The Role of Vitamin D in Rare Diseases—A Clinical Review
Abstract
:1. Introduction
2. Review Methodology
3. RDs of the Skin—EB, Morphea
4. RDs of the Liver—PBC, PSC, AIH
5. RDs of the Kidneys—Alport Syndrome, Fabry Disease
6. Cystic Fibrosis
7. Immunoregulatory Role of Vitamin D
8. Drug-Vitamin D Interactions
9. Discussion
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin-Converting Enzyme |
AIH | Autoimmune Hepatitis |
CF | Cystic Fibrosis |
CFTR | Cystic Fibrosis Transmembrane Conductance Regulator |
CPG | Clinical Practice Guidelines |
CRP | C-Reactive Protein |
CTLA-4 | Cytotoxic T-Lymphocyte-Associated Protein 4 |
CYP | Cytochrome P450 |
DBP | Vitamin D Binding Protein |
DM1 | Diabetes Mellitus Type 1 |
EB | Epidermolysis Bullosa |
EU | European Union |
FEV1 | Forced Expiratory Volume in 1 Second |
FVC | Forced Vital Capacity |
HAART | Highly Active Antiretroviral Therapy |
IL | Interleukin |
INF | Interferon |
JEB | Junctional Epidermolysis Bullosa |
MHCII | Major Histocompatibility Complex Class II |
MS | Multiple Sclerosis |
NKT | Natural Killer T-Cells |
PBC | Primary Biliary Cirrhosis |
PSC | Primary Sclerosing Cholangitis |
QoL | Quality of Life |
RD | Rare Disease |
RDEB | Recessive Dystrophic Epidermolysis Bullosa |
RXR | Retinoid X Receptor |
SLE | Systemic Lupus Erythematosus |
SSRI | Selective Serotonin Reuptake Inhibitor |
TB | Tuberculosis |
TLR | Toll-like Receptor |
TNF | Tumor Necrosis Factor |
UVB | Ultraviolet B |
VDR | Vitamin D Receptor |
1,25(OH)2D3 | 1α,25-dihydroxycholecalciferol (Calcitriol) |
25(OH)D | 25-hydroxycholecalciferol (Calcifediol) |
References
- European Union. Regulation (EC) No 141/2000 of the European Parliament and of the Council of 16 December 1999 on Orphan Medicinal Products; European Union: Brussels, Belgium, 1999. [Google Scholar]
- Haendel, M.; Vasilevsky, N.; Unni, D.; Bologa, C.; Harris, N.; Rehm, H.; Hamosh, A.; Baynam, G.; Groza, T.; McMurry, J.; et al. How Many Rare Diseases Are There? Nat. Rev. Drug Discov. 2020, 19, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Nguengang Wakap, S.; Lambert, D.M.; Olry, A.; Rodwell, C.; Gueydan, C.; Lanneau, V.; Rath, A. Estimating Cumulative Point Prevalence of Rare Diseases: Analysis of the Orphanet Database. Eur. J. Hum. Genet. 2020, 28, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Austin, C.P.; Cutillo, C.M.; Lau, L.P.; Jonker, A.H.; Rath, A.; Julkowska, D. International Rare Diseases Research Consortium. Future of Rare Diseases Research 2017–2027: An IRDiRC Perspective. Clin. Transl. Sci. 2018, 11, 21. [Google Scholar] [CrossRef]
- Zhao, Z.; Jing, Y.; Feng, F.; Wu, J.; Gao, C.; He, X. Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients. arXiv 2024. [Google Scholar] [CrossRef]
- Utz, J.; Whitley, C.B.; van Giersbergen, P.L.; Kolb, S.A. Comorbidities and Pharmacotherapies in Patients with Gaucher Disease Type 1: The Potential for Drug–Drug Interactions. Mol. Genet. Metab. 2016, 117, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Tavera-Mendoza, L.E.; Laperriere, D.; Libby, E.; Burton MacLeod, N.; Nagai, Y.; White, J.H. Large-Scale in Silico and Microarray-Based Identification of Direct 1, 25-Dihydroxyvitamin D3 Target Genes. Mol. Endocrinol. 2005, 19, 2685–2695. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C. Vitamin D and Its Target Genes. Nutrients 2022, 14, 1354. [Google Scholar] [CrossRef]
