Bilayer Type I Atelocollagen Scaffolds for In Vivo Regeneration of Articular Cartilage Defects
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Preparation of the Atelocollagen and Collagen Scaffolds
2.3. Animal Experiments
2.4. Surgical Procedure
2.5. Macroscopic Analysis
2.6. Histological Analysis
2.7. Statistical Analyses
3. Results
3.1. Macroscopic Observation
3.2. Histological Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MFx | Microfracture |
ECM | Extracellular matrix |
MSC | Mesenchymal stem cells |
ANOVA | Analysis of variance |
References
- Karamanos, N.K.; Theocharis, A.D.; Piperigkou, Z.; Manou, D.; Passi, A.; Skandalis, S.S.; Vynios, D.H.; Orian-Rousseau, V.; Ricard-Blum, S.; Schmelzer, C.E.H.; et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021, 288, 6850–6912. [Google Scholar] [CrossRef] [PubMed]
- Dowthwaite, G.P.; Bishop, J.C.; Redman, S.N.; Khan, I.M.; Rooney, P.; Evans, D.J.; Haughton, L.; Bayram, Z.; Boyer, S.; Thomson, B.; et al. The surface of articular cartilage contains a progenitor cell population. J. Cell Sci. 2004, 117, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Kraeutler, M.J.; Belk, J.W.; Purcell, J.M.; McCarty, E.C. Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee: A systematic review of 5-year outcomes. Am. J. Sports Med. 2018, 46, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Orth, P.; Gao, L.; Madry, H. Microfracture for cartilage repair in the knee: A systematic review of the contemporary literature. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 670–706. [Google Scholar] [CrossRef]
- Powers, R.T.; Dowd, T.C.; Giza, E. Surgical treatment for osteochondral lesions of the talus. Arthroscopy 2021, 37, 3393–3396. [Google Scholar] [CrossRef]
- Juan, J.R. Improvement of full-thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am. J. Knee Surg. 1994, 7, 109–116. [Google Scholar]
- Song, S.J.; Park, C.H. Microfracture for cartilage repair in the knee: Current concepts and limitations of systematic reviews. Ann. Transl. Med. 2019, 7 (Suppl. 3), S108. [Google Scholar] [CrossRef] [PubMed]
- Steadman, J.R.; Rodkey, W.G.; Rodrigo, J.J. Microfracture: Surgical technique and rehabilitation to treat chondral defects. Clin. Orthop. Relat. Res. 2001, 391, S362–S369. [Google Scholar] [CrossRef]
- Dorotka, R.; Windberger, U.; Macfelda, K.; Bindreiter, U.; Toma, C.; Nehrer, S. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials 2005, 26, 3617–3629. [Google Scholar] [CrossRef]
- Breinan, H.A.; Martin, S.D.; Hsu, H.P.; Spector, M. Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J. Orthop. Res. 2000, 18, 781–789. [Google Scholar] [CrossRef]
- Jelodari, S.; Ebrahimi Sadrabadi, A.; Zarei, F.; Jahangir, S.; Azami, M.; Sheykhhasan, M.; Hosseini, S. New insights into cartilage tissue engineering: Improvement of tissue-scaffold integration to enhance cartilage regeneration. BioMed Res. Int. 2022, 2022, 7638245. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Bada, L.P.; Kang, C.S.; Lee, J.S.; Kim, C.H.; Park, J.H.; Kim, B.S. Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnol. Lett. 2008, 30, 435–439. [Google Scholar] [CrossRef]
- Kramer, J.; Böhrnsen, F.; Lindner, U.; Behrens, P.; Schlenke, P.; Rohwedel, J. In vivo matrix-guided human mesenchymal stem cells. Cell. Mol. Life Sci. 2006, 63, 616–626. [Google Scholar] [CrossRef]
