Passive Immunisation in the Treatment of Infectious Diseases Related to Highly Potent Bacterial Toxins
Abstract
:1. Introduction
2. Botulism
2.1. Equine Botulinum Antitoxins
2.2. Botulism Immune Globulin Intravenous (BIG-IV)
2.3. Recombinant Monoclonal Antibodies (mAbs)
2.4. Generation of BoNT-Neutralising Antibodies by Phage Display Technology
3. Tetanus
3.1. Discovery of Tetanus Antitoxin
3.2. Production of Equine Tetanus Antitoxins
3.3. Human Tetanus Immunoglobulin (TIG)
3.4. TeNT Neutralising Antibodies Generated by Phage Display Technology
4. Diphtheria
4.1. Equine Diphtheria Antitoxin
4.2. Human Anti-Diphtheria Immunoglobulins and Monoclonal Antibodies
4.3. Recombinant Human Antibody Fragments for the Diphtheria Toxin
5. Conclusions
Funding
Conflicts of Interest
References
- Graham, B.S.; Ambrosino, D.M. History of Passive Antibody Administration for Prevention and Treatment of Infectious Diseases. Curr. Opin. HIV AIDS 2015, 10, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Winau, F.; Winau, R. Emil von Behring and Serum Therapy. Microbes Infect. 2002, 4, 185–188. [Google Scholar] [CrossRef]
- Marano, G.; Vaglio, S.; Pupella, S.; Facco, G.; Catalano, L.; Liumbruno, G.M.; Grazzini, G. Convalescent Plasma: New Evidence for an Old Therapeutic Tool? Blood Transfus. 2015, 14, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Cohn, E.J.; Strong, L.E.; Hughes, W.L.; Mulford, D.J.; Ashworth, J.N.; Melin, M.; Taylor, H.L. Preparation and Properties of Serum and Plasma Proteins. IV. A System for the Separation into Fractions of the Protein and Lipoprotein Components of Biological Tissues and Fluids1a, b, c, d. J. Am. Chem. Soc. 1946, 68, 459–475. [Google Scholar] [CrossRef]
- Stokes, J.; Maris, E.P.; Gellis, S.S. Chemical, Clinical, and Immunological Studies on the Products of Human Plasma Fractionation. XI. The Use of Concentrated Normal Human Serum Gamma Globulin (Human Immune Serum Globulin) in the Prophylaxis and Treatment of Measles. J. Clin. Investig. 1944, 23, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Llewelyn, M.B.; Hawkins, R.E.; Russell, S.J. Discovery of Antibodies. BMJ 1992, 305, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Karpas, A.; Hill, F.; Youle, M.; Cullen, V.; Gray, J.; Byron, N.; Hayhoe, F.; Tenant-Flowers, M.; Howard, L.; Gilgen, D. Effects of Passive Immunization in Patients with the Acquired Immunodeficiency Syndrome-Related Complex and Acquired Immunodeficiency Syndrome. Proc. Natl. Acad. Sci. USA 1988, 85, 9234–9237. [Google Scholar] [CrossRef] [PubMed]
- Lasocka, J.; Bielawski, A.; Lachert, E. Passive Immunization in the Combat against Infectious Diseases (COVID-19 Included). J. Transfus. Med. 2021, 14, 50–57. [Google Scholar] [CrossRef]
- Lachert, E.; Kubis, J.; Antoniewicz-Papis, J.; Rosiek, A.; Woźniak, J.; Piotrowski, D.; Przybylska, Z.; Mikołowska, A.; Marschner, S.; Łętowska, M. Quality Control of Riboflavin-Treated Platelet Concentrates Using Mirasol® PRT System: Polish Experience. Adv. Clin. Exp. Med. 2018, 27, 765–772. [Google Scholar] [CrossRef]
- Radosevich, M.; Burnouf, T. Intravenous Immunoglobulin G: Trends in Production Methods, Quality Control and Quality Assurance: Intravenous Immunoglobulin G. Vox Sang. 2010, 98, 12–28. [Google Scholar] [CrossRef] [PubMed]
- Abolhassani, H.; Asgardoon, M.H.; Rezaei, N.; Hammarstrom, L.; Aghamohammadi, A. Different Brands of Intravenous Immunoglobulin for Primary Immunodeficiencies: How to Choose the Best Option for the Patient? Expert Rev. Clin. Immunol. 2015, 11, 1229–1243. [Google Scholar] [CrossRef]
- Stępień, A.; Korsak, J.; Kozubski, W.; Ryglewicz, D.; Losy, J.; Drozdowski, W.; Kotowicz, J.; Nyka, W.; Kwieciński, H. Stanowisko grupy ekspertów dotyczące stosowania dożylnych immunoglobulin w leczeniu chorób układu nerwowego. Neurol. Neurochir. Pol. 2011, 45, 525–535. [Google Scholar] [CrossRef]
- Arumugham, V.B.; Rayi, A. Intravenous Immunoglobulin (IVIG). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Epland, K.; Suez, D.; Paris, K. A Clinician’s Guide for Administration of High-Concentration and Facilitated Subcutaneous Immunoglobulin Replacement Therapy in Patients with Primary Immunodeficiency Diseases. Allergy Asthma Clin. Immunol. 2022, 18, 87. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Gebo, K.A.; Shoham, S.; Bloch, E.M.; Lau, B.; Shenoy, A.G.; Mosnaim, G.S.; Gniadek, T.J.; Fukuta, Y.; Patel, B.; et al. Early Outpatient Treatment for COVID-19 with Convalescent Plasma. N. Engl. J. Med. 2022, 386, 1700–1711. [Google Scholar] [CrossRef] [PubMed]
