Apocynin, a Selective NADPH Oxidase (Nox2) Inhibitor, Ameliorates Behavioural and Learning Deficits in the Fragile X Syndrome Mouse Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animal Model
2.2. Apocynin Treatment
2.3. Behavioural Analysis
2.4. Brain Dissection
2.5. Protein Extraction for Measurements of Oxidative Stress
2.6. Intracellular H2O2 Production
2.7. Oxidative Parameters
2.8. Western Blot Analysis
3. Results
3.1. Chronic Apocynin Treatment Did Not Affect Total Body Weight
3.2. Apocynin Normalized Free Radical Production in the Fmr1-KO Mouse Model
3.3. Apocynin Reverses Oxidative Stress in the Fmr1-KO Mouse Model
3.4. Chronic Apocynin Treatment Normalised Behavioural Hallmarks in the Fmr1-KO Mouse Model
3.5. Chronic Apocynin Treatment Normalised Cognitive Hallmarks in the Fmr1-KO Mouse Model
3.6. Chronic Apocynin Treatment Reduces Activation in Intracellular Oxidative Pathway in the Fmr1-KO Mouse Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hagerman, R.J.; Berry-Kravis, E.; Kaufmann, W.E.; Ono, M.Y.; Tartaglia, N.; Lachiewicz, A.; Kronk, R.; Delahunty, C.; Hessl, D.; Visootsak, J.; et al. Advances in the Treatment of Fragile X Syndrome. Pediatrics 2009, 123, 378–390. [Google Scholar] [CrossRef]
- Cornish, K.; Sudhalter, V.; Turk, J. Attention and Language in Fragile X. Ment. Retard. Dev. Disabil. Res. Rev. 2004, 10, 11–16. [Google Scholar] [CrossRef]
- Bassell, G.J.; Warren, S.T. Fragile X Syndrome: Loss of Local MRNA Regulation Alters Synaptic Development and Function. Neuron 2008, 60, 201–214. [Google Scholar] [CrossRef]
- Kelleher, R.J.; Bear, M.F. The Autistic Neuron: Troubled Translation? Cell 2008, 135, 401–406. [Google Scholar] [CrossRef]
- Verkerk, A.J.M.H.; Pieretti, M.; Sutcliffe, J.S.; Fu, Y.-H.; Kuhl, D.P.A.; Pizzuti, A.; Reiner, O.; Richards, S.; Victoria, M.F.; Zhang, F.; et al. Identification of a Gene (FMR-1) Containing a CGG Repeat Coincident with a Breakpoint Cluster Region Exhibiting Length Variation in Fragile X Syndrome. Cell 1991, 65, 905–914. [Google Scholar] [CrossRef]
- Hunter, J.; Rivero-Arias, O.; Angelov, A.; Kim, E.; Fotheringham, I.; Leal, J. Epidemiology of Fragile X Syndrome: A Systematic Review and Meta-analysis. Am. J. Med. Genet. A 2014, 164, 1648–1658. [Google Scholar] [CrossRef]
- The Dutch-Belgian Fragile X Consorthium; Bakker, C.E.; Verheij, C.; Willemsen, R.; van der Helm, R.; Oerlemans, F.; Vermey, M.; Bygrave, A.; Hoogeveen, A.; Oostra, B.A.; et al. Fmr1 Knockout Mice: A Model to Study Fragile X Mental Retardation. Cell 1994, 78, 23–33. [Google Scholar] [CrossRef]
- Kooy, R.F.; D’Hooge, R.; Reyniers, E.; Bakker, C.E.; Nagels, G.; De Boulle, K.; Storm, K.; Clincke, G.; De Deyn, P.P.; Oostra, B.A.; et al. Transgenic Mouse Model for the Fragile X Syndrome. Am. J. Med. Genet. 1996, 64, 241–245. [Google Scholar] [CrossRef]
- de Diego-Otero, Y.; Romero-Zerbo, Y.; el Bekay, R.; Decara, J.; Sanchez, L.; Fonseca, F.R.; Arco-Herrera, I.D. α-Tocopherol Protects Against Oxidative Stress in the Fragile X Knockout Mouse: An Experimental Therapeutic Approach for the Fmr1 Deficiency. Neuropsychopharmacology 2009, 34, 1011–1026. [Google Scholar] [CrossRef]