- Leal, L.K.A.M.; Lima, L.A.; de Aquino, P.E.A.; de Sousa, J.A.C.; Gadelha, C.V.J.; Calou, I.B.F.; de Barros Viana, G.S. Vitamin D (VD3) Antioxidative and Anti-Inflammatory Activities: Peripheral and Central Effects. Eur. J. Pharmacol. 2020, 879, 173099. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; DeLuca, H.F. Where Is the Vitamin D Receptor? Arch. Biochem. Biophys. 2012, 523, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D: Production, Metabolism and Mechanisms of Action. In Endotext; MDText.com, Inc.: South Dartmouth, MA, USA, 2015. [Google Scholar]
- Robien, K.; Oppeneer, S.J.; Kelly, J.A.; Hamilton-Reeves, J.M. Drug–Vitamin D Interactions: A Systematic Review of the Literature. Nutr. Clin. Pract. 2013, 28, 194–208. [Google Scholar] [CrossRef]
- Płudowski, P.; Ducki, C.; Konstantynowicz, J.; Jaworski, M. Vitamin D Status in Poland. Pol. Arch. Med. Wewn. 2016, 126, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Yerlett, N.; Loizou, A.; Bageta, M.; Petrof, G.; Martinez, A.E. Establishing an Appropriate Level of Vitamin D Supplementation in Paediatric Patients with Recessive Dystrophic Epidermolysis Bullosa. Clin. Exp. Dermatol. 2022, 47, 1307–1313. [Google Scholar] [CrossRef]
- Frascari, F.; Dreyfus, I.; Rodriguez, L.; Gennero, I.; Ezzedine, K.; Salles, J.P.; Mazereeuw-Hautier, J. Prevalence and Risk Factors of Vitamin D Deficiency in Inherited Ichthyosis: A French Prospective Observational Study Performed in a Reference Center. Orphanet J. Rare Dis. 2014, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Bhanji, R.A.; Mazurak, V.C.; Lytvyak, E.; Mason, A.; Czaja, A.J.; Montano-Loza, A.J. Severe Vitamin D Deficiency Is a Prognostic Biomarker in Autoimmune Hepatitis. Aliment. Pharmacol. Ther. 2019, 49, 173–182. [Google Scholar] [CrossRef]
- Daley, T.; Hughan, K.; Rayas, M.; Kelly, A.; Tangpricha, V. Vitamin D Deficiency and Its Treatment in Cystic Fibrosis. J. Cyst. Fibros. 2019, 18, S66–S73. [Google Scholar] [CrossRef]
- Pliszczyński, J.; Nita, M.; Kowalewski, C.; Woźniak, K.; Eljaszewicz, A.; Moniuszko, M.; Fiedor, P. Transplantation of a New Biological Product in Rare Diseases, Such as Epidermolysis Bullosa: Response and Clinical Outcome. Transplant. Proc. 2020, 52, 2239–2243. [Google Scholar] [CrossRef] [PubMed]
- Reimer, A.; Hess, M.; Schwieger-Briel, A.; Kiritsi, D.; Schauer, F.; Schumann, H.; Has, C. Natural History of Growth and Anaemia in Children with Epidermolysis Bullosa: A Retrospective Cohort Study. Br. J. Dermatol. 2020, 182, 1437–1448. [Google Scholar] [CrossRef]
- Rodari, G.; Guez, S.; Manzoni, F.; Chalouhi, K.K.; Profka, E.; Bergamaschi, S.; Esposito, S. Birmingham Epidermolysis Severity Score and Vitamin D Status Are Associated with Low BMD in Children with Epidermolysis Bullosa. Osteoporos. Int. 2017, 28, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Yuniati, R.; Hellmi, R.Y.; Dwijayanti, G.C.; Astuti, M.D.K.; Pals, G.; Micha, D.; Faradz, S.M. Epidermolysis Bullosa and Rickets in a 21-Year-Old Female: A Case Report. Case Rep. Dermatol. 2022, 14, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Saad, R.; Duipmans, J.; Yerlett, N.; Plevey, K.; McCuaig, C.; Woolfe, W.; Mayre-Chilton, K. Neonatal Epidermolysis Bullosa: A Clinical Practice Guideline. Br. J. Dermatol. 2024, 190, 636–656. [Google Scholar] [CrossRef] [PubMed]