- Freysd’ottir, J. Production of Monoclonal Antibodies. In Diagnostic and Therapeutic Antibodies; George, A.J.T., Urch, C.E., Eds.; Methods in Molecular Medicine; Humana Press: Totowa, NJ, USA, 2000; Volume 40, pp. 267–279. ISBN 978-0-89603-798-4. [Google Scholar]
- Beaber, J.W.; Tam, E.M.; Lao, L.S.; Rondon, I.J. A New Helper Phage for Improved Monovalent Display of Fab Molecules. J. Immunol. Methods 2012, 376, 46–54. [Google Scholar] [CrossRef]
- Posner, J.; Barrington, P.; Brier, T.; Datta-Mannan, A. Monoclonal Antibodies: Past, Present and Future. In Concepts and Principles of Pharmacology; Barrett, J.E., Page, C.P., Michel, M.C., Eds.; Handbook of Experimental Pharmacology; Springer International Publishing: Cham, Switzerland, 2019; Volume 260, pp. 81–141. ISBN 978-3-030-35361-2. [Google Scholar]
- Motilal, S.; Mishra, S.; Arjun, M.; Venkatesh, M.P. Regulatory Challenges and Landscapes of Monoclonal Antibody Registration: Global Outlook. Int. J. Pharm. Pharm. Sci. 2024, 16, 30–41. [Google Scholar] [CrossRef]
- Jin, B.; Odongo, S.; Radwanska, M.; Magez, S. NANOBODIES®: A Review of Diagnostic and Therapeutic Applications. Int. J. Mol. Sci. 2023, 24, 5994. [Google Scholar] [CrossRef] [PubMed]
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hammers, C.; Songa, E.B.; Bendahman, N.; Hammers, R. Naturally Occurring Antibodies Devoid of Light Chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef]
- Harmsen, M.M.; De Haard, H.J. Properties, Production, and Applications of Camelid Single-Domain Antibody Fragments. Appl. Microbiol. Biotechnol. 2007, 77, 13–22. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, S.; Ying, T. Single-Domain Antibodies As Therapeutics against Human Viral Diseases. Front. Immunol. 2017, 8, 1802. [Google Scholar] [CrossRef] [PubMed]
- Arbabi-Ghahroudi, M. Camelid Single-Domain Antibodies: Historical Perspective and Future Outlook. Front. Immunol. 2017, 8, 1589. [Google Scholar] [CrossRef] [PubMed]
- Amersdorfer, P.; Marks, J.D. Phage Libraries for Generation of Anti-Botulinum scFv Antibodies. In Bacterial Toxins; Humana Press: Totowa, NJ, USA, 2000; Volume 145, pp. 219–240. ISBN 978-1-59259-052-0. [Google Scholar]
- Farizo, K.M.; Strebel, P.M.; Chen, R.T.; Kimbler, A.; Cleary, T.J.; Cochi, S.L. Fatal Respiratory Disease Due to Corynebacterium Diphtheriae: Case Report and Review of Guidelines for Management, Investigation, and Control. Clin. Infect. Dis. 1993, 16, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Yutani, M.; Matsumura, T.; Fujinaga, Y. Effects of Antibiotics on the Viability of and Toxin Production by Clostridium botulinum. Microbiol. Immunol. 2021, 65, 432–437. [Google Scholar] [CrossRef]
- Nath, A. Infections of the Nervous System. Clin. Infect. Dis. 2015, 60, 330. [Google Scholar] [CrossRef]
- CDC. Chapter 21: Tetanus. Available online: https://www.cdc.gov/pinkbook/hcp/table-of-contents/chapter-21-tetanus.html (accessed on 15 November 2024).
- Peck, M.; Smith, T.; Anniballi, F.; Austin, J.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.; Derman, Y.; Dorner, B.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef]
- O’Horo, J.C.; Harper, E.P.; El Rafei, A.; Ali, R.; DeSimone, D.C.; Sakusic, A.; Abu Saleh, O.M.; Marcelin, J.R.; Tan, E.M.; Rao, A.K.; et al. Efficacy of Antitoxin Therapy in Treating Patients With Foodborne Botulism: A Systematic Review and Meta-Analysis of Cases, 1923–2016. Clin. Infect. Dis. 2018, 66, S43–S56. [Google Scholar] [CrossRef]
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; et al. Botulinum Toxin as a Biological Weapon: Medical and Public Health Management. JAMA 2001, 285, 1059–1070. [Google Scholar] [CrossRef]
- McNally, R.E.; Morrison, M.B.; Bernt, J.E.; Stark, M.; Fisher, J.; Bo’Berry, J. Effectiveness of Medical Defense Interventions Against Predicted Battlefield Level of Botulinum Toxin A.; Science Applications International Corporation: Joppa, MD, USA, 1994. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Biological and Chemical Terrorism: Strategic Plan for Preparedness and Response. Recommendations of the CDC Strategic Planning Workgroup; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2000.
- Dembek, Z.F.; Smith, L.A.; Rusnak, J.M. Botulism: Cause, Effects, Diagnosis, Clinical and Laboratory Identification, and Treatment Modalities. Disaster Med. Public Health Prep. 2007, 1, 122–134. [Google Scholar] [CrossRef]
- Sobel, J. Botulism. Clin. Infect. Dis. 2005, 41, 1167–1173. [Google Scholar] [CrossRef]
- Koepke, R.; Sobel, J.; Arnon, S.S. Global Occurrence of Infant Botulism, 1976–2006. Pediatrics 2008, 122, e73–e82. [Google Scholar] [CrossRef]
- CDC. National Botulism Surveillance Summary. 2019. Available online: https://www.cdc.gov/botulism/php/national-botulism-surveillance/2019.html (accessed on 15 November 2024).
