The Transformation Experiment of Frederick Griffith II: Inclusion of Cellular Heredity for the Creation of Novel Microorganisms
Abstract
1. Introduction
2. The Griffith Transformation Experiment
2.1. Previous Designs 1.0 and 1.1
2.2. Early Findings on Transformation
2.2.1. Mechanisms of Bacteria
2.2.2. Mechanisms of Lower Eukaryotes
3. Putative Experimental Designs for the Creation of Novel Microorganisms
3.1. Designing Novel Bacteria
3.1.1. Early Conceptions on Horizontal Gene Transfer
3.1.2. Paragglutination
3.1.3. Current Concepts on HGT
3.1.4. Current Conceptions on Mechanism and Specificity of Transformation
3.1.5. Micelle-like LP/LPS Complexes as Non-DNA Matter of Inheritance in Bacteria
3.1.6. “Blending” of Bacteria
3.1.7. Bacterial Cytoskeleton
3.1.8. Ranking of Various Experimental Designs of “Blending” and Transformation According to Their Putative Potential of Exclusion and Bias
3.2. Designing Novel Eukaryotic Unicellular Microorganisms
3.2.1. Somatic Cell Nuclear Transfer
3.2.2. Transfer of Macromolecular, Structural, and Regulatory Matter and Information for Synthetic Biology
3.3. Designing Cyborg Cells
- (i)
- The binding of RNA bases and sugars to decanoic acid led to stable (i.e., non-flocculating by salt) aggregates of a prebiotic amphiphilic membrane-like structure (in additive fashion) which may support the emergence of viable protocells by mutually reinforcing mechanisms through their stabilization towards salt [221];
- (ii)
- A protocell-like supramolecular assembly, called “Jeewanu”, was prepared by sunlight exposure of an aqueous mixture of inorganic and organic substances, which, upon structural analysis (based on acidic and basic dyes), revealed a regular organization with metabolic characteristics and the ability to convert solar energy into useful forms. These results strongly argued for the existence of similar energy-transducing systems in a prebiotic atmosphere [222];
- (iii)
- Molecular systems were developed by cycles of hydration and dehydration, undergoing chemical evolution in dehydrated films on mineral surfaces, followed by encapsulation and combinatorial selection in a hydrated bulk phase. This led to the formation of a dehydrated phase consisting of concentrated eutectic mixtures or multilamellar liquid crystalline matrices and concomitantly of vesicles. Each of them represented a protocell during an “experiment” in a natural version of combinatorial chemistry, which, upon continued cycling over time, may result in molecular systems having fundamental properties of life [223];
- (iv)
- Efficient and stable systems have been introduced undergoing structural reproduction, self-optimization and molecular evolution whereby (iv-a) two cyclic processes interact, one for vesicles as structural environment, the other supplying peptides from various amino acids as versatile building blocks; (iv-b) combination of both cycles support their own existence to undergo chemical and structural evolution; (iv-c) unpredicted functional properties may develop; (iv-d) mutual stabilization of the peptides by the vesicles and of the vesicles by the peptides with constant production of both occurs; (iv-e) combination of both cycles serve as a model for the formation of self-evolving structures, leading to the first living cell; (iv-f) vesicle-induced accumulation of membrane-interacting peptides happens, which results in a reduction in vesicle size, increase in membrane permeability and improvement of vesicle thermal stability [224];
- (v)
- It has been confirmed that interactions between RNA/DNA and proteins act as cornerstone of biological processes [225], such as gene regulation, among them the binding of short RNAs (≥3 n) in sequence-dependent manner to peptide amyloids with (v-a) 3′-5′ linked RNA backbone supporting these (electrostatic) interactions; (v-b) phosphodiester backbone and nucleobases (negatively charged) and amyloids (positively charged) contributing to affinity (differences between RNA and DNA); (v-c) support of self-replication of the amyloids; (v-d) mutual increase in stability of both RNA and amyloids; (v-e) local increase in the concentration of RNA/DNA in diluted unordered systems; and (v-f) selective (evolutionary?) advantage of cooperation vs. competition for interacting molecules [225];
- (vi)
- Artificial cells, based on non-replicating materials, with reduced biochemical complexity but upregulated, more defined, and controllable functions, were constructed. These efforts resulted in the first report on the creation of hybrid material-entities termed “Cyborg” cells [220]. The assembly of a synthetic polymer network inside each bacterium rendered them incapable of division, too, however, with preservation of essential functions, among them cellular metabolism, motility, protein synthesis, and compatibility with genetic circuits. Furthermore, the acquisition of new abilities was aimed at the resistance towards cellular stressors and necrosis/apoptosis, as well as at invasion into cancer cells, with a combination of intracellular man-made polymers and their interaction with the protein network of living cells [220].
4. Conclusions–Creation of Novel Microorganisms by “Facilitated Variation”
4.1. Early and Present Conceptions About the Relationship of DNA, Non-DNA Matter, and Cells
4.2. “Facilitated Variation”
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
LP | Lipoprotein(s) |
LPS | Lipopolysaccharide(s) |
OM | Outer membrane(s) |
PEG | Polyethyleneglycol |
PM | Plasma membrane(s) |
(R)/(S) | Rough/Smooth pneumococcal serotype |
STS | Science and technology studies |
References
- Winnacker, E.-L. Gene und Klone. Eine Einführung in Die Gentechnologie; Verlag Chemie: Weinheim, Germany; Deerfield Beach, FL, USA; Basel, Switzerland, 1984. [Google Scholar]
- Shaw, G.B. Back to Methuselah. In the beginning. In Complete Plays and Prefaces; Dodd, Mead & Co.: New York, NY, USA, 1963; Volume II, p. 6. [Google Scholar]
- Loeb, J. The Mechanistic Conception of Life; Harvard University Press: Cambridge, MA, USA, 1964; p. 5. [Google Scholar]
- Maniatis, T.; Fritsch, E.F.; Sambrook, J. Molecular Cloning; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1982. [Google Scholar]
- Shikov, A.E.; Malovichko, Y.V.; Nizhnikov, A.A.; Antonets, K.S. Current methods for recombination detection in bacteria. Int. J. Mol. Sci. 2022, 23, 6257. [Google Scholar] [CrossRef] [PubMed]
- Shikov, A.E.; Savina, I.A.; Nizhnikov, A.A.; Antonets, K.S. Recombination in bacterial genomes: Evolutionary trends. Toxins 2023, 15, 568. [Google Scholar] [CrossRef]
- Harraway, D.J. Crystals, Fabrics, and Fields. Metaphors That Shape Embryos; North Atlantic Books: Berkeley, CA, USA, 1976. [Google Scholar]
- Haraway, D.J. Mice into wormholes: A technoscience fugue in two parts. In Modest_Witness@ Second_Millenium. FemaleMan©_Meets_OncoMouseTM.; Harraway, D., Ed.; Routledge: New York, NY, USA, 1997; pp. 49–118. [Google Scholar]
- Latour, B.; Woolgar, S. Laboratory Life. The Social Construction of Scientific Facts; Sage: London, UK, 1979. [Google Scholar]
- Latour, B. On actor-network theory. A few clarifications. Soz. Welt 1996, 47, 369–381. [Google Scholar]
- Callon, M. Einige Elemente einer Soziologie der Übersetzung. Die Domestikation der Kammmuscheln und der Fischer der St. Brieuc-Bucht. In ANThology. Ein Einführendes Handbuch zur Akteur-Netzwerk-Theorie; Bellinger, A., Krieger, D.J., Eds.; Transcript: Bielefeld, Germany, 1986; pp. 135–174. [Google Scholar]
- Law, J. After Method: Mess in Social Science Research; Routledge: London, UK, 2004. [Google Scholar]
- Barad, K. How material-discursive practices matter. Signs–J. Women Cult. Soc. 2003, 28, 803–831. [Google Scholar] [CrossRef]
- Barad, K. Diffracting diffraction. Cutting together-apart. Parallax 2014, 20, 168–187. [Google Scholar] [CrossRef]