- Abbas, L.; Joseph, A.; Kunzler, E.; Jacobe, H.T. Morphea: Progress to Date and the Road Ahead. Ann. Transl. Med. 2021, 9, 5. [Google Scholar] [CrossRef]
- Narbutt, J.; Hołdrowicz, A.; Lesiak, A. Morphea–Selected Local Treatment Methods and Their Effectiveness. Reumatologia 2017, 55, 305–313. [Google Scholar] [CrossRef]
- Koç Yıldırım, S.; Najafova, T.; Ersoy Evans, S.; Lay, İ.; Karaduman, A. Serum Vitamin D Levels and Vitamin D Receptor Gene ApaI and TaqI Polymorphisms in Patients with Morphea: A Case–Control Study. Arch. Dermatol. Res. 2023, 315, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-W.; Kim, J.-H.; Kim, S.-E.; Jung, J.H.; Jang, M.-K.; Park, S.-H.; Lee, M.-S.; Kim, H.-S.; Suk, K.T.; Kim, D.J. Primary Biliary Cholangitis and Primary Sclerosing Cholangitis: Current Knowledge of Pathogenesis and Therapeutics. Biomedicines 2022, 10, 1288. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wu, Z.; Feng, F.; Li, Y.; Zhang, S. Low Vitamin D Concentrations and BMI Are Causal Factors for Primary Biliary Cholangitis: A Mendelian Randomization Study. Front. Immunol. 2022, 13, 1055953. [Google Scholar] [CrossRef]
- Ebadi, M.; Ip, S.; Lytvyak, E.; Asghari, S.; Rider, E.; Mason, A.; Montano-Loza, A.J. Vitamin D Is Associated with Clinical Outcomes in Patients with Primary Biliary Cholangitis. Nutrients 2022, 14, 878. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.Y.; Shi, Y.Q.; Wang, L.; Ren, X.; Han, Z.Y.; Guo, C.C.; Cui, L.N.; Wang, J.B.; Zhu, J.; Wang, N.; et al. Serum Vitamin D Level Is Associated with Disease Severity and Response to Ursodeoxycholic Acid in Primary Biliary Cirrhosis. Aliment. Pharmacol. Ther. 2015, 42, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Rider, E.; Tsai, C.; Wang, S.; Lytvyak, E.; Mason, A.; Montano-Loza, A.J. Prognostic Significance of Severe Vitamin D Deficiency in Patients with Primary Sclerosing Cholangitis. Nutrients 2023, 15, 576. [Google Scholar] [CrossRef] [PubMed]
- Baran, D.T.; Milne, M.L. 1,25 Dihydroxyvitamin D Increases Hepatocyte Cytosolic Calcium Levels. A Potential Regulator of Vitamin D-25-Hydroxylase. J. Clin. Investig. 1986, 77, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Okumura, A.; Ishikawa, T.; Sato, S.; Yamauchi, T.; Oshima, H.; Ohashi, T.; Sato, K.; Ayada, M.; Hotta, N.; Kakumu, S. Deficiency of Forkhead Box P3 and Cytotoxic T-Lymphocyte-Associated Antigen-4 Gene Expressions and Impaired Suppressor Function of CD4(+)CD25(+) T Cells in Patients with Autoimmune Hepatitis. Hepatol. Res. 2008, 38, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Luong, K.V.; Nguyen, L.T. The Role of Vitamin D in Autoimmune Hepatitis. J. Clin. Med. Res. 2013, 5, 407–415. [Google Scholar] [CrossRef]
- Kumar, R.; Tebben, P.J.; Thompson, J.R. Vitamin D and the Kidney. Arch. Biochem. Biophys. 2012, 523, 77–86. [Google Scholar]
- Zhang, F.; Li, W. The Complex Relationship between Vitamin D and Kidney Stones: Balance, Risks, and Prevention Strategies. Front. Nutr. 2024, 11, 1435403. [Google Scholar] [CrossRef] [PubMed]
- Chavez, E.; Goncalves, S.; Rheault, M.N.; Fornoni, A. Alport Syndrome. Adv. Kidney Dis. Health 2024, 31, 170–179. [Google Scholar] [CrossRef]
- Friedman, K.; Velez, I. Alport Syndrome. Report of a Case with Severe Maxillofacial Manifestations. N. Y. State Dent. J. 2007, 73, 34–37. [Google Scholar] [PubMed]