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar] [CrossRef]
- Shapiro, R.L. Botulism in the United States: A Clinical and Epidemiologic Review. Ann. Intern. Med. 1998, 129, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.; Hinkle, R. Infant Botulism. Am. Fam. Physician 2002, 65, 1388–1392. [Google Scholar] [PubMed]
- Brett, M.M.; Hood, J.; Brazier, J.S.; Duerden, B.I.; Hahné, S.J.M. Soft Tissue Infections Caused by Spore-Forming Bacteria in Injecting Drug Users in the United Kingdom. Epidemiol. Infect. 2005, 133, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Botulism from Home-Canned Bamboo Shoots--Nan Province, Thailand, March 2006. MMWR Morb. Mortal. Wkly. Rep. 2006, 55, 389–392. [Google Scholar]
- Cooper, M.S.; Lewis, K.H.; Cassel, K., Jr. Antitoxins to C. botulinum. In Proceedings of the Antitoxins to C. botulinum; Public Health Service: Cincinnati, OH, USA, 1964; Volume 999-FP-1, pp. 147–164. [Google Scholar]
- Arnon, S.S.; Schechter, R.; Maslanka, S.E.; Jewell, N.P.; Hatheway, C.L. Human Botulism Immune Globulin for the Treatment of Infant Botulism. N. Engl. J. Med. 2006, 354, 462–471. [Google Scholar] [CrossRef]
- Richardson, J.S.; Parrera, G.S.; Astacio, H.; Sahota, H.; Anderson, D.M.; Hall, C.; Babinchak, T. Safety and Clinical Outcomes of an Equine-Derived Heptavalent Botulinum Antitoxin Treatment for Confirmed or Suspected Botulism in the United States. Clin. Infect. Dis. 2020, 70, 1950–1957. [Google Scholar] [CrossRef]
- Chalk, C.H.; Benstead, T.J.; Keezer, M. Medical Treatment for Botulism. Cochrane Database Syst. Rev. 2014, 20, CD008123. [Google Scholar] [CrossRef] [PubMed]
- Rasetti-Escargueil, C.; Avril, A.; Miethe, S.; Mazuet, C.; Derman, Y.; Selby, K.; Thullier, P.; Pelat, T.; Urbain, R.; Fontayne, A.; et al. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies. Toxins 2017, 9, 309. [Google Scholar] [CrossRef] [PubMed]
- Wongtanate, M.; Sucharitchan, N.; Tantisiriwit, K.; Oranrigsupak, P.; Chuesuwan, A.; Toykeaw, S.; Suputtamongkol, Y. Signs and Symptoms Predictive of Respiratory Failure in Patients with Foodborne Botulism in Thailand. Am. J. Trop. Med. Hyg. 2007, 77, 386–389. [Google Scholar] [CrossRef]
- Vanella De Cuetos, E.E.; Fernandez, R.A.; Bianco, M.I.; Sartori, O.J.; Piovano, M.L.; Lúquez, C.; De Jong, L.I.T. Equine Botulinum Antitoxin for the Treatment of Infant Botulism. Clin. Vaccine Immunol. 2011, 18, 1845–1849. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Chen, X.; Liu, S.; Zhou, Z.; Yang, R. Two-Family Outbreak of Botulism Associated with the Consumption of Smoked Ribs in Sichuan Province, China. Int. J. Infect. Dis. 2015, 30, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Dolman, C.E.; Iida, H. Type E Botulism: Its Epidemiology, Prevention and Specific Treatment. Can. J. Public Health 1963, 54, 293–308. [Google Scholar]
- Juliao, P.C.; Maslanka, S.; Dykes, J.; Gaul, L.; Bagdure, S.; Granzow-Kibiger, L.; Salehi, E.; Zink, D.; Neligan, R.P.; Barton-Behravesh, C.; et al. National Outbreak of Type A Foodborne Botulism Associated With a Widely Distributed Commercially Canned Hot Dog Chili Sauce. Clin. Infect. Dis. 2013, 56, 376–382. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Investigational Heptavalent Botulinum Antitoxin (HBAT) to Replace Licensed Botulinum Antitoxin AB and Investigational Botulinum Antitoxin E. MMWR Morb. Mortal. Wkly. Rep. 2010, 59, 299. [Google Scholar]
- Fagan, R.P.; Neil, K.P.; Sasich, R.; Luquez, C.; Asaad, H.; Maslanka, S.; Khalil, W. Initial Recovery and Rebound of Type F Intestinal Colonization Botulism After Administration of Investigational Heptavalent Botulinum Antitoxin. Clin. Infect. Dis. 2011, 53, e125–e128. [Google Scholar] [CrossRef]
- Foster, K.A. (Ed.) Molecular Aspects of Botulinum Neurotoxin; Springer: New York, NY, USA, 2014; ISBN 978-1-4614-9453-9. [Google Scholar]
- Rasetti-Escargueil, C.; Popoff, M.R. Antibodies and Vaccines against Botulinum Toxins: Available Measures and Novel Approaches. Toxins 2019, 11, 528. [Google Scholar] [CrossRef]
- Thyagarajan, B. Antidotes to Botulinum Neurotoxin. In Biological Toxins and Bioterrorism; Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B.R., Eds.; Toxinology; Springer: Dordrecht, The Netherlands, 2015; pp. 375–400. ISBN 978-94-007-5868-1. [Google Scholar]
- Shi, D.-Y.; Lu, J.-S.; Mao, Y.-Y.; Liu, F.-J.; Wang, R.; Du, P.; Yu, S.; Yu, Y.-Z.; Yang, Z.-X. Characterization of a Novel Tetravalent Botulism Antitoxin Based on Receptor-Binding Domain of BoNTs. Appl. Microbiol. Biotechnol. 2023, 107, 3205–3216. [Google Scholar] [CrossRef]
- Emanuel, A.; Qiu, H.; Barker, D.; Takla, T.; Gillum, K.; Neimuth, N.; Kodihalli, S. Efficacy of Equine Botulism Antitoxin in Botulism Poisoning in a Guinea Pig Model. PLoS ONE 2019, 14, e0209019. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.; Gillum, K.T.; Niemuth, N.A.; Kodihalli, S. Therapeutic Efficacy of Equine Botulism Heptavalent Antitoxin against All Seven Botulinum Neurotoxins in Symptomatic Guinea Pigs. PLoS ONE 2019, 14, e0222670. [Google Scholar] [CrossRef] [PubMed]