- Barad, K. Meeting the Universe Halfway. Quantum Physics and the Entanglement of Matter and Meaning; Duke University Press: Durham, NC, USA, 2007. [Google Scholar]
- Müller, G. The transformation experiment of Frederick Griffith I: Its narrowing and potential for the creation of novel microorganisms. Bioengineering 2025, 12, 324. [Google Scholar] [CrossRef]
- Griffith, F. The significance of pneumococcal types. J. Hyg. 1928, 27, 113–159. [Google Scholar] [CrossRef]
- Rajagopal, M.; Walker, S. Envelope structures of gram-positive bacteria. Curr. Top. Microbiol. Immunol. 2017, 404, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, W.; Massidda, O.; Tomasz, A. The cell wall of Streptococcus pneumoniae. Microbiol. Spectr. 2019, 7, 284–303. [Google Scholar] [CrossRef]
- Calix, J.J.; Brady, A.M.; Du, V.Y.; Saad, J.S.; Nahm, M.H. Spectrum of pneumococcal serotype 11A variants results from incomplete loss of capsule O-acetylation. J. Clin. Microbiol. 2014, 52, 758–765. [Google Scholar] [CrossRef]
- O’Riordan, K.; Lee, J.C. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 2004, 17, 218–234. [Google Scholar] [CrossRef]
- Kohler, S.; Voß, F.; Gomez Mejia, A.; Brown, J.S.; Hammerschmidt, S. Pneumococcal lipoproteins in bacterial fitness, virulence, and immune evasion. FEBS J. 2016, 590, 3820–3839. [Google Scholar] [CrossRef] [PubMed]
- Kovacs-Simon, A.; Titball, R.W.; Michell, S.L. Lipoproteins of bacterial pathogens. Infect. Immun. 2011, 79, 548–561. [Google Scholar] [CrossRef] [PubMed]
- Müller, G. Glycosylphosphatidylinositol-anchored proteins as non-DNA matter of inheritance: From molecular to cell to philosophical matter. Acad. Mol. Bio. Gen. 2024, 1, 1–36. [Google Scholar] [CrossRef]
- Kaudewitz, F. Molekular-und Mikroben-Genetik; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1973. [Google Scholar]
- Watson, J.D. Molecular Biology of the Gene; W.A. Benjamin: Menlo Park, MA, USA, 1977; pp. 174–175. [Google Scholar]
- Stryrer, L. Biochemistry; W.H. Freeman: San Francisco, CA, USA, 1981; pp. 561–563. [Google Scholar]
- Avery, O.T.; MacLeod, C.M.; McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types III. J. Exp. Med. 1944, 79, 137–158. [Google Scholar] [CrossRef] [PubMed]
- Kulp, A.; Kuehn, M.J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 2010, 64, 163–184. [Google Scholar] [CrossRef]
- Schwechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from gram-negative bacteria: Biogenesis and function. Nat. Rev. 2015, 13, 605–619. [Google Scholar] [CrossRef]
- Nagakubo, T.; Nomura, N.; Toyofuku, M. Cracking open bacterial membrane vesicles. Front. Microbiol. 2020, 10, 3026. [Google Scholar] [CrossRef]
- Sartorio, M.G.; Pardue, E.J.; Feldman, M.F.; Haurat, M.F. Bacterial outer membrane vesicles: From discovery to applications. Annu. Rev. Microbiol. 2021, 75, 609–630. [Google Scholar] [CrossRef]
- Juodeikis, R.; Carding, S.R. Outer membrane vesicles: Biogenesis, function, and issues. Microbiol. Mol. Biol. Rev. 2022, 86, e00032-22. [Google Scholar] [CrossRef]
- Briaud, P.; Carroll, R.K. Extracellular vesicle biogenesis and functions in gram-positive bacteria. Infect. Immun. 2020, 88, e00433-20. [Google Scholar] [CrossRef]
- Lee, J.; Youn Kim, O.; Song Gho, Y. Proteomic profiling of gram-negative bacterial outer membrane vesicles: Current perspectives. Proteomics 2016, 10, 897–909. [Google Scholar] [CrossRef]
- Dineshkumar, K.; Aparna, V.; Wu, L.; Wan, J.; Abdelaziz, M.H.; Su, Z.; Wang, S.; Xu, H. Bacterial bug-out bags: Outer membrane vesicles and their proteins and functions. J. Microbiol. 2020, 58, 531–542. [Google Scholar] [CrossRef]
- Toyofuku, M.; Schild, S.; Kaparakis-Liaskos, M.; Eberl, L. Composition and functions of bacterial membrane vesicles. Nat. Rev. Microbiol. 2023, 21, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Hershey, A.D.; Chase, M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 1952, 36, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Tatum, E.L.; Lederberg, J. Gene recombination in the bacterium Escherichia coli. J. Bact. 1947, 53, 673–678. [Google Scholar] [CrossRef]
- Schlegel, H.G. Allgemeine Mikrobiologie; Thieme: Stuttgart, Germany, 1976. [Google Scholar]
- Hayes, W. The Genetics of Bacteria and Their Viruses; Blackwell: Oxford, UK, 1974. [Google Scholar]
- Spizizen, J. Transformation of a biochemically deficient strain of Bacillus subtilis by deoxyribonucleate. Proc. Natl. Acad. Sci. USA 1958, 44, 1072–1078. [Google Scholar] [CrossRef]
- Alexander, H.E.; Leidy, G. Determination of inherited traits of H. influenzae by deoxyribonucleic acid fractions isolated from typespecific cells. J. Exp. Med. 1951, 93, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Henner, W.D.; Kleber, I.; Benzinger, R. Transfection of Escherichia coli spheroplasts. J. Virol. 1973, 12, 741–747. [Google Scholar] [CrossRef]
- Mandel, M.; Higa, A. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 1970, 53, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.N.; Chang, A.C.Y.; Hsu, L. Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 1972, 69, 2110–2114. [Google Scholar] [CrossRef] [PubMed]
- Oishi, M.; Cosloy, S.D. The genetic and biochemical basis of the transformability of Escherichia coli K12. Biochem. Biophys. Res. Commun. 1972, 49, 1568. [Google Scholar] [CrossRef]
- Cosloy, S.D.; Oishi, M. Genetic transformation in Escherichia coli K12. Proc. Natl. Acad. Sci. USA 1973, 70, 84–87. [Google Scholar] [CrossRef]
- Benoit, J.; Leroy, P.; Vendrely, C.; Vendrely, R. Modifications of racial characters in ducklings from Pekin ducks and drakes previously injected with desoxyribonucleic acid from Khaki duck. Comptes Rendus Hebd. Seances Acad. Sci. 1957, 245, 448–451. [Google Scholar] [PubMed]
- Benoit, J.; Leroy, P.; Vendrely, R.; Vendrely, C. Experiments on Pekin ducks treated with DNA from Khaki Campbell ducks. Trans. N. Y. Acad. Sci. 1960, 22, 494–503. [Google Scholar] [CrossRef]
- Bhargava, P.M.; Shanmugam, G. Uptake of nonviral nucleic acids by mammalian cells. Progr. Nucleic Acid Res. Mol. Biol. 1971, 11, 103–192. [Google Scholar] [CrossRef]
- Khan, N.C.; Sen, S.P. Genetic transformation in yeasts. J. Gen. Microbiol. 1974, 83, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.C. The Role of RNA in Reproduction and Development; North-Holland: Amsterdam, The Netherlands, London, UK, 1973; pp. 259–268. [Google Scholar]
- Mishra, N.C.; Tatum, E.L. Non-mendelian inheritance of DNA-induced inositol independence. Proc. Natl. Acad. Sci. USA 1973, 70, 3875–3879. [Google Scholar] [CrossRef]
- Mishra, N.C.; Tatum, E.L. Induction of RNA of inositol independence in Neurospora crassa. Proc. Natl. Acad. Sci. USA 1975, 72, 642–645. [Google Scholar] [CrossRef]
- Lacks, S.; Greenberg, B.; Neuberger, M. Role of a desoxyribonuclease in the genetic transformation of Diplococcus pneumoniae. Proc. Natl. Acad. Sci. USA 1974, 71, 2305–2309. [Google Scholar] [CrossRef]
- Klingmüller, W. Genmanipulation und Gentherapie; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1976. [Google Scholar]
- Smith, T. Modification, temporary and permanent, of the physiological characters of bacteria in mixed cultures. Trans. Assoc. Am. Physicians 1894, 9, 85–109. [Google Scholar]
- Smith, T. Parasitism and Disease; Princeton University Press: Princeton, NJ, USA, 1934. [Google Scholar]
- Pasteur, L. De l’attenuation des virus et leur retour a la virulence. Comptes Rendus Acad. Sci. Paris 1881, 92, 429–435. [Google Scholar]
- Lederberg, J. Bacterial variation since Pasteur. Rummaging in the attic: Antiquarian ideas of transmissible heredity, 1880–1940. ASM News 1992, 58, 261–265. [Google Scholar]
- Braun, W. Bacterial dissociation: A critical review of a phenomenon of bacterial variation. Bacteriol. Rev. 1947, 11, 75–114. [Google Scholar] [CrossRef] [PubMed]
- Braun, W. Bacterial Genetics; W.B. Saunders: Philadelphia, PA, USA, 1953. [Google Scholar]
- Frobisher, M.; Brown, J.H. Transmissible toxicogenicity of streptococci. Bull. Johns Hopkins Hosp. 1927, 41, 167–173. [Google Scholar]