- Chavez, E.; Rodriguez, J.; Drexler, Y.; Fornoni, A. Novel Therapies for Alport Syndrome. Front. Med. 2022, 9, 848389. [Google Scholar] [CrossRef]
- Muntean, C.; Starcea, I.M.; Stoica, C.; Banescu, C. Clinical Characteristics, Renal Involvement, and Therapeutic Options of Pediatric Patients with Fabry Disease. Front. Pediatr. 2022, 10, 908657. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, L.; Wang, Y.; Ning, G.; Minto, A.W.; Kong, J.; Quigg, R.J.; Li, Y.C. Renoprotective Role of the Vitamin D Receptor in Diabetic Nephropathy. Kidney Int. 2008, 73, 163–171. [Google Scholar] [CrossRef] [PubMed]
- De Zeeuw, D.; Agarwal, R.; Amdahl, M.; Audhya, P.; Coyne, D.; Garimella, T.; Parving, H.H.; Pritchett, Y.; Remuzzi, G.; Ritz, E.; et al. Selective Vitamin D Receptor Activation with Paricalcitol for Reduction of Albuminuria in Patients with Type 2 Diabetes (VITAL Study): A Randomised Controlled Trial. Lancet 2010, 376, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Drechsler, C.; Schmiedeke, B.; Niemann, M.; Schmiedeke, D.; Krämer, J.; Turkin, I.; Blouin, K.; Emmert, A.; Pilz, S.; Obermayer-Pietsch, B.; et al. Potential Role of Vitamin D Deficiency on Fabry Cardiomyopathy. J. Inherit. Metab. Dis. 2014, 37, 289–295. [Google Scholar] [CrossRef]
- Rovner, A.J.; Stallings, V.A.; Schall, J.I.; Leonard, M.B.; Zemel, B.S. Vitamin D Insufficiency in Children, Adolescents, and Young Adults with Cystic Fibrosis Despite Routine Oral Supplementation. Am. J. Clin. Nutr. 2007, 86, 1694–1699. [Google Scholar] [CrossRef]
- Bhimavarapu, A.; Deng, Q.; Bean, M.; Lee, N.; Ziegler, T.R.; Alvarez, J.; Tangpricha, V. Factors Contributing to Vitamin D Status at Hospital Admission for Pulmonary Exacerbation in Adults with Cystic Fibrosis. Am. J. Med. Sci. 2021, 361, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.L.; Rajan, M.G.; Manjrekar, P.A.; Shenoy, M.T.; Shreelata, S.; Srikantiah, R.M.; Hegde, A. Effect of DOTS Treatment on Vitamin D Levels in Pulmonary Tuberculosis. J. Clin. Diagn. Res. 2017, 11, BC18–BC22. [Google Scholar] [CrossRef]
- Yim, S.; Dhawan, P.; Ragunath, C.; Christakos, S.; Diamond, G. Induction of Cathelicidin in Normal and CF Bronchial Epithelial Cells by 1,25-Dihydroxyvitamin D(3). J. Cyst. Fibros. 2007, 6, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M. Vitamin D and the Intracrinology of Innate Immunity. Mol. Cell. Endocrinol. 2010, 321, 103–111. [Google Scholar] [CrossRef]
- Finklea, J.D.; Grossmann, R.E.; Tangpricha, V. Vitamin D and Chronic Lung Disease: A Review of Molecular Mechanisms and Clinical Studies. Adv. Nutr. 2011, 2, 244–253. [Google Scholar] [CrossRef]
- Dediu, M.; Ciuca, I.M.; Pop, L.L.; Iacob, D. The Relation between Vitamin D Level and Lung Clearance Index in Cystic Fibrosis-A Pilot Study. Children 2022, 9, 329. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wu, M.; Alvarez, J.A.; Tangpricha, V. Vitamin D Status and Risk of Cystic Fibrosis-Related Diabetes: A Retrospective Single Center Cohort Study. Nutrients 2021, 13, 4048. [Google Scholar] [CrossRef] [PubMed]
