Knee Abduction Angles and Landing Kinematics in Badminton Jump Smash: A Study of ACL Injury Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Instrumentation and Data Collection
2.4. Data Analysis and Reduction
2.5. Statistical Analysis
3. Results
3.1. Kinematics
3.2. Spatiotemporal Measures
3.3. Anthropometry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACL | Anterior Cruciate Ligament |
KAA | Knee Abduction Angle |
KAM | Knee Abduction Moment |
GRF | Ground Reaction Force |
ISN | National Sports Institute of Malaysia |
ICC | Intraclass Correlation Coefficient |
FC | Foot Contact |
SD | Standard Deviation |
References
- Pardiwala, D.N.; Subbiah, K.; Rao, N.; Modi, R. Badminton injuries in elite athletes: A review of epidemiology and biomechanics. Indian J. Orthop. 2020, 54, 237–245. [Google Scholar] [CrossRef] [PubMed]
- ‘It Goes Beyond Sports’—Heartbreak for Marin-BWF Olympics. Available online: https://olympics.bwfbadminton.com/news-single/2024/08/04/it-goes-beyond-sports-hearbreak-for-marin (accessed on 27 December 2024).
- Kimura, Y.; Ishibashi, Y.; Tsuda, E.; Yamamoto, Y.; Tsukada, H.; Toh, S. Mechanisms for anterior cruciate ligament injuries in badminton. Br. J. Sports Med. 2010, 44, 1124–1127. [Google Scholar] [PubMed]
- Kaldau, N.C.; Andersen, F.F.; Barfod, K.W.; Hersnaes, P.N.; Bencke, J.; Holmich, P. ACL injury characteristics in badminton: A registry study with prospectively collected data on sports related epidemiology and injury mechanism of 539 badminton players. Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2024, 38, 22–28. [Google Scholar] [CrossRef]
- Tan, Y.; Kaldau, N.C.; Lumban-Gaol, I.; Burdiparama, N.C.; Peers, K. Anterior cruciate ligament injuries in elite badminton athletes: 84% return to sport, half return to performance. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 2978–2998. [Google Scholar] [CrossRef] [PubMed]
- McErlain-Naylor, S.A.; Towler, H.; Afzal, I.A.; Felton, P.J.; Hiley, M.J.; King, M.A. Effect of racket-shuttlecock impact location on shot outcome for badminton smashes by elite players. J. Sports Sci. 2020, 38, 2471–2478. [Google Scholar] [CrossRef]
- Bates, N.A.; Myer, G.D.; Hale, R.F.; Schilaty, N.D.; Hewett, T.E. Prospective frontal plane angles used to predict ACL strain and identify those at high risk for sports-related ACL injury. Orthop. J. Sports Med. 2020, 8, 2325967120957646. [Google Scholar]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Nakamae, A.; Shima, Y.; Bahr, R.; Krosshaug, T. Hip and ankle kinematics in noncontact anterior cruciate ligament injury situations: Video analysis using model-based image matching. Am. J. Sports Med. 2018, 46, 333–340. [Google Scholar] [CrossRef]
- Ye, B.; Liu, G.; He, Z.; Xu, J.; Pan, H.; Zhu, H. Biomechanical mechanisms of anterior cruciate ligament injury in the jerk dip phase of clean and jerk: A case study of an injury event captured on-site. Heliyon 2024, 10, e31390. [Google Scholar]
- Cronström, A.; Creaby, M.W.; Nae, J.; Ageberg, E. Gender differences in knee abduction during weight-bearing activities: A systematic review and meta-analysis. Gait Posture 2016, 49, 315–328. [Google Scholar]
- Waldén, M.; Krosshaug, T.; Bjorneboe, J.; Andersen, T.E.; Faul, O.; Hägglund, M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases. Br. J. Sports Med. 2015, 49, 1452–1460. [Google Scholar] [CrossRef]
- He, Z.; Zhu, H.; Ye, B.; Zheng, Z.; Liu, G.; Pan, H.; Liu, R. Does chronic ankle instability patients lead to changes in biomechanical parameters associated with anterior cruciate ligament injury during landing? A systematic review and meta-analysis. Front. Physiol. 2024, 15, 1428879. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; Mclean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef]