- Lederberg, J.; Lederberg, E.M.; Zinder, N.D.; Lively, E.R. Recombination analysis of bacterial heredity. Cold Spring Harb. Symp. Quant. Biol. 1951, 16, 413–421. [Google Scholar] [CrossRef]
- Zinder, N.D.; Lederberg, J. Genetic exchange in Salmonella. J. Bact. 1952, 64, 679–685. [Google Scholar] [CrossRef]
- Starodub, M.E.; Trevors, J.T. Mobilization of Escherichia coli R1 silver-resistance plasmid pJT1 by Tn5-Mob into Escherichia coli C600. Biol. Met. 1990, 3, 24–27. [Google Scholar] [CrossRef]
- Ezzell, J.W.; Mikesell, P.; Ivins, B.E.; Leppla, S.H. The genetic basis of Pasteur’s attenuation of Bacillus anthracis cultures. In The Wistar Symposium Series, vol. 3. World’s Debt to Pasteur; Koprowski, H., Plotkin, S.A., Eds.; Alan, R. Liss: New York, NY, USA, 1985; pp. 107–116. [Google Scholar]
- Bruner, D.W.; Edwards, P.R. Changes induced in the O antigens of Salmonella. J. Bacteriol. 1948, 55, 449. [Google Scholar] [CrossRef]
- Inoue, K.; Iida, H. Conversion of toxigenicity in Clostridium botulinum type C. Jpn. J. Microbiol. 1970, 14, 87–89. [Google Scholar] [CrossRef]
- Iseki, S.; Sakai, T. Artificial transformation of O antigens in Salmonella E group. Proc. Jpn. Acad. Sci. 1953, 29, 121–126. [Google Scholar] [CrossRef]
- Van Lanen, J.M.; Baldwin, I.L.; Riker, A.J. Attenuation of crown gall bacteria by cultivation in media containing glycine. J. Bacteriol. 1952, 63, 715–721. [Google Scholar] [CrossRef]
- Green, B.D.; Battisti, L.; Koehler, T.M.; Thorne, C.B.; Ivins, B.E. Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 1985, 49, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Finn, C.W.; Silvee, R.P.; Habig, W.H.; Hardegree, M.C.; Zon, G.; Garon, C.F. The structural gene for tetanus toxin is on a plasmid. Science 1984, 224, 881–884. [Google Scholar] [CrossRef]
- Amsterdamska, O. Stabilizing instability: The controversy over cyclogenic theories of bacterial variation during the interwar period. J. Hist. Biol. 1991, 24, 191–222. [Google Scholar] [CrossRef]
- Amsterdamska, O. From pneumonia to DNA: The research career of Oswald T Avery. Hist. St. Phys. Biol. Sci. 1993, 24, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Amsterdamska, O. Achieving disbelief: Thought styles, microbial variation, and American and British epidemiology, 1900–1940. St. Hist. Philos. Biol. Biomed. Sci. 2004, 35, 483–507. [Google Scholar] [CrossRef]
- Winslow, C.E.A. The characterization and classification of bacterial types. Science 1914, 39, 77–91. [Google Scholar] [CrossRef]
- Neufeld, F.; Levinthal, W. Beiträge zur Variabilität der Pneumokokken. Z. Immunitätforsch. 1928, 55, 324–340. [Google Scholar]
- Manwaring, W.H. Environmental transformation of bacteria. Science 1934, 79, 466–470. [Google Scholar] [CrossRef]
- Hinshelwood, C.N. Bacterial Growth. Biol. Rev. 1944, 19, 150–163. [Google Scholar] [CrossRef]
- Darlington, C.D. The Evolution of Genetics Systems; Cambridge University Press: Cambridge, MA, USA, 1939; p. 70. [Google Scholar]
- Huxley, J. Evolution: The Modern Synthesis; Allen and Unwin: London, UK, 1942; pp. 131–132. [Google Scholar]
- Lederberg, J. Problems in microbial genetics. Heredity 1948, 11, 145–198. [Google Scholar] [CrossRef] [PubMed]
- Griffith, F. Types of Haemolytic Streptococci in Relation to Scarlet Fever (Second Report). J. Hyg. 1927, 26, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Lederberg, J.; Tatum, E. Gene recombination in Escherichia coli. Nature 1946, 158, 558. [Google Scholar] [CrossRef]
- Lederberg, J.; Tatum, E. Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harb. Symp. Quant. Biol. 1946, 11, 113–114. [Google Scholar]
- Lederberg, J. Genetic recombination in bacteria: A discovery account. Annu. Rev. Genet. 1987, 21, 23–46. [Google Scholar] [CrossRef]
- Summers, W.C. From culture as organism to organism as cell: Historical origins of bacterial genetics. J. Hist. Biol. 1991, 24, 171–190. [Google Scholar] [CrossRef]
- Sapp, J. Genesis. The Evolution of Biology; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Bushman, F. Lateral DNA Transfer. Mechanisms and Consequences; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2002. [Google Scholar]
- Anderson, E.S. Possible importance of transfer factors in bacterial evolution. Nature 1966, 209, 637–638. [Google Scholar] [CrossRef]
- Watanabe, T. Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 1963, 27, 87–115. [Google Scholar] [CrossRef]
- Stanier, R.Y. Toward an evolutionary taxonomy of the bacteria. In Advances in Microbiology; Perez-Miravete, P., Ed.; Recent Asociatio Mexicana de Microbiologia: Mexico City, Mexico, 1971; pp. 595–604. [Google Scholar]
- Andrewes, F.W. Studies on group agglutination. J. Path. Bact. 1922, 25, 515–521. [Google Scholar]
- Wollman, E.; Wollman, E. Sur la transmission “parahereditaire” de caracteres chez les bacteries. Comptes Rendus Soc. Biol. 1925, 93, 1568–1569. [Google Scholar]
- Raymond, J.; Zhaxybayeva, O.; Gogarten, J.P.; Gerdes, S.Y.; Blankenship, R.E. Whole-genome analysis of photosynthetic prokaryotes. Science 2002, 298, 1616–1620. [Google Scholar] [CrossRef]
- Lawrence, J.G.; Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 1998, 95, 9413–9417. [Google Scholar] [CrossRef] [PubMed]
- Ochman, H.; Lawrence, J.G.; Groisman, E.A. Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405, 299–304. [Google Scholar] [CrossRef]
- Martin, W. Mosaic bacterial chromosomes: A challenge en route to a tree of genomes. BioEssays 1999, 21, 99–104. [Google Scholar] [CrossRef]
- Dolittle, W.F. Phylogenetic classification and the universal tree. Science 1999, 284, 21124–21128. [Google Scholar] [CrossRef]
- Eisen, J. Horizontal gene transfer among microbial genomes: New insights from complete genome analysis. Curr. Opin. Genet. Develop. 2000, 10, 606–611. [Google Scholar] [CrossRef]
- Lwoff, A. La notion d’espece bacterienne a la lumiere des decouvertes recentes. L’espece bacterienne. Ann. Inst. Past. 1958, 94, 137. [Google Scholar]
- Cowan, S.T. The Microbial Species–A Macromyth. In Microbial Classification, 12th Symposium of the Society for General Microbiology; Cambridge University Press: Cambridge, MA, USA, 1962; pp. 433–455. [Google Scholar]
- Sonea, S.; Panisset, P. The New Bacteriology; Jones and Bartlett: Boston, MA, USA, 1983. [Google Scholar]
- Sonea, S.; Mathieu, L.G. Prokaryotology; Les Presses de l’Universite de Montreal: Montreal, Canada, 2000. [Google Scholar]
- Gupta, R. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 1998, 62, 1435–1491. [Google Scholar] [CrossRef]
- Woese, C. The universal ancestor. Proc. Natl. Acad. Sci. USA 1998, 95, 6854–6859. [Google Scholar] [CrossRef]
- Bult, D.J.; White, O.; Olsen, G.J.; Zhou, I.; Fleischmann, R.D.; Sutton, G.G.; Blake, J.A.; FitzGerald, L.M.; Clayton, R.A.; Gocayne, J.D.; et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 1996, 273, 1058–1073. [Google Scholar] [CrossRef] [PubMed]
- Olsen, G.; Woese, C. Lessons from an Archael genome: What are we learning from Methanococcus jannaschii? Trends Genet. 1996, 12, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C. On the Origin of Species, With an Introduction by E. Mayr, Facsimile Edition of 1859; Harvard University Press: Cambridge, MA, USA, 1964; p. 484. [Google Scholar]
- Woese, C. A manifesto for microbial genomics. Curr. Biol. 1999, 8, R781–R783. [Google Scholar] [CrossRef]
- Fleischman, R.D.; Adams, M.D.; Weißer, O.; Clayton, R.A.; Kirkness, E.F.; Kerlavage, A.R.; Bult, C.J.; Grab, J.F.; Dougherty, B.A.; Merrick, J.M.; et al. Whole-genome random sequencing and assembly of Haemophilus influenzae. Science 1995, 269, 468–470. [Google Scholar] [CrossRef]
- Koonin, E.V.; Musegian, A.R.; Galperin, M.Y.; Walker, D.R. Comparison of archaeal and bacterial genomes: Computer analysis and protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol. Microbiol. 1997, 25, 619–637. [Google Scholar] [CrossRef]