- El Bekay, R.; Romero-Zerbo, Y.; Decara, J.; Sanchez-Salido, L.; Del Arco-Herrera, I.; Rodríguez-de Fonseca, F.; De Diego-Otero, Y. Enhanced Markers of Oxidative Stress, Altered Antioxidants and NADPH-oxidase Activation in Brains from Fragile X Mental Retardation 1-deficient Mice, a Pathological Model for Fragile X Syndrome. Eur. J. Neurosci. 2007, 26, 3169–3180. [Google Scholar] [CrossRef]
- Lima-Cabello, E.; Garcia-Guirado, F.; Calvo-Medina, R.; el Bekay, R.; Perez-Costillas, L.; Quintero-Navarro, C.; Sanchez-Salido, L.; de Diego-Otero, Y. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability. Oxid. Med. Cell. Longev. 2016, 2016, 8548910. [Google Scholar] [CrossRef]
- Stefanska, J.; Pawliczak, R. Apocynin: Molecular Aptitudes. Mediat. Inflamm. 2008, 2008, 106507. [Google Scholar] [CrossRef]
- Wood, H.C. A Study of Apocynum cannabinum. J. Am. Med. Assoc. 1904, XLIII, 1953–1957. [Google Scholar] [CrossRef]
- Peters, E.A.; Hiltermann, J.T.N.; Stolk, J. Effect of Apocynin on Ozone-Induced Airway Hyperresponsiveness to Methacholine in Asthmatics. Free Radic. Biol. Med. 2001, 31, 1442–1447. [Google Scholar] [CrossRef]
- Stolk, J.; Hiltermann, T.J.; Dijkman, J.H.; Verhoeven, A.J. Characteristics of the Inhibition of NADPH Oxidase Activation in Neutrophils by Apocynin, a Methoxy-Substituted Catechol. Am. J. Respir. Cell Mol. Biol. 1994, 11, 95–102. [Google Scholar] [CrossRef]
- van der Veen, R.C.; Dietlin, T.A.; Hofman, F.M.; Pen, L.; Segal, B.H.; Holland, S.M. Superoxide Prevents Nitric Oxide-Mediated Suppression of Helper T Lymphocytes: Decreased Autoimmune Encephalomyelitis in Nicotinamide Adenine Dinucleotide Phosphate Oxidase Knockout Mice. J. Immunol. 2000, 164, 5177–5183. [Google Scholar] [CrossRef]
- Hou, L.; Sun, F.; Huang, R.; Sun, W.; Zhang, D.; Wang, Q. Inhibition of NADPH Oxidase by Apocynin Prevents Learning and Memory Deficits in a Mouse Parkinson’s Disease Model. Redox Biol. 2019, 22, 101134. [Google Scholar] [CrossRef]
- Augsburger, F.; Filippova, A.; Rasti, D.; Seredenina, T.; Lam, M.; Maghzal, G.; Mahiout, Z.; Jansen-Dürr, P.; Knaus, U.G.; Doroshow, J.; et al. Pharmacological Characterization of the Seven Human NOX Isoforms and Their Inhibitors. Redox Biol. 2019, 26, 101272. [Google Scholar] [CrossRef]
- Tang, L.; Ye, K.; Yang, X.; Zheng, J. Apocynin Attenuates Cerebral Infarction after Transient Focal Ischaemia in Rats. J. Int. Med. Res. 2007, 35, 517–522. [Google Scholar] [CrossRef]
- Philippens, I.H.C.H.M.; Wubben, J.A.; Finsen, B.; ‘t Hart, B.A. Oral Treatment with the NADPH Oxidase Antagonist Apocynin Mitigates Clinical and Pathological Features of Parkinsonism in the MPTP Marmoset Model. J. Neuroimmune Pharmacol. 2013, 8, 715–726. [Google Scholar] [CrossRef]
- Ghosh, A.; Kanthasamy, A.; Joseph, J.; Anantharam, V.; Srivastava, P.; Dranka, B.P.; Kalyanaraman, B.; Kanthasamy, A.G. Anti-Inflammatory and Neuroprotective Effects of an Orally Active Apocynin Derivative in Pre-Clinical Models of Parkinson’s Disease. J. Neuroinflamm. 2012, 9, 241. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Liu, X.; Chen, J.; Zhang, K.; Huang, F.; Wang, J.; Tang, W.; Huang, H. Apocynin Attenuates Cardiac Injury in Type 4 Cardiorenal Syndrome via Suppressing Cardiac Fibroblast Growth Factor-2 With Oxidative Stress Inhibition. J. Am. Heart Assoc. 2015, 4, e001598. [Google Scholar] [CrossRef]
- Klees, R.F.; De Marco, P.C.; Salasznyk, R.M.; Ahuja, D.; Hogg, M.; Antoniotti, S.; Kamath, L.; Dordick, J.S.; Plopper, G.E. Apocynin Derivatives Interrupt Intracellular Signaling Resulting in Decreased Migration in Breast Cancer Cells. Biomed. Res. Int. 2006, 2006, 87246. [Google Scholar] [CrossRef]