- Tangpricha, V.; Kelly, A.; Stephenson, A.; Maguiness, K.; Enders, J.; Robinson, K.A.; Marshall, B.C.; Borowitz, D.; Cystic Fibrosis Foundation Vitamin D Evidence-Based Review Committee. An Update on the Screening, Diagnosis, Management and Treatment of Vitamin D Deficiency in Individuals with Cystic Fibrosis: Evidence-Based Recommendations from the Cystic Fibrosis Foundation. J. Clin. Endocrinol. Metab. 2012, 97, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Mangas-Sánchez, C.; Garriga-García, M.; Serrano-Nieto, M.J.; García-Romero, R.; Álvarez-Beltrán, M.; Crehuá-Gaudiza, E.; Muñoz-Codoceo, R.; Suárez-Cortina, L.; Vicente-Santamaría, S.; Martínez-Costa, C.; et al. Vitamin D Status in Pediatric and Young Adult Cystic Fibrosis Patients. Are the New Recommendations Effective? Nutrients 2021, 13, 4413. [Google Scholar] [CrossRef] [PubMed]
- Nauwynck, E.; Vanbesien, J.; De Schepper, J.; Gies, I.; Van Leynseele, A.; De Wachter, E.; Hauser, B.; Staels, W. Everything in Excess Is Opposed to Nature, Even Vitamin D: A Case Report. Endocrinol. Diabetes Metab. Case Rep. 2022, 21, 21–0181. [Google Scholar]
- Dipasquale, V.; Lo Presti, G.; Milani, G.P.; Corsello, A.; Agostoni, C.; Romano, C. Vitamin D in Prevention of Autoimmune Diseases. Front. Biosci. 2022, 27, 1–7. [Google Scholar] [CrossRef]
- Rosen, Y.; Daich, J.; Soliman, I.; Brathwaite, E.; Shoenfeld, Y. Vitamin D and Autoimmunity. Scand. J. Rheumatol. 2016, 45, 439–447. [Google Scholar] [CrossRef]
- Cutolo, M.; Paolino, S.; Sulli, A.; Smith, V.; Pizzorni, C.; Seriolo, B. Vitamin D, Steroid Hormones, and Autoimmunity. Ann. N. Y. Acad. Sci. 2014, 1317, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Mahfoz, A.M.; Abdel-Wahab, A.F.; Afify, M.A.; Shahzad, N.; Ibrahim, I.A.; ElSawy, N.A.; Al Ghamdi, S.S. Neuroprotective Effects of Vitamin D Alone or in Combination with Lamotrigine against Lithium-Pilocarpine Model of Status Epilepticus in Rats. Naunyn Schmiedebergs Arch. Pharmacol. 2017, 390, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Wakeman, M. A Literature Review of the Potential Impact of Medication on Vitamin D Status. Risk Manag. Healthc. Policy 2021, 14, 3357–3381. [Google Scholar]
- Peng, J.; Liu, Y.; Xie, J.; Yang, G.; Huang, Z. Effects of Vitamin D on Drugs: Response and Disposal. Nutrition 2020, 74, 110734. [Google Scholar]
- Kennedy, D.A.; Cooley, K.; Skidmore, B.; Fritz, H.; Campbell, T.; Seely, D. Vitamin D: Pharmacokinetics and Safety When Used in Conjunction with the Pharmaceutical Drugs Used in Cancer Patients: A Systematic Review. Cancers 2013, 5, 255–280. [Google Scholar] [CrossRef]
Title | Sponsor | Years | RD |
---|---|---|---|
Vitamin D Status and Bone Metabolism Status in Children With Congenital Epidermolysis Bullosa | NCT05141838 National Medical Research Centre for Children’s Health, Russian Federation | 2020–2023 | EB |
Molecular Effects of Topical Calcipotriene on Morphea | NCT02411643 Northwestern University | 2015–2016 | Morphea |
Immunomodulating Effects of Supplementation With 25-OH Vitamin D (SCLERODERMA) | NCT04822038 Coordinación de Investigación en Salud, Mexico | 2017–2019 | Scleroderma |
Empirical Comparative Study of Variation Blood Level Antibody Vitamin D at Scleroderma (SSc) Patients Compared Healthy Peoples (SSc) | NCT01553890 Meir Medical Center | 2012–2013 | Scleroderma |
The Effectiveness of Combining Ursodeoxycholic Acid With Vitamin D in Treating Patients With Primary Biliary Cholangitis | NCT06309589 Yilihamu·Abilitifu, People’s Hospital of Xinjiang Uygur Autonomous Region | 2021–2023 | PBC |