- Kaneko, T.; Sato, S.; Kotani, H.; Tanaka, A.; Asamizu, E.; Nakamura, Y.; Miyajima, N.; Hirosawa, M.; Sugiura, M.; Sasamoto, S.; et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. Strain PCC6803. II Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996, 3, 109–136. [Google Scholar] [CrossRef] [PubMed]
- Göffeau, A.; Barrell, B.G.; Bussey, H.; Davis, R.W.; Dujon, B.; Feldmann, H.; Galibert, F.; Hoheisel, J.D.; Jacq, C.; Johnston, M.; et al. Life with 6000 genes. Science 1996, 274, 546–557. [Google Scholar] [CrossRef]
- Blattner, F.R.; Plunkett, G., 3rd; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J.D.; Rode, C.K.; Mayhew, G.F.; et al. The complete genomic sequence of Escherichia coli K-12. Science 1997, 277, 1453–1462. [Google Scholar] [CrossRef]
- Rivera, M.C.; Jain, R.; Moore, J.E.; Lake, J.A. Genomic evidence for two functionally distinct gene classes. Proc. Natl. Acad. Sci. USA 1998, 95, 6239–6244. [Google Scholar] [CrossRef]
- Deckert, G.; Warren, P.V.; Gaasterland, T.; Young, W.G.; Lenox, A.L.; Graham, D.E.; Overbeek, R.; Snead, M.A.; Keller, M.; Aujay, M.; et al. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 1998, 392, 353–358. [Google Scholar] [CrossRef]
- Lawrence, J.G.; Retchless, A.C. The interplay of homologous recombination and horizontal gene transfer in bacterial speciation. Methods Mol. Biol. 2009, 532, 29–53. [Google Scholar] [CrossRef]
- Klenk, H.P.; Clayton, R.A.; Tomb, J.F.; White, O.; Nelson, K.E.; Ketchum, K.A.; Dodson, R.J.; Gwinn, M.; Hickey, E.K.; Peterson, J.D.; et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeon Archaeoglobus fulgidus. Nature 1997, 390, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Kunst, F.; Ogagawa, N.; Moszer, I.; Albertini, A.M.; Alloni, G.; Azevedo, V.; Bertero, M.G.; Bessieres, P.; Bolotin, A.; Borchert, S.; et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 1997, 390, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Rivera, M.C.; Lake, J.A. Horizontal gene transfer among genomes: The complexity hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 3801–3806. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Rivera, M.C.; Moore, J.E.; Lake, J.A. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 2003, 20, 1598–1602. [Google Scholar] [CrossRef] [PubMed]
- Kurland, C.G.; Canback, B.; Berg, O.G. Horizontal gene transfer: A critical view. Proc. Natl. Acad. Sci. USA 2003, 100, 9658–9662. [Google Scholar] [CrossRef]
- Dubnau, D.; Blokesch, M. Mechanisms of DNA uptake by naturally competent bacteria. Annu. Rev. Genet. 2019, 53, 217–237. [Google Scholar] [CrossRef]
- Johnston, C.; Martin, B.; Fichant, G.; Polard, P.; Claverys, J.-P. Bacterial transformation: Distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 2014, 12, 181–196. [Google Scholar] [CrossRef]
- Ambur, O.H.; Frye, S.A.; Tonjum, T. New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J. Bacteriol. 2007, 189, 2077–2085. [Google Scholar] [CrossRef]
- Tomasz, A.; Hotchkiss, R.D. Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc. Natl. Acad. Sci. USA 1964, 51, 480–487. [Google Scholar] [CrossRef]
- Croucher, N.J.; Harris, S.R.; Barquist, L.; Parkhill, J.; Bentley, S.D. A high-resolution view of genome-wide pneumococcal transformation. PLoS Pathog. 2012, 8, e1002745. [Google Scholar] [CrossRef]
- Pozzi, G.; Masala, L.; Iannelli, F.; Manganelli, R.; Havarstein, L.S.; Piccoli, L.; Simon, D.; Morrison, D.A. Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: Two allelic variants of the peptide pheromone. J. Bacteriol. 1996, 178, 6087–6090. [Google Scholar] [CrossRef]
- Santoro, F.; Iannelli, F.; Pozzi, G. Genomics and genetics of Streptococcus pneumoniae. Microbiol Spectr. 2018, 7, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Havarstein, L.S.; Coomaraswamy, G.; Morrison, D.A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptomyces pneumoniae. Proc. Natl. Acad. Sci. USA 1995, 92, 11140–11144. [Google Scholar] [CrossRef]
- Peterson, S.N.; Sung, C.K.; Cline, R.; Desai, B.V.; Snesrud, E.C.; Luo, P.; Walling, J.; Li, H.; Mintz, M.; Tsegaye, G.; et al. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 2004, 51, 1051–1070. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.; Cline, R.T.; Tettelin, H.; Sharov, V.; Morrison, D.A. Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J. Bacteriol. 2000, 182, 6192–6202. [Google Scholar] [CrossRef] [PubMed]
- Rimini, R.; Jansson, B.; Feger, G.; Roberts, T.C.; de Francesco, M.; Gozzi, A.; Faggioni, F.; Domenici, E.; Wallace, D.M.; Frandsen, N.; et al. Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Mol. Microbiol. 2000, 36, 1279–1292. [Google Scholar] [CrossRef]
- Dagkessamanskaia, A.; Moscoso, M.; Henard, V.; Guiral, S.; Overweg, K.; Reuter, M.; Martin, B.; Wells, J.; Claverys, J.P. Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: Competence triggers stationary phase autolysis of ciaR mutant cells. Mol. Microbiol. 2004, 51, 1971–1986. [Google Scholar] [CrossRef]
- Moscoso, M.; Claverys, J.-P. Release of DNA into the medium by competent Streptococcus pneumoniae: Kinetics, mechanism and stability of the liberated DNA. Mol. Microbiol. 2004, 54, 783–794. [Google Scholar] [CrossRef]
- Ottolenghi, E.; Hotchkiss, R.D. Appearance of genetic transforming activity in pneumococcal cultures. Science 1960, 132, 1257–1258. [Google Scholar] [CrossRef] [PubMed]
- Steinmoen, H.; Knutsen, E.; Havarstein, L.S. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl. Acad. Sci. USA 2002, 99, 7681–7686. [Google Scholar] [CrossRef] [PubMed]
- Steinmoen, H.; Teigen, A.; Havarstein, L.S. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J. Bacteriol. 2003, 185, 7176–7183. [Google Scholar] [CrossRef]
- McCallum, M.; Burrows, L.L.; Howell, P.L. The dynamic structures of the type IV pilus. Microbiol. Spectr. 2019, 7, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.; Ellison, C.K.; Eddington, D.T.; Brun, Y.V.; Dalia, A.B.; Morrison, D.A. Competence pili in Streptococcus pneumoniae are highly dynamic structures that retract to promote DNA uptake. Mol. Microbiol. 2021, 116, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.A.; Simkovic, F.; Taylor, H.M.; Rigden, D.J. Potential DNA binding and nuclease functions of ComEC domains characterized in silico. Proteins 2016, 84, 1431–1442. [Google Scholar] [CrossRef]
- Silale, A.; Lea, S.M.; Berks, B.C. The DNA transporter ComEC has metal-dependent nuclease activity that is important for natural transformation. Mol. Microbiol. 2021, 116, 416–426. [Google Scholar] [CrossRef]
- Ithurbide, S.; Coste, G.; Lisboa, J.; Eugenie, N.; Bentchikou, E.; Bouthier de la Tour, C.; Liger, D.; Confalonieri, F.; Sommer, S.; Quevillon-Cheruel, S.; et al. Natural transformation in Deinococcus radiodurans: A genetic analysis reveals the major roles of DprA, Ddrb, RecA, RecF, and RecO proteins. Front. Microbiol. 2020, 11, 1253–1263. [Google Scholar] [CrossRef]
- Moreno-Gamez, S.; Sorg, R.A.; Domenech, A.; Kjos, M.; Weissing, F.J.; van Doorn, G.S.; Veening, J.W. Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat. Commun. 2017, 8, 854–858. [Google Scholar] [CrossRef]
- Callaghan, M.M.; Dillard, J.P. Transformation in Neisseria gonorrhoeae. Methods Mol. Biol. 2019, 1997, 143–162. [Google Scholar] [CrossRef]
- Prudhomme, M.; Attaiech, L.; Sanchez, G.; Martin, B.; Claverys, J.P. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 2006, 313, 89–92. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Engelstadter, J.; Zhang, S.; Ding, P.; Mao, L.; Yuan, Z.; Bond, P.L.; Guo, J. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. ISME J. 2020, 14, 2179–2196. [Google Scholar] [CrossRef]