- Romero-Zerbo, Y.; Decara, J.; El Bekay, R.; Sanchez-Salido, L.; Del Arco-Herrera, I.; De Fonseca, F.R.; De Diego-Otero, Y. Protective effects of melatonin against oxidative stress in Fmr1 knockout mice: A therapeutic research model for the fragile X syndrome. J. Pineal Res. 2009, 46, 224–234. [Google Scholar] [CrossRef]
- Giráldez-Pérez, R.M.; Ávila, M.N.; Feijóo-Cuaresma, M.; Heredia, R.; De Diego-Otero, Y.; Real, M.Á.; Guirado, S. Males but Not Females Show Differences in Calbindin Immunoreactivity in the Dorsal Thalamus of the Mouse Model of Fragile X Syndrome. J. Comp. Neurol. 2013, 521, 894–911. [Google Scholar] [CrossRef]
- Crusio, W.; Schwegler, H. Hippocampal Mossy Fiber Distribution Covaries with Open-Field Habituation in the Mouse. Behav. Brain Res. 1987, 26, 153–158. [Google Scholar] [CrossRef]
- Leger, M.; Quiedeville, A.; Bouet, V.; Haelewyn, B.; Boulouard, M.; Schumann-Bard, P.; Freret, T. Object Recognition Test in Mice. Nat. Protoc. 2013, 8, 2531–2537. [Google Scholar] [CrossRef]
- Lister, R.G. The Use of a Plus-Maze to Measure Anxiety in the Mouse. Psychopharmacology 1987, 92, 180–185. [Google Scholar] [CrossRef]
- Phillips, R.G.; LeDoux, J.E. Differential Contribution of Amygdala and Hippocampus to Cued and Contextual Fear Conditioning. Behav. Neurosci. 1992, 106, 274–285. [Google Scholar] [CrossRef]
- Bradford, M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Carty, J.L.; Bevan, R.; Waller, H.; Mistry, N.; Cooke, M.; Lunec, J.; Griffiths, H.R. The Effects of Vitamin C Supplementation on Protein Oxidation in Healthy Volunteers. Biochem. Biophys. Res. Commun. 2000, 273, 729–735. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.-G.; Ahn, B.-W.; Shaltiel, S.; Stadtman, E.R. [49] Determination of Carbonyl Content in Oxidatively Modified Proteins. In Oxygen Radicals in Biological Systems Part B: Oxygen Radicals and Antioxidants; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1990; Volume 186, pp. 464–478. [Google Scholar]
- Gantois, I.; Pop, A.S.; de Esch, C.E.F.; Buijsen, R.A.M.; Pooters, T.; Gomez-Mancilla, B.; Gasparini, F.; Oostra, B.A.; D’Hooge, R.; Willemsen, R. Chronic Administration of AFQ056/Mavoglurant Restores Social Behaviour in Fmr1 Knockout Mice. Behav. Brain Res. 2013, 239, 72–79. [Google Scholar] [CrossRef]
- Silverman, J.L.; Pride, M.C.; Hayes, J.E.; Puhger, K.R.; Butler-Struben, H.M.; Baker, S.; Crawley, J.N. GABAB Receptor Agonist R-Baclofen Reverses Social Deficits and Reduces Repetitive Behavior in Two Mouse Models of Autism. Neuropsychopharmacology 2015, 40, 2228–2239. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Li, M.; Feng, X.; Wang, J.; Cao, L.; Shen, X.K.; Chen, J.; Sun, M.; Sheng, R.; Han, F.; et al. Combined NADPH and the NOX Inhibitor Apocynin Provides Greater Anti-Inflammatory and Neuroprotective Effects in a Mouse Model of Stroke. Free Radic. Biol. Med. 2017, 104, 333–345. [Google Scholar] [CrossRef]
- Meng, R.; Zhu, D.L.; Bi, Y.; Yang, D.H.; Wang, Y.P. Anti-Oxidative Effect of Apocynin on Insulin Resistance in High-Fat Diet Mice. Ann. Clin. Lab. Sci. 2011, 41, 236–243. [Google Scholar]