- Erggelet, C. Enhanced marrow stimulation techniques for cartilage repair. Oper. Tech. Orthop. 2014, 24, 2–13. [Google Scholar] [CrossRef]
- Fortier, L.A.; Potter, H.G.; Rickey, E.J.; Schnabel, L.V.; Foo, L.F.; Chong, L.R.; Stokol, T.; Cheetham, J.; Nixon, A.J. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J. Bone Jt. Surg. Am. 2010, 92, 1927–1937. [Google Scholar] [CrossRef] [PubMed]
- Volz, M.; Schaumburger, J.; Frick, H.; Grifka, J.; Anders, S. A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. Int. Orthop. 2017, 41, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Sur, Y.J.; Cho, M.L.; Go, E.J.; Kim, Y.H.; Shetty, A.A.; Kim, S.J. Atelocollagen promotes chondrogenic differentiation of human adipose-derived mesenchymal stem cells. Sci. Rep. 2020, 10, 10678. [Google Scholar] [CrossRef]
- Hsieh, D.J.; Srinivasan, P. Protocols for accelerated production and purification of collagen scaffold and atelocollagen from animal tissues. BioTechniques 2020, 69, 220–225. [Google Scholar] [CrossRef]
- Woo, S.H.; Lee, B.K.; Roh, H.S.; Kwak, A.S.; Yang, J.H.; Park, J.Y.; Yoo, J.C. Biodegradation of atelocollagen in the articular cavity. Polymer 2024, 48, 413–418. [Google Scholar]
- Makris, E.A.; Gomoll, A.H.; Malizos, K.N.; Hu, J.C.; Athanasiou, K.A. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 2015, 11, 21–34. [Google Scholar] [CrossRef]
- Mimura, T.; Imai, S.; Kubo, M.; Isoya, E.; Ando, K.; Okumura, N.; Matsusue, Y. A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair. Osteoarthr. Cartil. 2008, 16, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, J.; Wang, H.; Huang, J.; Liu, S.; Zhu, Y.; Wang, P.; Guo, Q.; Yu, C.; Wang, A.; et al. Comparison of the properties of a native articular cartilage extracellular matrix-derived oriented scaffold and the Chondro-Gide bilayered scaffold-cartilage tissue engineering. Int. J. Clin. Exp. Med. 2016, 9, 10627–10638. [Google Scholar]
- Yoo, J.C.; Kim, M.S.; Sohn, S.; Woo, S.H.; Choi, Y.R.; Kwak, A.S.; Lee, D.S. Atelocollagen scaffold enhances cartilage regeneration in osteochondral defects: A study in rabbits. Tissue Eng. Regen. Med. 2024, 21, 329–339. [Google Scholar] [CrossRef]
- Institute of Laboratory Animal Resources (US), Committee on Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals; US Department of Health and Human Services, Public Health Service, National Institutes of Health: Bethesda, MD, USA, 1986. [Google Scholar]
- O’Driscoll, S.W.; Keeley, F.W.; Salter, R.B. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J. Bone Jt. Surg. Am. 1988, 70, 595–606. [Google Scholar] [CrossRef]
- O’Driscoll, S.W.; Keeley, F.W.; Salter, R.B. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J. Bone Jt. Surg. Am. 1986, 68, 1017–1035. [Google Scholar] [CrossRef]
- Pineda, S.; Pollack, A.; Stevenson, S.; Goldberg, V.; Caplan, A. A semiquantitative scale for histologic grading of articular cartilage repair. Acta Anat. 1992, 143, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Wakitani, S.; Goto, T.; Pineda, S.J.; Young, R.G.; Mansour, J.M.; Caplan, A.I.; Goldberg, V.M. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Jt. Surg. Am. 1994, 76, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Kuyinu, E.L.; Narayanan, G.; Nair, L.S.; Laurencin, C.T. Animal models of osteoarthritis: Classification, update, and measurement of outcomes. J. Orthop. Surg. Res. 2016, 11, 19. [Google Scholar] [CrossRef]