- Duffin, P.M.; Seifert, H.S. DNA uptake sequence-mediated enhancement of transformation in Neisseria gonorrhoeae is strain dependent. J. Bacteriol. 2010, 192, 4436–4444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Heidrich, N.; Ampattu, B.J.; Gunderson, C.W.; Seifert, H.S.; Schoen, C.; Vogel, J.; Sontheimer, E.J. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 2013, 50, 488–503. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, M.; Wang, M.; Zhu, D.; Jia, R.; Chen, S.; Zhang, L.; Pan, L.; Cheng, A. The clustered regularly interspaced short palindromic repeat system and argonaute: An emerging bacterial immunity system for defense against natural transformation? Front. Microbiol. 2020, 11, 593301. [Google Scholar] [CrossRef] [PubMed]
- Cehovin, A.; Simpson, P.J.; McDowell, M.A.; Brown, D.R.; Noschese, R.; Pallett, M.; Brady, J.; Baldwin, G.S.; Lea, S.M.; Matthews, S.J.; et al. Specific DNA recognition mediated by a type IV pilin. Proc. Natl. Acad. Sci. USA 2013, 110, 3065–3070. [Google Scholar] [CrossRef]
- Müller, G.A.; Müller, T.D. Biological role of the intercellular transfer of glycosylphosphatidylinositol-anchored proteins: Stimulation of lipid and glycogen synthesis. Int. J. Mol. Sci. 2023, 23, 7418. [Google Scholar] [CrossRef]
- Müller, G.A.; Müller, T.D. Transfer of proteins from cultured human adipose to blood cells and induction of anabolic phenotype are controlled by serum, insulin and sulfonylurea drugs. Int. J. Mol. Sci. 2023, 24, 4825. [Google Scholar] [CrossRef]
- Müller, G.A.; Tschöp, M.H.; Müller, T.D. Chip-based sensing of the intercellular transfer of cell surface proteins: Regulation by the metabolic state. Biomedicines 2021, 9, 1452. [Google Scholar] [CrossRef]
- Müller, G.A.; Lechner, A.; Tschöp, M.H.; Müller, T.D. Interaction of full-length glycosylphosphatidylinositol-anchored proteins with serum proteins and their translocation to cells in vitro depend on the (pre-)diabetic state in rats and humans. Biomedicines 2021, 9, 277. [Google Scholar] [CrossRef]
- Müller, G.A. Membrane insertion and intracellular transfer of glycosylphosphatidylinositol-anchored proteins: Potential therapeutic applications. Arch. Physiol. Biochem. 2020, 126, 139–156. [Google Scholar] [CrossRef]
- Müller, G.A.; Müller, T.D. (Patho)Physiology of glycosylphosphatidylinositol-anchored proteins II: Intercellular transfer of matter (inheritance?) that matters. Biomolecules 2023, 13, 994. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, M.A.; Haldar, K.; Cross, G.A. Trypanosoma brucei variant surface glycoprotein has a sn-1,2-dimyristyl glycerol membrane anchor at its COOH terminus. J. Biol. Chem. 1985, 260, 4963–4968. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, Y.; Ikawa, M. GPI-AP release in cellular, developmental, and reproductive biology. J. Lipid Res. 2016, 57, 538–545. [Google Scholar] [CrossRef]
- Kinoshita, T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol. 2020, 10, 190290. [Google Scholar] [CrossRef]
- Müller, G.A.; Müller, T.D. (Patho)Physiology of glycosylphosphatidylinositol-anchored proteins I: Localization at plasma membranes and extracellular compartments. Biomolecules 2023, 13, 855. [Google Scholar] [CrossRef]
- Müller, G.A. Glycosylphosphatidylinositol-Anchored Proteins and Their Release from Cells–From Phenomenon to Meaning; Nova Science Publishers-Biochemistry Research Trends: New York, NY, USA, 2018; pp. 104–115. [Google Scholar]
- Panakova, D.; Sprong, H.; Marois, E.; Thiele, C.; Eaton, S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 2005, 435, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Neumann, S.; Harterink, M.; Sprong, H. Hitch-hiking between cells on lipoprotein particles. Traffic 2007, 8, 331–338. [Google Scholar] [CrossRef]
- Nakayama, H.; Kurokawa, K.; Lee, B.L. Lipoproteins in bacteria: Structures and biosynthetic pathways. FEBS Lett. 2012, 279, 4247–4268. [Google Scholar] [CrossRef]
- Zückert, W.R. Secretion of bacterial lipoproteins: Through the cytoplasmic membrane: Through the cytoplasmic membrane, the periplasm and beyond. Biochim. Biophys. Acta 2014, 1843, 1509–1516. [Google Scholar] [CrossRef]
- Carballido-Lopez, R. The bacterial actin-like cytoskeleton. Microbiol. Mol. Biol. Rev. 2006, 70, 888–909. [Google Scholar] [CrossRef]
- Shih, Y.-L.; Rothfield, L. The bacterial cytoskeleton. Microbiol. Mol. Biol. Rev. 2006, 70, 729–754. [Google Scholar] [CrossRef] [PubMed]
- Pilhofer, M.; Jensen, G.J. The bacterial cytoskeleton: More than twisted filaments. Curr. Opin. Cell Biol. 2013, 25, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Ingerson-Mahar, M.; Zemer, G. A growing family: The expanding universe of the bacterial cytoskeleton. FEMS Microbiol. Rev. 2012, 36, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Celler, K.; Koning, R.I.; Koster, A.J.; van Wezel, G.P. Multidimensional view of the bacterial cytoskeleton. J. Bacteriol. 2013, 195, 1627–1636. [Google Scholar] [CrossRef]
- Chosal, D.; Löwe, J. Collaborative protein filaments. EMBO J. 2015, 34, 2312–2320. [Google Scholar] [CrossRef]
- Bali, P. Memory of water’ biologist dies after heart surgery. Nature 2004, 431, 729. [Google Scholar] [CrossRef]
- Teixeira, J. Can water possibly have a memory? A sceptical view. Homeopathy 2007, 96, 158–162. [Google Scholar] [CrossRef]
- Thomas, Y. The history of the memory of water. Homeopathy 2007, 96, 151–157. [Google Scholar] [CrossRef]
- Yamabhai, M.; Chumseng, S.; Yoohat, K.; Srila, W. Diverse biological effects of electromagnetic-treated water. Homeopathy 2014, 103, 186–192. [Google Scholar] [CrossRef]
- Ullman, D. Exploring possible mechanisms of hormesis and homeopathy in the light of nanopharmacology and ultra-high dilutions. Dose-Response 2021, 19, 15593258211022983. [Google Scholar] [CrossRef]
- Shahabi, S.; Borneman, J.P. The electrostatic model of homeopathy: The mechanism of physicochemical activities of homeopathic medicines. Homeopathy 2022, 111, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Weismann, A.; Ishikawa, C. Ueber die Bildung der Richtungskörper bei thierischen Eiern. Berichte der Naturforschenden Gesellschaft zu Freiburg 1888, 3, 1–44. [Google Scholar]
- Weismann, A. The Germ-Plasm: A Theory of Heredity; Scribner: New York, NY, USA, 1893. [Google Scholar]
- Roux, W. Über die Selbstregulation der Lebewesen. Arch. Entwicklungsmech. Organism. 1902, VIII, 27–73. [Google Scholar] [CrossRef]
- Driesch, H. Entwicklungsmechanische Studien. I–II. Der Wert der beiden ersten Furchungszellen in der Echinodermententwicklung. Experimentelle Erzeugung von Teil- und Doppelbildungen. Z. Wissenschaft. Zool. 1891, 53, 1–124. [Google Scholar]
- Spemann, H. Nobel Lectures, Physiology or Medicine 1922–1941; Elsevier Publishing Company: Amsterdam, The Netherlands, 1965. [Google Scholar]
- Spemann, H. Embryonic Development and Induction; Yale University Press: New Haven, CT, USA, 1938. [Google Scholar]
- Pauly, P.J. Controlling Life. Jacques Loeb & The Engineering Ideal in Biology; Oxford University Press: New York, NY, USA, 1987. [Google Scholar]
- Nover, L.; Luckner, M.; Parthier, B. Cell Differentiation. Molecular Basis and Problems; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1982. [Google Scholar]
- Briggs, R.; King, T.J. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc. Natl. Acad. Sci. USA 1952, 38, 455–463. [Google Scholar] [CrossRef]
- King, T.J.; Briggs, R. Changes in the nuclei of differentiating gastrula cells, as demonstrated by nuclear transplantation. Proc. Natl. Acad. Sci. USA 1955, 41, 321–325. [Google Scholar] [CrossRef]
- Gurdon, J.B. The developmental capacity of nuclei taken from differentiating endoderm cells of Xenopus laevis. J. Embryol. Exp. Morphol. 1960, 8, 505–526. [Google Scholar] [PubMed]
- Elsdale, T.R.; Fischberg, M.; Smith, S. A mutation that reduces nuclear number in Xenopus laevis. Exp. Cell Res. 1958, 14, 642–643. [Google Scholar] [CrossRef]
- Gurdon, J.B.; Elsdale, T.R.; Fischberg, M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 1958, 182, 64–65. [Google Scholar] [CrossRef]
- Gurdon, J.B.; Uehlinger, V. “Fertile“ intestine nuclei. Nature 1966, 210, 1240–1241. [Google Scholar] [CrossRef]