- Shukla, T.; de la Peña, J.B.; Perish, J.M.; Ploski, J.E.; Stumpf, C.R.; Webster, K.R.; Thorn, C.A.; Campbell, Z.T. A Highly Selective MNK Inhibitor Rescues Deficits Associated with Fragile X Syndrome in Mice. Neurother. J. Am. Soc. Exp. NeuroTher. 2021, 18, 624–639. [Google Scholar] [CrossRef]
- Liang, D.; Li, G.; Liao, X.; Yu, D.; Wu, J.; Zhang, M. Developmental Loss of Parvalbumin-Positive Cells in the Prefrontal Cortex and Psychiatric Anxiety after Intermittent Hypoxia Exposures in Neonatal Rats Might Be Mediated by NADPH Oxidase-2. Behav. Brain Res. 2016, 296, 134–140. [Google Scholar] [CrossRef]
- Miller, D.K.; Oelrichs, C.E.; Sun, G.Y.; Simonyi, A. Subchronic Apocynin Treatment Attenuates Methamphetamine-Induced Dopamine Release and Hyperactivity in Rats. Life Sci. 2014, 98, 6–11. [Google Scholar] [CrossRef]
- Ferreira, A.P.O.; Rodrigues, F.S.; Della-Pace, I.D.; Mota, B.C.; Oliveira, S.M.; Velho Gewehr, C.d.C.; Bobinski, F.; de Oliveira, C.V.; Brum, J.S.; Oliveira, M.S.; et al. The Effect of NADPH-Oxidase Inhibitor Apocynin on Cognitive Impairment Induced by Moderate Lateral Fluid Percussion Injury: Role of Inflammatory and Oxidative Brain Damage. Neurochem. Int. 2013, 63, 583–593. [Google Scholar] [CrossRef]
- Han, B.H.; Zhou, M.; Johnson, A.W.; Singh, I.; Liao, F.; Vellimana, A.K.; Nelson, J.W.; Milner, E.; Cirrito, J.R.; Basak, J.; et al. Contribution of Reactive Oxygen Species to Cerebral Amyloid Angiopathy, Vasomotor Dysfunction, and Microhemorrhage in Aged Tg2576 Mice. Proc. Natl. Acad. Sci. USA 2015, 112, E881–E890. [Google Scholar] [CrossRef]
- Ghosh, A.; Langley, M.R.; Harischandra, D.S.; Neal, M.L.; Jin, H.; Anantharam, V.; Joseph, J.; Brenza, T.; Narasimhan, B.; Kanthasamy, A.; et al. Mitoapocynin Treatment Protects Against Neuroinflammation and Dopaminergic Neurodegeneration in a Preclinical Animal Model of Parkinson’s Disease. J. Neuroimmune Pharmacol. 2016, 11, 259–278. [Google Scholar] [CrossRef]
- Berry, A.; Capone, F.; Giorgio, M.; Pelicci, P.G.; de Kloet, E.R.; Alleva, E.; Minghetti, L.; Cirulli, F. Deletion of the Life Span Determinant P66Shc Prevents Age-Dependent Increases in Emotionality and Pain Sensitivity in Mice. Exp. Gerontol. 2007, 42, 37–45. [Google Scholar] [CrossRef]
- Gingrich, J.A. Oxidative Stress Is the New Stress. Nat. Med. 2005, 11, 1281–1282. [Google Scholar] [CrossRef]
- Hovatta, I.; Tennant, R.S.; Helton, R.; Marr, R.A.; Singer, O.; Redwine, J.M.; Ellison, J.A.; Schadt, E.E.; Verma, I.M.; Lockhart, D.J.; et al. Glyoxalase 1 and Glutathione Reductase 1 Regulate Anxiety in Mice. Nature 2005, 438, 662–666. [Google Scholar] [CrossRef]
- Smaga, I.; Niedzielska, E.; Gawlik, M.; Moniczewski, A.; Krzek, J.; Przegaliński, E.; Pera, J.; Filip, M. Oxidative Stress as an Etiological Factor and a Potential Treatment Target of Psychiatric Disorders. Part 2. Depression, Anxiety, Schizophrenia and Autism. Pharmacol. Rep. 2015, 67, 569–580. [Google Scholar] [CrossRef]
- Zhuang, Y.; Feng, Q.; Ding, G.; Zhao, M.; Che, R.; Bai, M.; Bao, H.; Zhang, A.; Huang, S. Activation of ERK1/2 by NADPH Oxidase-Originated Reactive Oxygen Species Mediates Uric Acid-Induced Mesangial Cell Proliferation. Am. J. Physiol.-Ren. Physiol. 2014, 307, F396–F406. [Google Scholar] [CrossRef]
- Alghamdi, S.S.; Suliman, R.S.; Aljammaz, N.A.; Kahtani, K.M.; Aljatli, D.A.; Albadrani, G.M. Natural Products as Novel Neuroprotective Agents; Computational Predictions of the Molecular Targets, ADME Properties, and Safety Profile. Plants 2022, 11, 549. [Google Scholar] [CrossRef]