- Kodihalli, S.; Emanuel, A.; Takla, T.; Hua, Y.; Hobbs, C.; LeClaire, R.; O’Donnell, D.C. Therapeutic Efficacy of Equine Botulism Antitoxin in Rhesus Macaques. PLoS ONE 2017, 12, e0186892. [Google Scholar] [CrossRef]
- Yu, P.A.; Lin, N.H.; Mahon, B.E.; Sobel, J.; Yu, Y.; Mody, R.K.; Gu, W.; Clements, J.; Kim, H.-J.; Rao, A.K. Safety and Improved Clinical Outcomes in Patients Treated With New Equine-Derived Heptavalent Botulinum Antitoxin. Clin. Infect. Dis. 2017, 66, S57–S64. [Google Scholar] [CrossRef] [PubMed]
- Franz, D.R.; Pitt, L.M.; Clayton, M.A.; Hanes, M.A.; Rose, K.J. Efficacy of Prophylactic and Therapeutic Administration of Antitoxin for Inhalation Botulism. In Botulinum and Tetanus Neurotoxins; DasGupta, B.R., Ed.; Springer: Boston, MA, USA, 1993; pp. 473–476. ISBN 978-1-4757-9544-8. [Google Scholar]
- Van Hao, N.; Loan, H.T.; Yen, L.M.; Kestelyn, E.; Hong, D.D.; Thuy, D.B.; Nguyen, N.T.; Duong, H.T.H.; Thuy, T.T.D.; Nhat, P.T.H.; et al. Human versus Equine Intramuscular Antitoxin, with or without Human Intrathecal Antitoxin, for the Treatment of Adults with Tetanus: A 2 × 2 Factorial Randomised Controlled Trial. Lancet Glob. Health 2022, 10, e862–e872. [Google Scholar] [CrossRef]
- Aebersold, P. FDA Experience with Medical Countermeasures under the Animal Rule. Adv. Prev. Med. 2012, 2012, 507571. [Google Scholar] [CrossRef] [PubMed]
- Tacket, C.O.; Shandera, W.X.; Mann, J.M.; Hargrett, N.T.; Blake, P.A. Equine Antitoxin Use and Other Factors That Predict Outcome in Type A Foodborne Botulism. Am. J. Med. 1984, 76, 794–798. [Google Scholar] [CrossRef]
- Woodruff, B.A.; Griffin, P.M.; McCroskey, L.M.; Smart, J.F.; Wainwright, R.B.; Bryant, R.G.; Hutwagner, L.C.; Hatheway, C.L. Clinical and Laboratory Comparison of Botulism from Toxin Types A, B, and E in the United States, 1975–1988. J. Infect. Dis. 1992, 166, 1281–1286. [Google Scholar] [CrossRef]
- Black, R.E.; Gunn, R.A. Hypersensitivity Reactions Associated with Botulinal Antitoxin. Am. J. Med. 1980, 69, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Botulism from Drinking Prison-Made Illicit Alcohol—Utah 2011. MMWR Morb. Mortal. Wkly. Rep. 2012, 61, 782–784. [Google Scholar]
- Khouri, J.M.; Motter, R.N.; Arnon, S.S. Safety and Immunogenicity of Investigational Recombinant Botulinum Vaccine, rBV A/B, in Volunteers with Pre-Existing Botulinum Toxoid Immunity. Vaccine 2018, 36, 2041–2048. [Google Scholar] [CrossRef]
- Robinson, R.F.; Nahata, M.C. Management of Botulism. Ann. Pharmacother. 2003, 37, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.W.; Stanker, L.H.; Henderson, T.D.; Lou, J.; Marks, J.D. Antibody Protection against Botulinum Neurotoxin Intoxication in Mice. Infect. Immun. 2009, 77, 4305–4313. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Kuziemko, G.M.; Amersdorfer, P.; Wong, C.; Marks, J.D.; Stevens, R.C. Antibody Mapping to Domains of Botulinum Neurotoxin Serotype A in the Complexed and Uncomplexed Forms. Infect. Immun. 1997, 65, 1626–1630. [Google Scholar] [CrossRef] [PubMed]
- Adekar, S.P.; Al-Saleem, F.H.; Elias, M.D.; Rybinski, K.A.; Simpson, L.L.; Dessain, S.K. A Natural Human IgM Antibody That Neutralizes Botulinum Neurotoxin In Vivo. Hybridoma 2008, 27, 65–69. [Google Scholar] [CrossRef]
- Mazuet, C.; Dano, J.; Popoff, M.R.; Créminon, C.; Volland, H. Characterization of Botulinum Neurotoxin Type A Neutralizing Monoclonal Antibodies and Influence of Their Half-Lives on Therapeutic Activity. PLoS ONE 2010, 5, e12416. [Google Scholar] [CrossRef]
- Fan, Y.; Dong, J.; Lou, J.; Wen, W.; Conrad, F.; Geren, I.; Garcia-Rodriguez, C.; Smith, T.; Smith, L.; Ho, M.; et al. Monoclonal Antibodies That Inhibit the Proteolytic Activity of Botulinum Neurotoxin Serotype/B. Toxins 2015, 7, 3405–3423. [Google Scholar] [CrossRef] [PubMed]
- Abbasova, S.G.; Rudenko, N.V.; Gorokhovatskii, A.Y.; Kapralova, M.V.; Vinogradova, I.D.; Vertiev, Y.V.; Nesmeyanov, V.A.; Grishin, E.V. Monoclonal Antibodies to Botulinum Neurotoxins of Types A, B, E, and F. Russ. J. Bioorg. Chem. 2011, 37, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, J.; McCann, C.; Ofori, K.; Hill, J.; Baldwin, K.; Shoemaker, C.; Harrison, P.; Tzipori, S. Sheep Monoclonal Antibodies Prevent Systemic Effects of Botulinum Neurotoxin A1. Toxins 2012, 4, 1565–1581. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodriguez, C.; Geren, I.N.; Lou, J.; Conrad, F.; Forsyth, C.; Wen, W.; Chakraborti, S.; Zao, H.; Manzanarez, G.; Smith, T.J.; et al. Neutralizing Human Monoclonal Antibodies Binding Multiple Serotypes of Botulinum Neurotoxin. Protein Eng. Des. Sel. 2011, 24, 321–331. [Google Scholar] [CrossRef]
- Hatheway, C.H.; Snyder, J.D.; Seals, J.E.; Edell, T.A.; Lewis, G.E. Antitoxin Levels in Botulism Patients Treated with Trivalent Equine Botulism Antitoxin to Toxin Types A, B, and E. J. Infect. Dis. 1984, 150, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Amersdorfer, P.; Wong, C.; Smith, T.; Chen, S.; Deshpande, S.; Sheridan, R.; Marks, J.D. Genetic and Immunological Comparison of Anti-Botulinum Type A Antibodies from Immune and Non-Immune Human Phage Libraries. Vaccine 2002, 20, 1640–1648. [Google Scholar] [CrossRef]