- Gurdon, J.B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 1962, 10, 622–640. [Google Scholar] [CrossRef] [PubMed]
- Gurdon, J.B.; Melton, D.A. Nuclear reprogramming in cells. Science 2008, 322, 1811–1815. [Google Scholar] [CrossRef] [PubMed]
- Gurdon, J.B. Nuclear transplantation, the conservation of the genome, and prospects for cell replacement. FEBS J. 2017, 284, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, R. The Selfish Gene; Oxford University Press: Oxford, UK, 1976. [Google Scholar]
- Trams, E.G.; Lauter, C.J.; Salem, N., Jr.; Heine, U. Exfoliation of membrane ecto-enzymes in the form of microvesicles. Biochim. Biophys. Acta 1981, 645, 63–70. [Google Scholar] [CrossRef]
- Denzer, K.; Kleijmeer, M.J.; Heijnen, H.F.; Stoorvogel, W.; Geuze, H.J. Exosome: From internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 2000, 113, 3365–3374. [Google Scholar] [CrossRef]
- Müller, G. Microvesicles/Exosomes as potential novel biomarkers for metabolic diseases. Diabet. Metabol. Snyd. Obes. Targets Therap. 2012, 5, 247–282. [Google Scholar] [CrossRef]
- Cocucci, E.; Meldolesi, J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015, 25, 364–372. [Google Scholar] [CrossRef]
- Jeppesen, D.K.; Fenix, A.M.; Franklin, J.L.; Higginbotham, J.N.; Zhang, Q.; Zimmerman, L.J.; Liebler, D.C.; Ping, J.; Liu, Q.; Evans, R.; et al. Reassessment of exosome composition. Cell 2019, 177, 428–445. [Google Scholar] [CrossRef]
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Thery, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef]
- Raposo, G.; Stahl, P.D. Extracellular vesicles: A new communication paradigm? Nat. Rev. Mol. Cell Biol. 2019, 20, 509–510. [Google Scholar] [CrossRef]
- Couch, Y.; Buzas, E.I.; Di Vizio, D.; Gho, Y.S.; Harrison, P.; Hill, A.F.; Lötvall, J.; Raposo, G.; Stahl, P.D.; Thery, C.; et al. A brief history of nearly EV–everything–the rise and rise of extracellular vesicles. J. Extracell. Vesicles 2021, 10, e12144. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.A. Let’s shift lipid burden–From large to small adipocytes. Eur. J. Pharmacol. 2011, 656, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.A. “Centric” and “excluding” conceptions of biological inheritance. Adv. Hist. Stud. 2024, 13, 122–155. [Google Scholar] [CrossRef]
- Müller, G.; Schneider, M.; Biemer-Daub, G.; Wied, S. Upregulation of lipid synthesis in small rat adipocytes by microvesicle-associated CD73 from large adipocytes. Obesity 2011, 19, 1531–1544. [Google Scholar] [CrossRef]
- Gyuris, J.; Duda, E.G. High-efficiency transformation of Saccharomyces cerevisiae cells by bacterial minicell protoplast fusion. Mol. Cell. Biol. 1986, 6, 3295–3297. [Google Scholar] [CrossRef]
- Rao, X.; Zhang, Y.; Yi, Q.; Hou, H.; Xu, B.; Chu, L.; Huang, Y.; Zhang, W.; Fenech, M.; Shi, Q. Multiple origins of spontaneously arising micronuclei in HeLa cells: Direct evidence from long-term live cell imaging. Mutat. Res. 2008, 646, 41–49. [Google Scholar] [CrossRef]
- Shram, S.I.; Shcherbakova, T.A.; Abramova, T.V.; Smirnovskaya, M.S.; Balandina, A.I.; Kulikov, A.V.; Svedas, V.K.; Silnikov, V.N.; Myasoedov, N.F.; Nilov, D.K. A new approach for studying poly(ADP-ribose) polymerase inhibitors using permeabilized adherent cells. Biochemistry 2024, 89, 1619–1630. [Google Scholar] [CrossRef]
- Lentz, B.R. PEG as a tool to gain insight into membrane fusion. Eur. Biophys. J. 2007, 36, 315–326. [Google Scholar] [CrossRef]
- Lentz, B.R. Polymer-induced membrane fusion: Potential mechanism and relation to cell fusion events. Chem. Phys. Lipids 1994, 73, 91–106. [Google Scholar] [CrossRef]
- Fakhrullin, R.F.; Zamaleeva, A.I.; Minullina, R.T.; Konnova, S.A.; Paunov, V.N. Cyborg cells: Functionalization of living cells with polymers and nanomaterials. Chem. Soc. Rev. 2012, 41, 4189–4206. [Google Scholar] [CrossRef]
- Cutts, E. Cyborg cells: Bacteria with synthetic skeletons could be used as tiny robots. Sci. Am. 2023, 328, 18. [Google Scholar] [CrossRef]
- Baghdasaryan, O.; Lee-Kin, J.; Tan, C. Architectural engineering of cyborg bacteria with intracellular hydrogel. Mater Today Bio. 2024, 28, 101226. [Google Scholar] [CrossRef] [PubMed]
- Baghdasaryan, O.; Contreras-Llano, L.E.; Khan, S.; Wang, A.; Hu, C.-M.J.; Tan, C. Fabrication of cyborg bacterial cells as living cell-material hybrids using intracellular hydrogelation. Nat. Protoc. 2024, 19, 3613–3639. [Google Scholar] [CrossRef]
- Contreras-Llano, L.E.; Liu, Y.-H.; Henson, T.; Meyer, C.C.; Baghdasaryan, O.; Khan, S.; Lin, C.-L.; Wang, A.; Hu, C.-M.J.; Tan, C. Engineering cyborg bacteria through intracellular hydrogelation. Adv. Sci. 2023, 10, 2204175. [Google Scholar] [CrossRef] [PubMed]
- Black, R.A.; Blosser, M.C.; Stottrup, B.L.; Tavakley, R.; Deamer, D.W.; Keller, S.L. Nucleobases bind to and stabilize aggregates of a prebiotic amphiphilic, providing a viable mechanism for the emergence of protocells. Proc. Natl. Acad. Sci. USA 2013, 110, 13272–13276. [Google Scholar] [CrossRef]
- Gupta, V.K.; Chaturvedi, I. Histochemical characterization of protocell-like supramolecular assemblies “Jeewanu”, synthesized in a irradiated sterilized aqueous mixture of some inorganic and organic substances. Asian J. Exp. Sci. 2013, 27, 23–28. [Google Scholar]
- Damer, B.; Deamer, D. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: A scenario to guide experimental approaches to the origin of cellular life. Life 2015, 5, 872–887. [Google Scholar] [CrossRef]
- Mayer, C.; Schreiber, U.; Davila, M.J.; Schmitz, O.J.; Bronja, A.; Meyer, M.; Klein, J.; Meckelmann, S.W. Molecular evolution in a peptide-vehicle system. Life 2018, 8, 16. [Google Scholar] [CrossRef]
- Rout, S.K.; Cadalbert, R.; Schröder, N.; Wang, J.; Zehnder, J.; Gampp, O.; Wiegand, T.; Güntert, P.; Klingler, D.; Kreutz, C.; et al. An analysis of nucleotide-amyloid interactions reveals selective binding to codon-sized RNA. J. Am. Chem. Soc. 2023, 145, 21915–21924. [Google Scholar] [CrossRef]
- Black, R.A.; Blosser, M.C. A self-assembled aggregate composed of a fatty acid membrane and the building blocks of biological polymers provides a first step in the emergence of protocells. Life 2016, 6, 33. [Google Scholar] [CrossRef]
- Jia, H.; Heymann, M.; Bernhard, F.; Schwille, P.; Kai, L. Cell-free protein synthesis in micro compartments: Building a minimal cell from biobricks. New Biotechnol. 2017, 39, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Lavickova, B.; Laohakunakorn, N.; Maerkl, S.J. A partially self-regenerating synthetic cell. Nat. Commun. 2020, 11, 6340. [Google Scholar] [CrossRef]
- Lartigue, C.; Glass, J.I.; Alperovich, N.; Pieper, R.; Parmar, P.P.; Hutchison, C.A., 3rd; Smith, H.O.; Venter, J.C. Genome transplantation in bacteria: Changing one species to another. Science 2007, 317, 632–638. [Google Scholar] [CrossRef]
- Lartigue, C.; Vashee, S.; Algire, M.A.; Chuang, R.-Y.; Benders, G.A.; Ma, L.; Noskov, V.N.; Denisova, E.A.; Gibson, D.G.; Assad-Garcia, N.; et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 2009, 325, 1693–1696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-Y.; Chang, S.-H.; Wang, J. How to make a minimal genome for synthetic minimal cell. Protein Cell 2010, 1, 427–434. [Google Scholar] [CrossRef]
- Schindler, D.; Walker, R.S.K.; Cai, Y. Methodological advances enabled by the construction of a synthetic yeast genome. Cell Rep. Methods 2024, 4, 100761. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.O. Lateral gene transfer in eukaryotes. Cell. Mol. Life Sci. 2005, 62, 1182–1197. [Google Scholar] [CrossRef]
- Boto, L. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc. R. Soc. B 2014, 281, 20132450. [Google Scholar] [CrossRef]
- Darwin, C. The Variation of Animals and Plants Under Domestication; John Murray: London, UK, 1868; Available online: http://darwin-online.org.uk/ (accessed on 7 November 2024).