- Hung, M.H.; Chang, C.Y.; Lin, K.C.; Hung, C.L.; Ho, C.S. The applications of landing strategies in badminton footwork training on a backhand side lateral jump smash. J. Hum. Kinet. 2020, 73, 19–31. [Google Scholar] [CrossRef]
- Rambely, A.S.; Wan Abas, W.A.B.; Yusof, M.S. The analysis of the jumping smash in the game of badminton. In Proceedings of the 23rd International Symposium on Biomechanics in Sports, Beijing, China, 22–27 August 2005. [Google Scholar]
- Xu, D.; Jiang, X.; Cen, X.; Baker, J.S.; Gu, Y. Single-leg landings following a volleyball spike may increase the risk of anterior cruciate ligament injury more than landing on both-legs. Appl. Sci. 2021, 11, 130. [Google Scholar] [CrossRef]
- Hewett, T.E.; Torg, J.S.; Boden, B.P. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: Lateral trunk and knee abduction motion are combined components of the injury mechanism. Br. J. Sports Med. 2009, 43, 417–422. [Google Scholar] [CrossRef]
- Saito, A.; Okada, K.; Sasaki, M.; Wakasa, M. Influence of the trunk position on knee kinematics during the single-leg landing: Implications for injury prevention. Sports Biomech. 2020, 21, 810–823. [Google Scholar] [CrossRef]
- Sasaki, S.; Tsuda, E.; Yamamoto, Y.; Maeda, S.; Kimura, Y.; Fujita, Y.; Ishibashi, Y. Core muscle training and neuromuscular control of the lower limb and trunk. J. Athl. Train. 2019, 54, 959–969. [Google Scholar] [CrossRef]
- Lee, J.; Shin, C.S. Sex difference in effect of ankle landing biomechanics in sagittal plane on knee valgus moment during single-leg landing. Sci. Rep. 2022, 12, 18821. [Google Scholar] [CrossRef]
- van der Does, H.T.; Brink, M.S.; Benjaminse, A.; Visscher, C.; Lemmink, K.A. Jump landing characteristics predict lower extremity injuries in indoor team sports. Int. J. Sports Med. 2016, 37, 251–256. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Ogasawara, I.; Suzuki, Y.; Nakata, K.; Nomura, T. Exploring pre-impact landing kinematics associated with increase and decrease in the anterior cruciate ligament injury risk. J. Biomech. 2022, 145, 111382. [Google Scholar]
- Kimura, Y.; Ishibashi, Y.; Tsuda, E.; Yamamoto, Y.; Hayashi, Y.; Sato, S. Increased knee valgus alignment and moment during single-leg landing after overhead stroke as a potential risk factor of anterior cruciate ligament injury in badminton. Br. J. Sports Med. 2012, 46, 207–213. [Google Scholar]
- He, Z.; Liu, G.; Zhang, B.; Ye, B.; Zhu, H. Impact of specialized fatigue and backhand smash on the ankle biomechanics of female badminton players. Sci. Rep. 2024, 14, 10282. [Google Scholar] [CrossRef]
- Ramasamy, Y.; Usman, J.; Sundar, V.; Towler, H.; King, M.A. Kinetic and kinematic determinants of shuttlecock speed in the forehand jump smash performed by elite male Malaysian badminton players. Sports Biomech. 2021, 23, 582–597. [Google Scholar]
- Towler, H.; Mitchell, S.R.; King, M.A. Effects of racket moment of inertia on racket head speed, impact location and shuttlecock speed during the badminton smash. Sci. Rep. 2023, 13, 14060. [Google Scholar]
- Avedesian, J.M.; Lawrence, W.J.; Wang, H.; Dickin, D.C. Kinetic analysis of unilateral landings in female volleyball players after a dynamic and combined dynamic-static warm up. J. Strength Cond. Res. 2019, 33, 1524–1533. [Google Scholar]
- Ishida, T.; Koshino, Y.; Yamanaka, M.; Ueno, R.; Taniguchi, S.; Ino, T.; Kasahara, S.; Samukawa, M.; Tohyama, H. Larger hip external rotation motion is associated with larger knee abduction and internal rotation motions during a drop vertical jump. Sports Biomech. 2021, 23, 640–654. [Google Scholar]
- Tillman, M.D.; Hass, C.J.; Brunt, D.; Bennett, G.R. Jumping and landing techniques in elite women’s volleyball. J. Sports Sci. Med. 2004, 3, 30–36. [Google Scholar]
- Smith, A.C.; Roberts, J.R.; Wallace, E.S.; Kong, P.; Forrester, S.E. Comparison of two- and three-dimensional methods for analysis of trunk kinematic variables in the golf swing. J. Appl. Biomech. 2016, 32, 23–31. [Google Scholar]
