zhou, B.; Wang, Q. Irrigation with Magnetized Water Alleviates the Harmful Effect of Saline-Alkaline Stress on Rice Seedlings. Int. J. Mol. Sci. 2022, 23, 10048. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.H.; Wang, W. Recent advances in understanding the role of two mitogen-activated protein kinase cascades in plant immunity. J. Exp. Bot. 2024, 75, 2256–2265. [Google Scholar] [CrossRef]
- Wu, J.R.; Wang, X.Y.; Bian, L.; Li, Z.Y.; Jiang, X.H.; Shi, F.L.; Tang, F.; Zhang, Z.Q. Starch and sucrose metabolism plays an important role in the stem development in Medicago sativa. Funct. Plant Biol. 2024, 51, Fp24073. [Google Scholar] [CrossRef]
- Liang, G.P.; Li, Y.M.; Wang, P.; Jiao, S.Z.; Wang, H.; Mao, J.; Chen, B.H. VaAPL1 Promotes Starch Synthesis to Constantly Contribute to Soluble Sugar Accumulation, Improving Low Temperature Tolerance in Arabidopsis and Tomato. Front. Plant Sci. 2022, 13, 920424. [Google Scholar] [CrossRef] [PubMed]
- Trovato, M.; Funck, D.; Forlani, G.; Okumoto, S.; Amir, R. Editorial: Amino Acids in Plants: Regulation and Functions in Development and Stress Defense. Front. Plant Sci. 2021, 12, 772810. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.F.; O’Toole, N.; Taylor, N.L.; Millar, A.H. Divalent Metal Ions in Plant Mitochondria and Their Role in Interactions with Proteins and Oxidative Stress-Induced Damage to Respiratory Function. Plant Physiol. 2010, 152, 747–761. [Google Scholar] [CrossRef] [PubMed]
Particle Size Distribution | Bulk Density | Field Capacity | Saturation Moisture Content | EC | ||
---|---|---|---|---|---|---|
Sand/% | Silt/% | Clay/% | g/cm3 | % | % | mS/m |
53.16 | 24 | 22.84 | 1.44 | 30.59 | 48 | 7.81 |
Total Nitrogen g/kg | Ammonium Nitrogen mg/kg | Nitrate Nitrogen mg/kg | Available Phosphorus mg/kg | Available Potassium mg/kg |
---|---|---|---|---|
1.26 | 14.7 | 7.24 | 14.2 | 138 |
Treatment | EC dS/m | pH | DO |
---|---|---|---|
M0T1 | 0.62 ± 0.07c | 7.43 ± 0.13d | 8.61 ± 0.16bc |
M0T2 | 0.96 ± 0.04b | 7.89 ± 0.04c | 8.15 ± 0.50d |
M0T3 | 4.36 ± 0.06a | 7.52 ± 0.14d | 8.57 ± 0.05c |
M1T1 | 0.63 ± 0.07c | 7.95 ± 0.07bc | 9.56 ± 0.08a |
M1T2 | 0.97 ± 0.04b | 8.34 ± 0.04a | 8.96 ± 0.11b |
M1T3 | 4.39 ± 0.06a | 8.01 ± 0.06b | 9.45 ± 0.07a |
Factor | EC | pH | DO |
---|---|---|---|
M | 1.73 ns | 278.62 ** | 81.10 ** |
T | 27,680.09 ** | 80.05 ** | 11.39 ** |
M*T | 0.17 ns | 0.53 ns | 0.19 ns |
Year | Factor | N | P | K | Ca | Mg |
---|---|---|---|---|---|---|
2018 | M | 19.63 ** | 1.20 ns | 7.33 * | 7.45 * | 1.18 ns |
T | 8.30 ** | 10.56 ** | 2.71 ns | 2.64 ns | 8.58 ** | |
M*T | 0.75 ns | 2.13 ns | 1.09 ns | 0.11 ns | 0.10 ns | |
2019 | M | 11.00 ** | 2.38 ns | 8.43 * | 6.71 * | 9.42 * |
T | 9.74 ** | 7.57 * | 1.26 ns | 7.40 * | 5.15 * | |
M*T | 0.47 ns | 3.55 ns | 0.32 ns | 0.53 ns | 0.20 ns |
Year | Treatment | Soluble Protein | Soluble Sugar | VitC | Fresh Weight | Dry Weight | Water Consumption | WPc |
---|---|---|---|---|---|---|---|---|
mg/g | mg/g | mg/kg | g/plant | g/plant | g/pot | kg/m3 | ||
2018 | M0T1 | 2.02 ± 0.15b | 21.50 ± 0.85bc | 157.00 ± 10.30cd | 345.45 ± 20.50b | 20.24 ± 1.85bc | 7.39 ± 0.20a | 46.86 ± 2.10bc |