- Darwin, C. Pangenesis: Mr. Darwin’s Reply to Professor Delphino Scientific Opinion. A Weekly Record of Scientific Progress At Home & Abroad. Sci. Opin. 1869, 2, 426. [Google Scholar]
- Darwin, C. Pangenesis. Nature 1871, 3, 502–503. [Google Scholar] [CrossRef]
- Galton, F. Experiments in pangenesis, by breeding from rabbits of a pure variety, into whose circulation blood taken from other varieties had previously been largely transfused. Proc. R. Soc. Lond. 1871, 19, 393–410. [Google Scholar]
- Galton, F. On blood-relationship. Proc. R. Soc. Lond. 1872, 20, 394–402. [Google Scholar]
- Galton, F. A theory of heredity. J. Anthropol. Inst. 1875, 5, 329–348. [Google Scholar] [CrossRef]
- Galton, F. Natural Inheritance; Macmillan: London, UK, 1889. [Google Scholar]
- Galton, F. Typical laws of heredity. Nature 1877, 15, 492–495. [Google Scholar]
- Galton, F. The average contribution of each several ancestor to the total heritage of the offspring. Proc. R. Soc. Lond. 1897, 61, 401–413. [Google Scholar]
- Bulmer, M. Galton’s law of ancestral heredity. Heredity 1998, 81, 579–585. [Google Scholar] [CrossRef]
- Sopikov, P.M. A new method of vegetative hybridization by blood transfusion. Priroda 1950, 39, 66. [Google Scholar]
- Sopikov, P.M. Changes in heredity by the parenteral administration of blood. Agrobiogiia 1954, 6, 34–45. [Google Scholar]
- Müller, G.A. Donation and acceptance in biological inheritance: The long path from Darwin’s gemmules, DNA and membranes to uniqueness and kinship. Adv. Hist. Stud. 2024, 13, 26–72. [Google Scholar] [CrossRef]
- Michaelis, P. Cytoplasmic inheritance in Epilobium and its theoretical significance. Adv. Genet. 1954, 6, 287–401. [Google Scholar] [PubMed]
- Michaelis, P. Über die Beziehungen zwischen Kern und Plasma bei den reziprok-verschiedenen Epilobium-Bastarden. Z. Indukt. Abstamm.-Und Vererbungslehre 1932, 62, 95–102. [Google Scholar]
- Michaelis, P. Entwicklungsgeschichtlich-genetische Untersuchungen an Epilobium, I. Z. Indukt. Abstamm.-Und Vererbungslehre 1933, 65, 353–411. [Google Scholar]
- Chakrabortee, S.; Byers, J.S.; Jones, S.; Garcia, D.M.; Bhullar, B.; Chang, A.; Jarosz, D.F. Intrinsically disordered proteins drive emergence and inherence of biological traits. Cell 2018, 167, 369–381. [Google Scholar] [CrossRef]
- Milles, S.; Salvi, N.; Blackledge, M.; Jensen, M.R. Characterization of intrinsically disordered proteins and their dynamic complexes: From in vitro to cell-like environments. Prog. Nucl. Magn. Reason. Spectrosc. 2018, 109, 79–100. [Google Scholar] [CrossRef] [PubMed]
- Paladino, A.; Vitagliano, L.; Graziano, G. The action of chemical denaturants: From globular to intrinsically disordered proteins. Biology 2023, 12, 754. [Google Scholar] [CrossRef] [PubMed]
- Barad, K. Quantum entanglements and hauntological relations of inheritance: Dis/continuities, SpaceTime enfoldings, and justice-to-come. Derrida Today 2010, 3, 240–268. [Google Scholar] [CrossRef]
- Michaelis, P. Prinzipielles und Problematisches zur Plasmavererbung. Biol. Zentralbl. 1949, 68, 173–195. [Google Scholar]
- Wettstein, F.V. Die genetische und entwicklungsphysiologische Bedeutung des Cytoplasmas. Z. Indukt. Abstamm.-Und Vererbungslehre 1937, 73, 349–366. [Google Scholar] [CrossRef]
- Brücher, H. Die Bedeutung des Zellplasmas für die Vererbung. Der Biol. 1939, 8, 160–168. [Google Scholar]
- Brücher, H. Das Zellplasma als selbständiges Element der Vererbung. Die Umsch. 1940, 1, 5–7. [Google Scholar]
- Brücher, H. Die reziprok verschiedenen Art-und Rassenbastarde von Epilobium und ihre Ursachen. I. Die Nichtbeteiligung von “Hemmungsgenen”. Z. Indukt. Abstamm.-Und Vererbungslehre 1938, 75, 298–340. [Google Scholar]
- Wettstein, F.V. Über plasmatische Vererbung, sowie Plasma-und Genwirkung. Nachrichten Ges. Wiss. Göttingen Math.-Phys. Kl. 1927, 250–281. [Google Scholar]
- Wettstein, F.V. Oenothera – ein klassisches Objekt der Vererbungsforschung. Zum 60. Geburtstag von Otto Renner am 25. April 1943. Die Naturwissenschaften 1943, 31, 177–180. [Google Scholar] [CrossRef]
- Wettstein, F.V. Ein weiterer Beweis für die Bedeutung des Plasmas bei Epilobium-Kreuzungen. Art-Kreuzungen mit E. palustre. Z. Indukt. Abstamm.-Und Vererbungslehre 1939, 77, 533–547. [Google Scholar]
- Michaelis, P. Untersuchungen zum Problem der Plasmavererbung. Protoplasm 1937, 27, 284–289. [Google Scholar] [CrossRef]
- Brücher, H. Abschließende Stellungnahme auf die Erwiderung Lehmanns. Z. Indukt. Abstamm.-Und Vererbungslehre 1939, 76, 608. [Google Scholar]
- Beisson, J.; Sonneborn, T. Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia. Proc. Natl. Acad. Sci. USA 1965, 53, 275–282. [Google Scholar] [CrossRef]
- Nelson, E.M.; Frankel, J.; Jenkins, L.M. Non-genetic inheritance of cellular handedness. Development 1989, 105, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Frankel, J. Structural Inheritance. Pattern Formation: Ciliate Studies and Models; Oxford University Press: Oxford, UK, 1989; pp. 69–93. [Google Scholar]
- Sonneborn, T.M. Partners of the genes. Sci. Am. 1950, 183, 30–39. [Google Scholar] [CrossRef]
- Sonneborn, T.M. The determinants and evolution of life. The differentiation of cells. Proc. Natl. Acad. Sci. USA 1964, 51, 915–929. [Google Scholar] [CrossRef]
- Beisson, J. Preformed cell structure and cell heredity. Prion 2008, 2, 1–8. [Google Scholar] [CrossRef]
- Griffith, J.S. Self-replication and scrapie. Nature 1967, 215, 1043–1044. [Google Scholar] [CrossRef]
- Preer, J.R., Jr. Whatever happened to paramecium genetics? Genetics 1997, 145, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Preer, J.R., Jr. Sonneborn and the cytoplasm. Genetics 2006, 172, 1373–1377. [Google Scholar] [CrossRef] [PubMed]
- Grimes, G.W.; Aufderheide, K.J. Cellular aspects of pattern formation: The problem of assembly. In Monographs in Developmental Biology; S. Karger: Basel, Switzerland, 1991; Volume 22, pp. 1–94. [Google Scholar]
- Gilbert, S.F. Cytoplasmic action in development. Quart. Rev. Biol. 1991, 66, 309–316. [Google Scholar] [CrossRef]
- Bonduriansky, R.; Day, T. Extended Heredity: A New Understanding of Inheritance and Evolution; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Pigliucci, M. Do we need an extended evolutionary synthesis? Evolution 2007, 61, 2743–2749. [Google Scholar] [CrossRef]
- Danchin, E.; Charmantier, A.; Champagne, F.A.; Mesoudi, A.; Pujol, B.; Blanchet, S. Beyond DNA: Integrating inclusive inheritance into an extended theory of evolution. Nat. Rev. Genet. 2011, 12, 475–486. [Google Scholar] [CrossRef]
- Laland, K.N.; Uller, T.; Feldman, M.W.; Sterelny, K.; Müller, G.B.; Moczek, A.; Jablonka, E.; Odling-Smee, J. The extended evolutionary synthesis: Its structure, assumptions and predictions. Proc. Biol. Sci. 2015, 282, 20151019. [Google Scholar] [CrossRef]
- Martinez Arias, A. Master Builder. How the New Science of the Cell Is Rewriting the Story of Life; Basic Books: London, UK, 2023. [Google Scholar]
- Kuroiwa, T.; Uchida, H. Organelle division and cytoplasmic inheritance. BioScience 1996, 46, 827–835. [Google Scholar] [CrossRef]
- Cavalier-Smith, T. Genomes and eukaryotic phylogeny. In Organelles, Genomes and Eukaryote Phylogeny: An Evolutionary Synthesis in the Age of Genomics; Hirt, R.P., Horner, D.S., Eds.; Taylor & Francis: London, UK, 2004; pp. 335–351. [Google Scholar]
- Aufderheide, K.J.; Frankel, J.; Williams, N.E. Formation and positioning of surface-related structures in protozoa. Microbiol. Rev. 1980, 44, 252–302. [Google Scholar] [CrossRef]
- Jablonka, E.; Lamb, M.J. Evolution in Four Dimensions. Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Jablonka, E.; Lamb, M.J. The evolution of information in the major transitions. J. Theor. Biol. 2006, 239, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Jablonka, E.; Lamb, M.J. Transgenerational epigenetic inheritance. In Evolution–the Extended Synthesis; Pigliucci, M., Müller, G.B., Eds.; MIT Press: Cambridge, MA, USA, 2010; pp. 135–174. [Google Scholar]
- Bonduriansky, R. Rethinking heredity, again. Trends Ecol. Evol. 2012, 27, 330–336. [Google Scholar] [CrossRef]