- Wu, H.-C.; Yeh, C.-T.; Huang, Y.-L.; Tarn, L.-J.; Lung, C.-C. Characterization of Neutralizing Antibodies and Identification of Neutralizing Epitope Mimics on the Clostridium botulinum Neurotoxin Type A. Appl. Environ. Microbiol. 2001, 67, 3201–3207. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Geren, I.; Garcia-Rodriguez, C.; Forsyth, C.M.; Wen, W.; Knopp, K.; Brown, J.; Smith, T.; Smith, L.A.; Marks, J.D. Affinity Maturation of Human Botulinum Neurotoxin Antibodies by Light Chain Shuffling via Yeast Mating. Protein Eng. Des. Sel. 2010, 23, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodriguez, C.; Yan, S.; Geren, I.N.; Knopp, K.A.; Dong, J.; Sun, Z.; Lou, J.; Conrad, F.; Wen, W.-H.; Farr-Jones, S.; et al. A Four-Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotypes C and D. Toxins 2021, 13, 641. [Google Scholar] [CrossRef] [PubMed]
- Pellett, S.; Tepp, W.H.; Bradshaw, M.; Kalb, S.R.; Dykes, J.K.; Lin, G.; Nawrocki, E.M.; Pier, C.L.; Barr, J.R.; Maslanka, S.E.; et al. Purification and Characterization of Botulinum Neurotoxin FA from a Genetically Modified Clostridium Botulinum Strain. mSphere 2016, 1, e00100-15. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.U.; Griffiss, J.M.; McKenzie, R.; Fuchs, E.J.; Jurao, R.A.; An, A.T.; Ahene, A.; Tomic, M.; Hendrix, C.W.; Zenilman, J.M. Safety and Pharmacokinetics of XOMA 3AB, a Novel Mixture of Three Monoclonal Antibodies against Botulinum Toxin A. Antimicrob. Agents Chemother. 2014, 58, 5047–5053. [Google Scholar] [CrossRef]
- Search for: Other Terms: Xoma 3ab|Card Expert Search|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/expert-search?term=xoma%203ab (accessed on 15 November 2024).
- Lam, K.; Tremblay, J.M.; Perry, K.; Ichtchenko, K.; Shoemaker, C.B.; Jin, R. Probing the Structure and Function of the Protease Domain of Botulinum Neurotoxins Using Single-Domain Antibodies. PLoS Pathog. 2022, 18, e1010169. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, J.M.; Vazquez-Cintron, E.; Lam, K.-H.; Mukherjee, J.; Bedenice, D.; Ondeck, C.A.; Conroy, M.T.; Bodt, S.M.L.; Winner, B.M.; Webb, R.P.; et al. Camelid VHH Antibodies That Neutralize Botulinum Neurotoxin Serotype E Intoxication or Protease Function. Toxins 2020, 12, 611. [Google Scholar] [CrossRef]
- Harmsen, M.M.; Cornelissen, J.C.; Van Der Wal, F.J.; Bergervoet, J.H.W.; Koene, M. Single-Domain Antibody Multimers for Detection of Botulinum Neurotoxin Serotypes C, D, and Their Mosaics in Endopep-MS. Toxins 2023, 15, 573. [Google Scholar] [CrossRef]
- Godakova, S.A.; Noskov, A.N.; Vinogradova, I.D.; Ugriumova, G.A.; Solovyev, A.I.; Esmagambetov, I.B.; Tukhvatulin, A.I.; Logunov, D.Y.; Naroditsky, B.S.; Shcheblyakov, D.V.; et al. Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice. Toxins 2019, 11, 464. [Google Scholar] [CrossRef]
- Barash, J.R.; Arnon, S.S. A Novel Strain of Clostridium Botulinum That Produces Type B and Type H Botulinum Toxins. J. Infect. Dis. 2014, 209, 183–191. [Google Scholar] [CrossRef]
- Maslanka, S.E.; Lúquez, C.; Dykes, J.K.; Tepp, W.H.; Pier, C.L.; Pellett, S.; Raphael, B.H.; Kalb, S.R.; Barr, J.R.; Rao, A.; et al. A Novel Botulinum Neurotoxin, Previously Reported as Serotype H, Has a Hybrid-Like Structure With Regions of Similarity to the Structures of Serotypes A and F and Is Neutralized With Serotype A Antitoxin. J. Infect. Dis. 2016, 213, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.-I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and Characterization of a Novel Botulinum Neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef]
- Kitasato, S. Ueber Den Tetanusbacillus. Z. Hyg. 1889, 7, 225–234. [Google Scholar] [CrossRef]
- Rossetto, O.; Scorzeto, M.; Megighian, A.; Montecucco, C. Tetanus Neurotoxin. Toxicon 2013, 66, 59–63. [Google Scholar] [CrossRef]
- Schiavo, G.; Papini, E.; Genna, G.; Montecucco, C. An Intact Interchain Disulfide Bond Is Required for the Neurotoxicity of Tetanus Toxin. Infect. Immun. 1990, 58, 4136–4141. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Lu, J.; Guo, J.; Wang, R.; Chen, L.; Wang, X.; Jiang, Y.; Li, Y.; Xu, C.; Kang, Q.; et al. Characterization of Neutralizing Chimeric Heavy-Chain Antibodies against Tetanus Toxin. Hum. Vaccines Immunother. 2024, 20, 2366641. [Google Scholar] [CrossRef]
- Tetanus. Available online: https://www.ecdc.europa.eu/en/tetanus (accessed on 15 November 2024).
- Li, J.; Liu, Z.; Yu, C.; Tan, K.; Gui, S.; Zhang, S.; Shen, Y. Global Epidemiology and Burden of Tetanus from 1990 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Int. J. Infect. Dis. 2023, 132, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Tetanus. Available online: https://www.who.int/health-topics/tetanus (accessed on 15 November 2024).
- Tetanus Vaccines: WHO Position Paper—February 2017. Available online: https://www.who.int/publications/i/item/WHO-WER9206 (accessed on 15 November 2024).