- Barbieri, S.S.; Sandrini, L.; Musazzi, L.; Popoli, M.; Ieraci, A. Apocynin Prevents Anxiety-Like Behavior and Histone Deacetylases Overexpression Induced by Sub-Chronic Stress in Mice. Biomolecules 2021, 11, 885. [Google Scholar] [CrossRef]
- Zieba, J.; Sinclair, D.; Sebree, T.; Bonn-Miller, M.; Gutterman, D.; Siegel, S.; Karl, T. Cannabidiol (CBD) reduces anxiety-related behavior in mice via an FMRP-independent mechanism. Pharmacol. Biochem. Behav. 2019, 181, 93–100. [Google Scholar] [CrossRef]
- Rosenheck, M.; Sheeler, C.; Saré, R.M.; Gurney, M.E.; Smith, C.B. Effects of chronic inhibition of phosphodiesterase-4D on behavior and regional rates of cerebral protein synthesis in a mouse model of fragile X syndrome. Neurobiol. Dis. 2021, 159, 105485. [Google Scholar] [CrossRef]
- Dang, D.K.; Shin, E.J.; Nam, Y.; Ryoo, S.; Jeong, J.H.; Jang, C.G.; Nabeshima, T.; Hong, J.S.; Kim, H.C. Apocynin Prevents Mitochondrial Burdens, Microglial Activation, and pro-Apoptosis Induced by a Toxic Dose of Methamphetamine in the Striatum of Mice via Inhibition of P47phox Activation by ERK. J. Neuroinflamm. 2016, 13, 12. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, L.; Hong, J.S.; Zhang, D.; Zhao, J.; Wang, Q. Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy. Antioxid. Redox Signal. 2020, 33, 374–393. [Google Scholar] [CrossRef]
- Dash, P.K.; Mach, S.A.; Moore, A.N. The Role of Extracellular Signal-Regulated Kinase in Cognitive and Motor Deficits Following Experimental Traumatic Brain Injury. Neuroscience 2002, 114, 755–767. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Giustarini, D.; Colombo, R.; Rossi, R.; Milzani, A. Protein Carbonylation in Human Diseases. Trends Mol. Med. 2003, 9, 169–176. [Google Scholar] [CrossRef]
- Dean, R.T.; Fu, S.; Stocker, R.; Davies, M.J. Biochemistry and Pathology of Radical-Mediated Protein Oxidation. Biochem. J. 1997, 324, 1–18. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Diego-Otero, Y.; El Bekay, R.; García-Guirado, F.; Sánchez-Salido, L.; Giráldez-Pérez, R.M. Apocynin, a Selective NADPH Oxidase (Nox2) Inhibitor, Ameliorates Behavioural and Learning Deficits in the Fragile X Syndrome Mouse Model. Biomedicines 2024, 12, 2887. https://doi.org/10.3390/biomedicines12122887
de Diego-Otero Y, El Bekay R, García-Guirado F, Sánchez-Salido L, Giráldez-Pérez RM. Apocynin, a Selective NADPH Oxidase (Nox2) Inhibitor, Ameliorates Behavioural and Learning Deficits in the Fragile X Syndrome Mouse Model. Biomedicines. 2024; 12(12):2887. https://doi.org/10.3390/biomedicines12122887
Chicago/Turabian Stylede Diego-Otero, Yolanda, Rajaa El Bekay, Francisco García-Guirado, Lourdes Sánchez-Salido, and Rosa María Giráldez-Pérez. 2024. "Apocynin, a Selective NADPH Oxidase (Nox2) Inhibitor, Ameliorates Behavioural and Learning Deficits in the Fragile X Syndrome Mouse Model" Biomedicines 12, no. 12: 2887. https://doi.org/10.3390/biomedicines12122887
APA Stylede Diego-Otero, Y., El Bekay, R., García-Guirado, F., Sánchez-Salido, L., & Giráldez-Pérez, R. M. (2024). Apocynin, a Selective NADPH Oxidase (Nox2) Inhibitor, Ameliorates Behavioural and Learning Deficits in the Fragile X Syndrome Mouse Model. Biomedicines, 12(12), 2887. https://doi.org/10.3390/biomedicines12122887