- Bonduriansky, R.; Day, T. Nongenetic inheritance and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 103–125. [Google Scholar] [CrossRef]
- Deleuze, G.; Guattari, F. Tausend Plateaus. Kapitalismus und Schizophrenie; Merve: Berlin, Germany, 1992. [Google Scholar]
- Deleuze, G.; Guattari, F. Rhizom; Merve: Berlin, Germany, 1977. [Google Scholar]
- Müller, G.A.; Müller, T.D. A “poly-matter network” conception of biological inheritance. Genetica 2024, 152, 211–230. [Google Scholar] [CrossRef] [PubMed]
- Guldin, R.; Finger, A.; Bernardo, G. Vilem Flusser; UTB: Stuttgart, Germany, 2009. [Google Scholar]
- Guldin, R.; Bernardo, G. Vilem Flusser (1929–1991). Ein Leben in der Bodenlosigkeit. In Biographie; Transcript: Bielefeld, Germany, 2017. [Google Scholar]
- Flusser, V. Kommunikologie; Fischer: Frankfurt, Germany, 2000. [Google Scholar]
- Flusser, V. Für eine Philosophie der Fotographie; European Photography: Göttingen, Germany, 1983. [Google Scholar]
- Flusser, V. Ins Universum der technischen Bilder; European Photography: Göttingen, Germany, 1985. [Google Scholar]
- Flusser, V. Hat Schreiben Zukunft? European Photography: Göttingen, Germany, 1987. [Google Scholar]
- Flusser, V. Kommunikologie weiter denken. In Die Bochumer Vorlesungen; Wagnermaier, S., Zielinski, S., Eds.; Fischer: Frankfurt, Germany, 2009. [Google Scholar]
- Rheinberger, H.-J. Iterationen; Merve: Berlin, Germany, 2005. [Google Scholar]
- Otis, L. Membranes: Metaphors of Invasion in Nineteenth-Century Literature, Science, and Politics; Johns Hopkins University Press: Baltimore, MD, USA, 1999. [Google Scholar]
- Foucault, M. Die Geburt der Klinik–Eine Archäologie des ärztlichen Blicks; Fischer: Frankfurt, Germany, 1988. [Google Scholar]
- Kirschner, M.; Gerhart, J.C.; Mitchison, T. Molecular “vitalism”. Cell 2000, 100, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Kirschner, M.; Gerhart, J.C. The Plausibility of Life: Resolving Darwin’s Dilemma; Yale University Press: New Haven, MA, USA, 2005. [Google Scholar]
- Gerhart, J.; Kirschner, M. The theory of facilitated variation. Proc. Natl. Acad. Sci. USA 2007, 104, 8582–8589. [Google Scholar] [CrossRef]
- Just, E.E. The Biology of the Cell Surface; Blakiston’s Son &, Co. Inc.: Philadelphia, PA, USA, 1939. [Google Scholar]
- Holtfreter, J. Reminiscences on the life and work of Johannes Holtfreter. In A Conceptual History of Modern Embryology; Gilbert, S.F., Ed.; John Hopkins University Press: Baltimore, MD, USA, 1991; pp. 109–127. [Google Scholar]
- Newman, S.A.E.E. Just’s “independent irritability” revisited: The activated egg as excitable soft matter. Mol. Reprod. Dev. 2009, 76, 966–974. [Google Scholar] [CrossRef]
- Byrnes, W.M.E.E. Just’s broad, yet hidden, influence on modern cell and developmental biology. Mol. Reprod. Dev. 2020, 87, 380–391. [Google Scholar] [CrossRef]
- Ladewig, J.; Koch, P.; Brüstle, O. Leveling Waddington: The emergence of direct programming and the loss of cell fate hierarchies. Nat. Rev. Mol. Cell Biol. 2013, 14, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Dupont, C.; Armant, D.R.; Brenner, C.A. Epigenetics: Definition, mechanisms and clinical perspective. Sem. Reprod. Med. 2012, 27, 351–357. [Google Scholar] [CrossRef]
- Feil, R.; Fraga, M. Epigenetics and the environment: Emerging patterns and implications. Nat. Rev. Genet. 2012, 13, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Smuts, J.C. Holism and Evolution; Macmillan: New York, NY, USA, 1926. [Google Scholar]
- Koppe Grisolia, C. Genes, genome and Gestalt. Genet. Mol. Res. 2005, 4, 100–104. [Google Scholar] [PubMed]
- Whitehead, A.N. Prozeß und Realität; Suhrkamp: Frankfurt, Germany, 1987. [Google Scholar]
- Sheldrake, R. Das schöpferische Universum. Die Theorie des morphogenetischen Feldes; Ullstein: Berlin, Germany, 1983. [Google Scholar]
- Jones, R.H. Reduktionismus: Analyse und die Fülle der Wirklichkeit; Bucknell University Press: Lewisburg, PA, USA, 2000; pp. 19–32. [Google Scholar]
- Putnam, H. Representation and Reality; MIT Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Campaner, R. Mechanistic causality and counterfactual-manipulative causality: Recent insights from philosophy of science. J. Epidemiol. Community Health 2011, 65, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Neurath, O. Unified science as encyclopedic integration. In International Encyclopedia of Unified Science; Bohr, N., Dewey, J., Russell, B., Carnap, R., Morris, C.W., Eds.; University of Chicago Press: Chicago, IL, USA, 1938; Volume 1, pp. 1–27. [Google Scholar]
- Joeb, J. The Organism as a Whole: From a Physicochemical Viewpoint; G.P.Putnam’s Sons: New York, NY, USA, 1916; p. 39. [Google Scholar]
Experiment | Model | Fractionation | Analysis | Detection | Author | Transferred Entities | Transferred Principle | Theory of Inheritance | Inherited Phenotype | Intention |
---|---|---|---|---|---|---|---|---|---|---|
Griffith 2.1-2.X | Homo- genate | - Centrifugation (high speed) - Filtration - Purification | - Morphology - Complete Metabolic Pathways - Overall Architecture | - Imaging - Proteomics - DNA Sequencing | tbd | - OM-Vesicles - Micelle-like LPS Compl - Cytoskeleton - Membranes | - Shape/Information + - Substance/Matter | - Extended - Plasmon - “Soft“ - Rhizene | - Major Features - Large Differences - Statics - Pathways - Building Plans - Cybernetics - Dynamics | - Novel Cells |
Griffith 2.0 | Cells | - none | - Metabolites - Feedback loops - Regulatory Circuits - Turnover | |||||||
Griffith 1.4-1.X | Homo- genate | - Phospholipase - Centrifugation (high speed) | - Resistance - Auxotrophy | - Selection | tbd | - Prions - Int Disord Prot - OM-Vesicles - Micelle-like LPS Compl | - Substance/Matter | - Including - Holistic | - Minor Features - Small Differences | - Mode of Inheritance |
Griffith 1.3 | - Chloroform - Centrifugation - Nuclease - Protease - Water-Sol. Fr. | - Virulence | - Microscopy - Serotypes | Avery MacLeod McCarty Alloway | - DNA | - Shape/Information + - Substance/Matter | - Centric - Excluding - “Hard“ | - Novel Cells - Matter of Inheritance | ||
Griffith 1.2 | - Heat - Soluble Fract. | - Serotypes - Lethality Mice | Dawson | |||||||
Griffith 1.1 | Mouse | - Heat | Griffith Neufeld Levinthal | |||||||
Griffith 1.0 | - none | Griffith | - Bacterial Variability - Infections |
Configuration | Ranking of Various Experimental Systems | ||||||||
In Vivo “Blending” | In Vitro Transformation | ||||||||
Host | Mice | - | |||||||
Acceptor | Streptococcus pneumoniae | ||||||||
Transforming Principle | Cells | Homo- genate | Non-DNA Matter | DNA | Cells | Homo- genate | Non-DNA Matter | DNA | |
Design | 2.0 | 2.1 | 2.2-2.X | 1.3 | 1.0 | 1.2 | 1.4-1.X | 1.3 | |
Detection Method | Virulence in Mice | X | X | tbd | X | not relevant | |||
E1/B2 | E2/B2 | E3/B2 | E4/B2 | ||||||
T3/R2 | T4/R3 | T5/R4 | T6/R5 | ||||||
Capsule Serotype | X | X | tbd | X | X | X | tbd | X | |
E1/B3 | E2/B3 | E3/B3 | E4/B3 | E3/B3 | E4/B3 | E5/B3 | E6/B3 | ||
T4/R3 | T5/R4 | T6/R5 | T7/R6 | T6/R5 | T7/R6 | T8/R7 | T9/R8 | ||
Morphology Physiology | tbd | tbd | tbd | not relevant | tbd | tbd | tbd | tbd | |
E1/B1 | E2/B1 | E3/B1 | E3/B1 | E4/B1 | E5/B1 | E6/B1 | |||
T2/R1 | T3/R2 | T4/R3 | T5/R4 | T5/R4 | T6/R5 | T7/R6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, G.A. The Transformation Experiment of Frederick Griffith II: Inclusion of Cellular Heredity for the Creation of Novel Microorganisms. Bioengineering 2025, 12, 532. https://doi.org/10.3390/bioengineering12050532
Müller GA. The Transformation Experiment of Frederick Griffith II: Inclusion of Cellular Heredity for the Creation of Novel Microorganisms. Bioengineering. 2025; 12(5):532. https://doi.org/10.3390/bioengineering12050532
Chicago/Turabian StyleMüller, Günter A. 2025. "The Transformation Experiment of Frederick Griffith II: Inclusion of Cellular Heredity for the Creation of Novel Microorganisms" Bioengineering 12, no. 5: 532. https://doi.org/10.3390/bioengineering12050532
APA StyleMüller, G. A. (2025). The Transformation Experiment of Frederick Griffith II: Inclusion of Cellular Heredity for the Creation of Novel Microorganisms. Bioengineering, 12(5), 532. https://doi.org/10.3390/bioengineering12050532