- Orenstein, W. Plotkin’s Vaccines, e-Book, 8th ed.; Elsevier: Philadelphia, PA, USA, 2023; ISBN 978-0-323-79059-8. [Google Scholar]
- Behring, H.; Kitasato, H. Ueber das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch. Med. Wochenschr. 1890, 16, 1113–1114. [Google Scholar] [CrossRef]
- Nocard, E. Sur La Sérothérapie Du Tétanos. Essais de Traitement Préventif. Bull. Acad. Med. 1895, 17, 407–418. [Google Scholar]
- Nocard, E. Sur La Sérothérapie Du Tétanos. Receuil Méd. Vét. 1897, 4, 481–490. [Google Scholar]
- Hewlett, R.T. Tetanus Antitoxin; Its Preparation and Properties. BMJ 1895, 1, 464–465. [Google Scholar] [CrossRef]
- Struthers, J.W. The Treatment of Tetanus. Edinb. Med. J. 1908, 1, 218–222. [Google Scholar] [CrossRef]
- Aubert, N.; Brachet-Botineau, M.; de Olivera Preto, G.E.; Benz-de Bretagne, I.; Watier, H.; Brachet, G. History, Extensive Characterization and Challenge of Anti-Tetanus Serum from World War I: Exciting Remnants and Deceived Hopes: Centenarian IgGs Lost Their Neutralization Capacity. Immunol. Res. 2020, 68, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Wever, P.C.; Van Bergen, L. Prevention of Tetanus during the First World War. Med. Humanit. 2012, 38, 78–82. [Google Scholar] [CrossRef]
- Buer, A.W. A Method for Production of High-Titre Tetanus Serum. Acta Pathol. Microbiol. Scand. 1946, 23, 293–298. [Google Scholar] [CrossRef]
- Ramon, G. Médecine Expérimentale. Sur Le Pouvoir Floculant et Sur Les Propriétés Immunisantes d’une Toxine Diphtérique Rendue Anatoxique (Anatoxine). CR Acad. Sci. 1923, 177, 1338–1340. [Google Scholar]
- Ramon, G. Sur l’augmentation Anormale de l’antitoxine Chez Les Chevaux Producteurs de Sérum Antidiphtérique. Bull. Soc. Centr. Med. Vet. 1925, 101, 227–234. [Google Scholar]
- Pope, C.G. Development of Knowledge of Antitoxins. Br. Med. Bull. 1963, 19, 230–234. [Google Scholar] [CrossRef]
- Lang, J.; Kamga-Fotso, L.; Peyrieux, J.C.; Blondeau, C.; Lutsch, C.; Forrat, R. Safety and Immunogenicity of a New Equine Tetanus Immunoglobulin Associated with Tetanus-Diphtheria Vaccine. Am. J. Trop. Med. Hyg. 2000, 63, 298–305. [Google Scholar] [CrossRef] [PubMed]
- McCracken, G.H.; Dowell, D.L.; Marshall, F.N. Double-Blind Trial of Equine Antitoxin and Human Immune Globulin in Tetanus Neonatorum. Lancet 1971, 1, 1146–1149. [Google Scholar] [CrossRef]
- Rubbo, S.D.; Suri, J.C. Passive Immunization Against Tetanus with Human Immune Globulin. BMJ 1962, 2, 79–81. [Google Scholar] [CrossRef]
- Yu, R.; Ji, C.; Xu, J.; Wang, D.; Fang, T.; Jing, Y.; Kwang-Fu Shen, C.; Chen, W. The Immunogenicity of the C Fragment of Tetanus Neurotoxin in Production of Tetanus Antitoxin. BioMed Res. Int. 2018, 2018, 6057348. [Google Scholar] [CrossRef]
- Joseph, M.; Woldeamanuel, Y.; Medhin, G.; Manyazewal, T.; Fekadu, A.; Makonnen, E. Safety of Equine Tetanus Antitoxin for Prophylactic Use in Ethiopia: A Retrospective Multi-Center Study. Trop. Med. Health 2023, 51, 23. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.E.; Dolin, R.; Blaser, M.J. (Eds.) Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Elsevier: Philadelphia, PA, USA, 2020; ISBN 978-0-323-48255-4. [Google Scholar]
- Nation, N.S.; Pierce, N.F.; Adler, S.J.; Chinnock, R.F.; Wehrle, P.F. Tetanus; the Use of Human Hyperimmune Globulin in Treatment. Calif. Med. 1963, 98, 305–307. [Google Scholar] [PubMed]
- Blake, P.A.; Feldman, R.A.; Buchanan, T.M.; Brooks, G.F.; Bennett, J.V. Serologic Therapy of Tetanus in the United States, 1965–1971. JAMA 1976, 235, 42–44. [Google Scholar] [CrossRef] [PubMed]
- Afshar, M.; Raju, M.; Ansell, D.; Bleck, T.P. Narrative Review: Tetanus—A Health Threat After Natural Disasters in Developing Countries. Ann. Intern. Med. 2011, 154, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.M.; Protheroe, R.T.; Handel, J.M. Tetanus: A Review of the Literature. Br. J. Anaesth. 2001, 87, 477–487. [Google Scholar] [CrossRef]
- Farrar, J.J. Neurological Aspects of Tropical Disease: Tetanus. J. Neurol. Neurosurg. Psychiatry 2000, 69, 292–301. [Google Scholar] [CrossRef]
- Thwaites, C.L.; Yen, L.M. Tetanus. In Harrison’s Principles of Internal Medicine, 20th ed.; Jameson, J.L., Fauci, A.S., Kasper, D.L., Hauser, S.L., Longo, D.L., Loscalzo, J., Eds.; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Abrutyn, E.; Berlin, J.A. Intrathecal Therapy in Tetanus. A Meta-Analysis. JAMA 1991, 266, 2262–2267. [Google Scholar] [CrossRef]