- Olsen, O.E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury mechanisms for anterior cruciate ligament injuries in team handball: A systematic video analysis. Am. J. Sports Med. 2004, 32, 1002–1012. [Google Scholar] [CrossRef]
- Cicchetti, D.V. Guidelines, criteria and rules of thumb for evaluating normed and standardised assessment instruments in psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Ishida, T.; Yamanaka, M.; Takeda, N.; Aoki, Y. Knee rotation associated with dynamic knee valgus and toe direction. Knee 2014, 21, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Sato, H.; Takahira, N. Muscle activity response to external moment during single-leg drop landing in young basketball players: The importance of biceps femoris in reducing internal rotation of knee during landing. J. Sports Sci. Med. 2012, 11, 255–259. [Google Scholar]
- Shin, C.S.; Chaudhari, A.M.; Andracchi, T.P. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Med. Sci. Sports. Exerc. 2011, 43, 1484–1491. [Google Scholar] [CrossRef]
- Santos, C.F.; Bastos, R.; Andrade, R.; Pereira, R.; Parente, M.P.L.; Jorge, R.N.; Espregueira-Mendes, J. Revisiting the role of knee external rotation in non-contact ACL mechanism of injury. Appl. Sci. 2023, 13, 3802. [Google Scholar] [CrossRef]
- Wojtys, E.M.; Beaulieu, M.L.; Ashton-Miller, J.A. New perspectives on ACL injury: On the role of repetitive sub-maximal knee loading in causing ACL fatigue failure. J. Orthop. Res. 2016, 34, 2059–2068. [Google Scholar] [CrossRef]
- Zhao, X.; Gu, Y. Single leg landing movement differences between male and female badminton players after overhead stroke in the backhand-side court. Hum. Mov. Sci. 2019, 66, 142–148. [Google Scholar] [CrossRef]
- Hinshaw, T.J.; Davis, D.J.; Layer, J.S.; Wilson, M.A.; Zhu, Q.; Dai, B. Mid-flight lateral trunk bending increased ipsilateral leg loading during landing: A center of mass analysis. J. Sports Sci. 2018, 37, 414–423. [Google Scholar] [CrossRef]
- Rouissi, M.; Haddad, M.; Bragazzi, N.L.; Owen, A.L.; Moalla, W.; Chtara, M.; Chamari, K. Implication of dynamic balance in change of direction performance in young elite soccer players is angle dependent? J. Sports Med. Phys. Fit. 2018, 58, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar]
- Anderson, A.F.; Dome, D.C.; Gautnam, S.; Awh, M.H.; Rennirt, G.W. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am. J. Sports Med. 2001, 29, 58–66. [Google Scholar] [PubMed]
- Phomsoupha, M.; Laffaye, G. The science of badminton: Game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports Med. 2015, 45, 473–495. [Google Scholar] [PubMed]
Categories | Variables | Mean ± SD |
---|---|---|
kinematics | ankle dorsi/plantarflexion angle at FC (°) | 49.3 ± 5.3 |
knee flex/extension angle at FC (°) | −18.4 ± 7.5 | |
knee int/external rotation angle at FC (°) | 2.3 ± 10.7 | |
knee add/abduction angle at FC (°) | 0.3 ± 5.1 | |
hip add/abduction angle at FC (°) | 23.7 ± 7.4 | |
trunk lateral flexion angle at FC (°) a | −12.3 ± 6.7 | |
peak ankle dorsiflexion angle (°) | −16.4 ± 5.7 | |
peak knee flexion angle (°) | −58.0 ± 8.2 | |
peak knee abduction angle (°) | 4.7 ± 7.0 | |
knee abduction range of motion (°) b | 9.0 ± 3.2 | |
peak knee internal rotation angle (°) | −12.1 ± 7.1 | |
peak hip flexion angle (°) | −2.1 ± 8.6 | |
peak hip abduction angle (°) | 23.7 ± 7.4 | |
peak hip external rotation angle (°) | 16.6 ± 9.1 | |
peak trunk flexion angle (°) | −14.2 ± 8.2 | |
peak trunk lateral flexion angle (°) a | −16.8 ± 6.4 | |
peak knee flexion angular velocity (°/s) | 584.3 ± 127.8 | |
peak hip flexion angular velocity (°/s) | 314.9 ± 93.0 | |
spatiotemporal | maximum height of center of mass (cm) | 139.75 ± 11.09 |
jump height (cm) | 54.57 ± 10.66 | |
jump height to standing height ratio | 0.83 ± 0.04 | |
landing time (s) | 0.14 ± 0.02 | |