M0T2 | 1.78 ± 0.20c | 18.67 ± 0.89c | 148.10 ± 8.45d | 340.78 ± 18.80b | 19.54 ± 1.55bc | 7.18 ± 0.18ab | 47.53 ± 2.15b | |
M0T3 | 1.69 ± 0.17c | 22.50 ± 1.10b | 161.67 ± 9.88cd | 289.45 ± 15.20c | 17.25 ± 1.35c | 6.76 ± 0.25c | 42.45 ± 1.98d | |
M1T1 | 2.40 ± 0.18a | 26.80 ± 1.05a | 205.00 ± 11.50a | 379.13 ± 22.00a | 21.99 ± 1.90a | 7.23 ± 0.30a | 52.50 ± 2.25a | |
M1T2 | 2.28 ± 0.12a | 24.00 ± 0.95ab | 172.00 ± 9.00bc | 366.22 ± 21.50a | 20.85 ± 1.80ab | 7.06 ± 0.28b | 51.88 ± 2.20a | |
M1T3 | 1.90 ± 0.14bc | 26.40 ± 1.20a | 180.00 ± 10.55b | 302.39 ± 16.40c | 17.89 ± 1.45c | 6.68 ± 0.26c | 45.28 ± 2.00cd | |
2019 | M0T1 | 1.83 ± 0.10bc | 24.17 ± 1.07c | 164.67 ± 9.24b | 362.66 ± 28.30b | 23.71 ± 1.85abc | 8.22 ± 0.35a | 44.24 ± 2.80b |
M0T2 | 1.72 ± 0.08c | 23.77 ± 0.88c | 170.33 ± 10.12ab | 353.21 ± 12.04b | 22.05 ± 1.09bcd | 8.16 ± 0.32a | 43.35 ± 2.07b | |
M0T3 | 1.80 ± 0.09c | 28.63 ± 1.15ab | 191.00 ± 11.07a | 297.37 ± 16.76c | 19.88 ± 0.73d | 7.42 ± 0.29b | 40.13 ± 1.66c | |
M1T1 | 2.30 ± 0.11a | 28.07 ± 0.98b | 178.00 ± 10.20ab | 396.82 ± 21.74a | 26.10 ± 0.86a | 8.47 ± 0.40a | 46.93 ± 2.41a | |
M1T2 | 2.07 ± 0.09ab | 26.73 ± 1.20bc | 176.00 ± 9.35ab | 389.06 ± 24.65a | 25.61 ± 1.22ab | 8.05 ± 0.35a | 48.40 ± 3.23a | |
M1T3 | 1.91 ± 0.12bc | 31.37 ± 1.25a | 185.33 ± 10.85ab | 309.10 ± 10.55c | 21.56 ± 0.64cd | 7.34 ± 0.28b | 42.15 ± 1.05bc |
Year | Factor | Soluble Protein | Soluble Sugar | VitC | Fresh Weight | Dry Weight | Water Consumption | WPc |
---|---|---|---|---|---|---|---|---|
2018 | M | 38.39 ** | 39.52 ** | 40.38 ** | 32.89 ** | 8.85 * | 3.14 ns | 30.59 ** |
T | 16.31 ** | 6.64 * | 6.53 * | 98.73 ** | 26.10 ** | 33.92 ** | 25.10 ** | |
M*T | 2.05 ns | 0.37 ns | 3.70 ns | 2.07 ns | 0.60 ns | 0.02 ns | 1.61 ns | |
2019 | M | 24.49 ** | 16.8 ** | 0.75 ns | 55.59 ** | 7.91 * | 0.04 ns | 28.63 ** |
T | 4.4587 * | 14.01 * | 4.34 * | 175.38 ** | 7.70 ** | 29.44 ** | 25.45 ** | |
M*T | 2.91 ns | 0.21 ns | 1.05 ns | 4.52 * | 0.37 ns | 1.16 ns | 2.29 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Wang, X.; Qu, M.; Wei, Y.; Shan, F.; Li, Y. Combined Effects of Magnetized Irrigation and Water Source on Italian Lettuce (Lactuca sativa L. var. ramosa Hort.) Growth and Gene Expression. Agronomy 2024, 14, 2621. https://doi.org/10.3390/agronomy14112621
Yao X, Wang X, Qu M, Wei Y, Shan F, Li Y. Combined Effects of Magnetized Irrigation and Water Source on Italian Lettuce (Lactuca sativa L. var. ramosa Hort.) Growth and Gene Expression. Agronomy. 2024; 14(11):2621. https://doi.org/10.3390/agronomy14112621
Chicago/Turabian StyleYao, Xueying, Xiaofan Wang, Mingshan Qu, Yibo Wei, Feifei Shan, and Youli Li. 2024. "Combined Effects of Magnetized Irrigation and Water Source on Italian Lettuce (Lactuca sativa L. var. ramosa Hort.) Growth and Gene Expression" Agronomy 14, no. 11: 2621. https://doi.org/10.3390/agronomy14112621
APA StyleYao, X., Wang, X., Qu, M., Wei, Y., Shan, F., & Li, Y. (2024). Combined Effects of Magnetized Irrigation and Water Source on Italian Lettuce (Lactuca sativa L. var. ramosa Hort.) Growth and Gene Expression. Agronomy, 14(11), 2621. https://doi.org/10.3390/agronomy14112621