- Begue, R.E.; Lindo-Soriano, I. Failure of Intrathecal Tetanus Antitoxin in the Treatment of Tetanus Neonatorum. J. Infect. Dis. 1991, 164, 619–620. [Google Scholar] [CrossRef] [PubMed]
- Kabura, L.; Ilibagiza, D.; Menten, J.; Van Den Ende, J. Intrathecal vs. Intramuscular Administration of Human Antitetanus Immunoglobulin or Equine Tetanus Antitoxin in the Treatment of Tetanus: A Meta-analysis. Trop. Med. Int. Health 2006, 11, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Thomas, K.; Peter, J.V.; Jeyaseelan, L.; Cherian, A.M. A Randomized Double-Blind Sham-Controlled Study of Intrathecal Human Anti-Tetanus Immunoglobulin in the Management of Tetanus. Natl. Med. J. India 1998, 11, 209–212. [Google Scholar] [PubMed]
- Geeta, M.G.; Krishnakumar, P.; Mathews, L. Intrathecal Tetanus Immunoglobulins in the Management of Tetanus. Indian J. Pediatr. 2007, 74, 43–45. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Filho, D.d.B.; Ximenes, R.A.d.A.; Barone, A.A.; Vaz, V.L.; Vieira, A.G.; Albuquerque, V.M.G. Randomised Controlled Trial of Tetanus Treatment with Antitetanus Immunoglobulin by the Intrathecal or Intramuscular Route. BMJ 2004, 328, 615. [Google Scholar] [CrossRef]
- Rossotti, M.A.; González-Techera, A.; Guarnaschelli, J.; Yim, L.; Camacho, X.; Fernández, M.; Cabral, P.; Leizagoyen, C.; Chabalgoity, J.A.; González-Sapienza, G. Increasing the Potency of Neutralizing Single-Domain Antibodies by Functionalization with a CD11b/CD18 Binding Domain. MAbs 2015, 7, 820–828. [Google Scholar] [CrossRef]
- de Smit, H.; Ackerschott, B.; Tierney, R.; Stickings, P.; Harmsen, M.M. A Novel Single-Domain Antibody Multimer That Potently Neutralizes Tetanus Neurotoxin. Vaccine X 2021, 8, 100099. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, T.L.; McEvoy, P.; Polotsky, Y.; Tzinserling, V.A.; Yakovlev, A.A. The Pathology of Diphtheria. J. Infect. Dis. 2000, 181, S116–S120. [Google Scholar] [CrossRef]
- Collier, R.J. Diphtheria Toxin: Mode of Action and Structure. Bacteriol. Rev. 1975, 39, 54–85. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.J.; Ray, C.G.; Sherris, J.C. (Eds.) Sherris Medical Microbiology: An Introduction to Infectious Diseases, 4th ed.; McGraw-Hill: New York, NY, USA, 2004; ISBN 978-0-8385-8529-0. [Google Scholar]
- Holmes, R.K. Biology and Molecular Epidemiology of Diphtheria Toxin and the Tox Gene. J. Infect. Dis. 2000, 181, S156–S167. [Google Scholar] [CrossRef] [PubMed]
- Pappenheimer, A.M. The Diphtheria Bacillus and Its Toxin: A Model System. J. Hyg. 1984, 93, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Popovic, T.; Mazurova, I.K.; Efstratiou, A.; Vuopio-Varkila, J.; Reeves, M.W.; De Zoysa, A.; Glushkevich, T.; Grimont, P. Molecular Epidemiology of Diphtheria. J. Infect. Dis. 2000, 181, S168–S177. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.S.; White, J.M.; Lucenko, I.; Mercer, D.; Crowcroft, N.S.; Neal, S.; Efstratiou, A.; on behalf of the Diphtheria Surveillance Network. Diphtheria in the Postepidemic Period, Europe, 2000–2009. Emerg. Infect. Dis. 2012, 18, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.E.N. Review of the Epidemiology of Diphtheria—2000–2016. Available online: https://cdn.who.int/media/docs/default-source/immunization/sage/2017/sage-meeting-of-april-2017/background-docs/session-diphtheria/1.-review-of-the-epidemiology-of-diphtheria---2000-2016-pdf-829kb.pdf?sfvrsn=9ba4f061_3 (accessed on 21 November 2024).
- Diphtheria—Number of Reported Cases. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/diphtheria---number-of-reported-cases (accessed on 21 November 2024).
- Kolybo, D.V.; Labyntsev, A.A.; Romaniuk, S.I.; Kaberniuk, A.A.; Oliinyk, O.M.; Korotkevich, N.V.; Komisarenko, S.V. Immunobiology of Diphtheria. Recent Approaches for the Prevention, Diagnosis, and Treatment of Disease. Biotechnol. Acta 2013, 6, 43–62. [Google Scholar] [CrossRef]
- Kneen, R.; Giao, P.N.; Solomon, T.; Van, T.T.M.; Hoa, N.T.T.; Long, T.B.; Wain, J.; Day, N.P.J.; Hien, T.T.; Parry, C.M.; et al. Penicillin vs. Erythromycin in the Treatment of Diphtheria. Clin. Infect. Dis. 1998, 27, 845–850. [Google Scholar] [CrossRef]
- Clinical Management of Diphtheria: Guideline, 2 February 2024. Available online: https://www.who.int/publications/i/item/WHO-DIPH-Clinical-2024.1 (accessed on 15 November 2024).
- Diphtheria-Guinea. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON492 (accessed on 21 November 2024).