time to peak GRF (s) | 0.06 ± 0.01 | |
time to peak KAA (s) | 0.08 ± 0.03 | |
anthropometry | BMI | 20.2 ± 2.3 |
sitting height (cm) | 88.2 ± 5.1 | |
waist circumference (cm) | 69.9 ± 6.1 | |
glute circumference (cm) | 87.6 ± 5.8 | |
thigh circumference (cm) | 48.7 ± 3.7 | |
calf circumference (cm) | 34.8 ± 2.2 | |
relative trunk length (cm) | 52.5 ± 1.4 | |
arm length (cm) | 77.0 ± 3.3 | |
leg length (cm) | 100.6 ± 5.2 | |
tibial length (cm) | 37.8 ± 2.1 | |
arm-to-leg ratio | 0.77 ± 0.03 | |
bone density (g/mL) | 1.08 ± 0.01 | |
body fat% | 9.84 ± 3.83 |
Categories | Variables | r | p |
---|---|---|---|
kinematics | ankle dorsi/plantar flexion angle at FC (°) | −0.097 | 0.675 |
knee flex/extension angle at FC (°) | 0.531 | 0.013 * | |
knee int/external rotation angle at FC (°) | −0.706 | 0.000 ** | |
hip add/abduction angle at FC (°) | 0.099 | 0.671 | |
trunk lateral flexion at FC (°) | 0.511 | 0.018 * | |
peak ankle dorsiflexion angle (°) | 0.417 | 0.060 | |
peak knee flexion angle (°) | −0.275 | 0.228 | |
peak knee internal rotation angle (°) | 0.563 | 0.008 ** | |
peak hip flexion angle (°) | −0.027 | 0.446 | |
peak hip abduction angle (°) | 0.154 | 0.506 | |
peak hip external rotation angle (°) | −0.077 | 0.739 | |
peak trunk flexion angle (°) | 0.404 | 0.069 | |
peak trunk lateral flexion angle (°) | 0.283 | 0.214 | |
peak knee flexion angular velocity (°/s) | −0.014 | 0.953 | |
peak hip flexion angular velocity (°/s) | 0.235 | 0.305 | |
spatiotemporal | maximum height of center of mass (cm) | −0.350 | 0.120 |
jump height (cm) | −0.469 | 0.032 * | |
jump height to standing height ratio | −0.432 | 0.051 | |
landing time (s) | 0.475 | 0.029 * | |
time to peak GRF (s) | 0.301 | 0.185 | |
time to peak KAA (s) | 0.332 | 0.141 | |
anthropometry | body mass index (BMI) | 0.081 | 0.728 |
sitting height (cm) | −0.163 | 0.480 | |
waist circumference (cm) | 0.152 | 0.510 | |
glute circumference (cm) | 0.050 | 0.831 | |
thigh circumference (cm) | −0.194 | 0.400 | |
calf circumference (cm) | 0.081 | 0.726 | |
relative trunk length (cm) | −0.149 | 0.519 | |
arm length (cm) | 0.265 | 0.246 | |
tibial length (cm) | 0.118 | 0.610 | |
leg length (cm) | −0.070 | 0.762 | |
arm-to-leg ratio | −0.090 | 0.697 | |
bone density (g/mL) | −0.346 | 0.125 | |
body fat percentage (%) | 0.346 | 0.126 |
Categories | Predictors Model | R | R2 | Adj. R2 | F | Beta | p |
---|---|---|---|---|---|---|---|
kinematics | * knee int/external rotation angle at FC | 0.777 | 0.604 | 0.560 | 13.752 | −1.662 | 0.002 |
* peak knee internal rotation angle | 1.010 | 0.041 | |||||
knee flexion angle at FC | 0.085 | 0.729 | |||||
trunk lateral flexion angle at FC | 0.072 | 0.718 | |||||
spatiotemporal | * landing time | 0.475 | 0.226 | 0.185 | 5.547 | 0.475 | 0.029 |
jump height | −0.377 | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeap, M.W.; Ramasamy, Y.; Usman, J.; King, M.; Razman, R. Knee Abduction Angles and Landing Kinematics in Badminton Jump Smash: A Study of ACL Injury Risk Factors. Bioengineering 2025, 12, 343. https://doi.org/10.3390/bioengineering12040343
Yeap MW, Ramasamy Y, Usman J, King M, Razman R. Knee Abduction Angles and Landing Kinematics in Badminton Jump Smash: A Study of ACL Injury Risk Factors. Bioengineering. 2025; 12(4):343. https://doi.org/10.3390/bioengineering12040343
Chicago/Turabian StyleYeap, Ming Wei, Yuvaraj Ramasamy, Juliana Usman, Mark King, and Rizal Razman. 2025. "Knee Abduction Angles and Landing Kinematics in Badminton Jump Smash: A Study of ACL Injury Risk Factors" Bioengineering 12, no. 4: 343. https://doi.org/10.3390/bioengineering12040343
APA StyleYeap, M. W., Ramasamy, Y., Usman, J., King, M., & Razman, R. (2025). Knee Abduction Angles and Landing Kinematics in Badminton Jump Smash: A Study of ACL Injury Risk Factors. Bioengineering, 12(4), 343. https://doi.org/10.3390/bioengineering12040343