- Mankin, H.J. The response of articular cartilage to mechanical injury. J. Bone Jt. Surg. Am. 1982, 64, 460–466. [Google Scholar] [CrossRef]
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and treatment of hip and knee osteoarthritis: A review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef]
- Williams, R.J., 3rd; Harnly, H.W. Microfracture: Indications, technique, and results. Instr. Course Lect. 2007, 56, 419–428. [Google Scholar] [PubMed]
- Lee, D.H.; Kim, S.J.; Kim, S.A.; Ju, G.I. Past, present, and future of cartilage restoration: From localized defect to arthritis. Knee Surg. Relat. Res. 2022, 34, 1. [Google Scholar] [CrossRef] [PubMed]
- Freitag, J.; Bates, D.; Boyd, R.; Shah, K.; Barnard, A.; Huguenin, L.; Tenen, A. Mesenchymal stem cell therapy in the treatment of osteoarthritis: Reparative pathways, safety and efficacy—A review. BMC. Musculoskelet. Disord. 2016, 17, 230. [Google Scholar] [CrossRef] [PubMed]
Category | Points |
---|---|
Cell morphology | |
Hyaline cartilage | 0 |
Mostly hyaline cartilage | 1 |
Mostly fibrocartilage | 2 |
Mostly non-cartilage | 3 |
Non-cartilage only | 4 |
Matrix-staining | |
Normal | 0 |
Slightly reduced | 1 |
Moderately reduced | 2 |
Markedly reduced | 3 |
None | 4 |
Surface regularity | |
Smooth (>3/4) | 0 |
Slight disruption | 1 |
Severe disruption | 2 |
Filling of the defect | |
≥111% | |
91–110% | 0 |
76–90% | 1 |
51–75% | 2 |
26–50% | 3 |
≥25% | 4 |
Thickness of cartilage | |
>2/3 | 0 |
1/3–2/3 | 1 |
<1/3 | 2 |
Integration of donor with host adjacent cartilage | |
Normal continuity and integration | 0 |
Decreased cellularity | 1 |
Gap (lack of continuity) on one side | 2 |
Gap (lack of continuity) on one side | 3 |
Percentage replacement of subchondral bone | |
90–100% | 0 |
75–89% | 1 |
50–74% | 2 |
25–49% | 3 |
0–24% | 4 |
Total score | 23 |
Time After Implantation | Group (n = 4) | |||
---|---|---|---|---|
Test | Positive | Negative | ||
MFx | 3 W | 19.55 ± 0.58 | 18.53 ± 1.29 | 20.43 ± 0.21 |
6 W | 13.80 ± 2.99 | 16.80 ± 1.64 | 17.45 ± 1.17 | |
12 W | 12.16 ± 1.27 * | 11.93 ± 1.45 * | 17.26 ± 2.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, S.H.; Lee, B.K.; Kwak, A.S.; Yang, J.H.; Kim, S.Y.; Kim, M.S.; Yoo, J.C. Bilayer Type I Atelocollagen Scaffolds for In Vivo Regeneration of Articular Cartilage Defects. Bioengineering 2025, 12, 446. https://doi.org/10.3390/bioengineering12050446
Woo SH, Lee BK, Kwak AS, Yang JH, Kim SY, Kim MS, Yoo JC. Bilayer Type I Atelocollagen Scaffolds for In Vivo Regeneration of Articular Cartilage Defects. Bioengineering. 2025; 12(5):446. https://doi.org/10.3390/bioengineering12050446
Chicago/Turabian StyleWoo, Sang Hun, Bo Keun Lee, Andrew S. Kwak, Jin Hyo Yang, Seo Yeon Kim, Man Soo Kim, and Ji Chul Yoo. 2025. "Bilayer Type I Atelocollagen Scaffolds for In Vivo Regeneration of Articular Cartilage Defects" Bioengineering 12, no. 5: 446. https://doi.org/10.3390/bioengineering12050446
APA StyleWoo, S. H., Lee, B. K., Kwak, A. S., Yang, J. H., Kim, S. Y., Kim, M. S., & Yoo, J. C. (2025). Bilayer Type I Atelocollagen Scaffolds for In Vivo Regeneration of Articular Cartilage Defects. Bioengineering, 12(5), 446. https://doi.org/10.3390/bioengineering12050446