- Linton, D.S. Emil von Behring: Infectious Disease, Immunology, Serum Therapy; Memoirs of the American Philosophical Society Held at Philadelphia for Promoting Useful Knowledge; American Philosophical Society: Philadelphia, PA, USA, 2005; ISBN 978-0-87169-255-9. [Google Scholar]
- Schwartz, R.S. Paul Ehrlich’s Magic Bullets. N. Engl. J. Med. 2004, 350, 1079–1080. [Google Scholar] [CrossRef]
- Wagner, K.S.; Stickings, P.; White, J.M.; Neal, S.; Crowcroft, N.S.; Sesardic, D.; Efstratiou, A. A Review of the International Issues Surrounding the Availability and Demand for Diphtheria Antitoxin for Therapeutic Use. Vaccine 2009, 28, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Hassall, L.; Rigsby, P.; Stickings, P. Collaborative Study for the Calibration of a Replacement International Standard for Diphtheria Antitoxin Equine. Biologicals 2023, 82, 101682. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, E.V.; Bosnak, M.; Tierney, R.; Schubert, M.; Brown, J.; Dübel, S.; Efstratiou, A.; Sesardic, D.; Stickings, P.; Hust, M. Human Antibodies Neutralizing Diphtheria Toxin in Vitro and in Vivo. Sci. Rep. 2020, 10, 571. [Google Scholar] [CrossRef] [PubMed]
- Kniker, W.T.; Cochrane, C.G. The Localization of Circulating Immune Complexes in Experimental Serum Sickness. J. Exp. Med. 1968, 127, 119–136. [Google Scholar] [CrossRef]
- Bissumbhar, B.; Rakhmanova, A.G.; Berbers, G.A.M.; Iakolev, A.; Nosikova, E.; Melnick, O.; Ovtcharenko, E.; Rümke, H.C.; Ruitenberg, E.J. Evaluation of Diphtheria Convalescent Patients to Serve as Donors for the Production of Anti-Diphtheria Immunoglobulin Preparations. Vaccine 2004, 22, 1886–1891. [Google Scholar] [CrossRef] [PubMed]
- Provan, D.; Chapel, H.M.; Sewell, W.A.C.; O’Shaughnessy, D.; on behalf of the UK Immunoglobulin Expert Working Group. Prescribing Intravenous Immunoglobulin: Summary of Department of Health Guidelines. BMJ 2008, 337, a1831. [Google Scholar] [CrossRef]
- Kakita, M.; Takahashi, T.; Komiya, T.; Iba, Y.; Tsuji, T.; Kurosawa, Y.; Takahashi, M. Isolation of a Human Monoclonal Antibody with Strong Neutralizing Activity against Diphtheria Toxin. Infect. Immun. 2006, 74, 3682–3683. [Google Scholar] [CrossRef] [PubMed]
- Sevigny, L.M.; Booth, B.J.; Rowley, K.J.; Leav, B.A.; Cheslock, P.S.; Garrity, K.A.; Sloan, S.E.; Thomas, W.; Babcock, G.J.; Wang, Y. Identification of a Human Monoclonal Antibody To Replace Equine Diphtheria Antitoxin for Treatment of Diphtheria Intoxication. Infect. Immun. 2013, 81, 3992–4000. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.L.; Cheslock, P.; Leney, M.; Barton, B.; Molrine, D.C. Potency of a Human Monoclonal Antibody to Diphtheria Toxin Relative to Equine Diphtheria Anti-Toxin in a Guinea Pig Intoxication Model. Virulence 2016, 7, 660–668. [Google Scholar] [CrossRef]
- Sullivan-Bólyai, J.Z.; Allen, L.B.; Cannon, R.; Cohane, K.P.; Dunzo, E.; Goldwater, R.; StCyr, K.; Wang, Y.; Klempner, M.S. A Phase 1 Study in Healthy Subjects to Evaluate the Safety and Pharmacokinetics of a Human Monoclonal Antibody (S315) Against Diphtheria Toxin. J. Infect. Dis. 2024, jiae499. [Google Scholar] [CrossRef] [PubMed]
- Khalili, E.; Lakzaei, M.; Aminian, M. Neutralizing Anti-Diphtheria Toxin scFv Produced by Phage Display. Biotechnol. Lett. 2024, 46, 385–398. [Google Scholar] [CrossRef]
- Shaker, G. Evaluation of Antidiphtheria Toxin Nanobodies. Nanotechnol. Sci. Appl. 2010, 3, 29–35. [Google Scholar] [CrossRef]
- Zhu, J.; Declercq, J.; Roucourt, B.; Ghassabeh, G.H.; Meulemans, S.; Kinne, J.; David, G.; Vermorken, A.J.M.; Van De Ven, W.J.M.; Lindberg, I.; et al. Generation and Characterization of Non-Competitive Furin-Inhibiting Nanobodies. Biochem. J. 2012, 448, 73–82. [Google Scholar] [CrossRef]
- Rubio-Casillas, A.; Rodriguez-Quintero, C.M.; Redwan, E.M.; Gupta, M.N.; Uversky, V.N.; Raszek, M. Do Vaccines Increase or Decrease Susceptibility to Diseases Other than Those They Protect Against? Vaccine 2024, 42, 426–440. [Google Scholar] [CrossRef]
- Smith, L.A. Botulism and Vaccines for Its Prevention. Vaccine 2009, 27, D33–D39. [Google Scholar] [CrossRef]
- Torii, Y.; Sugimoto, N.; Kohda, T.; Kozaki, S.; Morokuma, K.; Horikawa, Y.; Ginnaga, A.; Yamamoto, A.; Takahashi, M. Clinical Study of New Tetravalent (Type A, B, E, and F) Botulinum Toxoid Vaccine Derived from M Toxin in Japan. Jpn. J. Infect. Dis. 2017, 70, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Enria, L.; Dwyer, H.; Marchant, M.; Beckmann, N.; Schmidt-Sane, M.; Conteh, A.; Mansaray, A.; N’Jai, A. Political Dimensions of Misinformation, Trust, and Vaccine Confidence in a Digital Age. BMJ 2024, 385, e079940. [Google Scholar] [CrossRef] [PubMed]
- Confidence in Childhood Vaccines Declines Across Europe and Central Asia—New UNICEF Report. Available online: https://www.unicef.org/eca/press-releases/confidence-childhood-vaccines-declines-across-europe-and-central-asia-new-unicef (accessed on 15 December 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prygiel, M.; Mosiej, E.; Wdowiak, K.; Zasada, A.A. Passive Immunisation in the Treatment of Infectious Diseases Related to Highly Potent Bacterial Toxins. Biomedicines 2024, 12, 2920. https://doi.org/10.3390/biomedicines12122920
Prygiel M, Mosiej E, Wdowiak K, Zasada AA. Passive Immunisation in the Treatment of Infectious Diseases Related to Highly Potent Bacterial Toxins. Biomedicines. 2024; 12(12):2920. https://doi.org/10.3390/biomedicines12122920
Chicago/Turabian StylePrygiel, Marta, Ewa Mosiej, Karol Wdowiak, and Aleksandra Anna Zasada. 2024. "Passive Immunisation in the Treatment of Infectious Diseases Related to Highly Potent Bacterial Toxins" Biomedicines 12, no. 12: 2920. https://doi.org/10.3390/biomedicines12122920
APA StylePrygiel, M., Mosiej, E., Wdowiak, K., & Zasada, A. A. (2024). Passive Immunisation in the Treatment of Infectious Diseases Related to Highly Potent Bacterial Toxins. Biomedicines, 12(12), 2920. https://doi.org/10.3390/biomedicines12122920