Comparison of Absorption of Vitamin D in Cystic Fibrosis | NCT01880346 Emory University | 2013–2015 | CF |
Increased Vitamin D Reduces Pulmonary Exacerbations in CF | NCT02043717 Hadassah Medical Organization | 2014–2015 | CF |
Prospective Intervention Study on Vitamin D in Patients With Cystic Fibrosis (D-vitamin) | NCT01321905 Karolinska Institutet | 2010–2011 | CF |
Effects of Vitamin D Supplementation on Lung Function in an Acute Pulmonary Exacerbation of Cystic Fibrosis | NCT00788138 Emory University | 2008–2010 | CF |
Vitamin D for Enhancing the Immune System in Cystic Fibrosis (DISC Study) (DISC) | NCT01426256 Emory University | 2011–2017 | CF |
PK/PD of Vitamin D3 in Adults With CF | NCT03734744 University of Southern California | 2019–2022 | CF |
The Role of Vitamin D3 in Pediatric Bronchiectasis Severity | NCT04411901 Heba Omara, Ain Shams University | 2018–2019 | CF |
Efficacy of Intensive Cholecalciferol Monitoring and Supplementation on Serum vit D Levels in Pediatrics Patients With CF | NCT05276960 Hospital Infantil de Mexico Federico Gomez | 2022–2023 | CF |
Vitamin D and Microbiota in Cystic Fibrosis | NCT02589444 Emory University | 2015–2017 | CF |
Cholecalciferol for Vitamin D in Adult Cystic Fibrosis (CF) Patients | NCT00685971s Unity Health Toronto | 2008–2013 | CF |
Title, ID, Sponsor, Year | Participant Flow | Adverse Events | Results |
---|---|---|---|
Improving Vitamin D Status In Cystic Fibrosis NCT00450073 Atlanta VA Medical Centre 2006–2011 | Vit D3 Group: 9 completed, 1 not completed (10 started) Vit D2 Group: 10 completed Sunlamp group: 9 completed, 1 not completed (10 started) | NONE | 25-hydroxyvitamin D Mean after 12 weeks (SD) [ng/mL] Vit D3 50,000 IU weekly Group: 21.2 (10.3) Vit D2 50,000 IU weekly Group: 24.4 (10.2) Sunlamp 5× weekly Group: 28.2 (3.2) |
Vitamin D and Prebiotics for Intestinal Health in Cystic Fibrosis NCT04118010 Emory University 2020–2022 | Vitamin D3 and Inulin Group: 7 completed, 3 not completed (10 started) Vitamin D3 and Placebo Inulin Group: 8 completed, 2 not completed (10 started) Placebo Vitamin D3 and Inulin Group: 7 completed, 3 not completed (10 started) Placebo Vitamin D3 and Placebo Inulin Group: 9 completed, 1 not completed (10 started) | NONE | Shannon Index Mean after 12 weeks (SD) Vitamin D3 50,000 IU weekly and Inulin 12 g daily Group Baseline: 5.02 (0.392) 12 Weeks: 5.02 (0.392) Vitamin D3 50,000 IU and Placebo Inulin Group: Baseline: 4.96 (0.165) 12 Weeks: 5.05 (0.169) Placebo Vitamin D3 and 12 g daily Inulin Group: Baseline: 5.28 (0.196) 12 Weeks: 5.24 (0.229) Placebo Vitamin D3 and Placebo Inulin Group: Baseline: 5.73 (0.081) 12 Weeks: 5.41 (0.097) |
Open-label Vitamin D Trial for Patients With Cystic Fibrosis and Allergic Bronchopulmonary Aspergillosis NCT01222273 University of Pittsburgh 2010–2013 | Cholecalciferol 4000 IU daily: 7 completed | NONE | Number of Participants With Aspergillus Induced IL-13 Responses in CD4+ T-cells after 6 Months 7 Change in Patient Total IgE Levels Mean after 6 Months (SD) [IU/mL] Baseline: 344.6 (284.9) 6 Months: 312.6 (77.66) Change in Patient Aspergillus Specific IgE Levels after 6 Months Baseline: 18.4 (14.7) 6 Months: 11.73 (3.581) |
Clearance of 25-hydroxyvitamin D in Cystic Fibrosis (CF) NCT03104855 University of Washington 2017–2023 | CF Group: 5 completed Healthy Group: 5 completed | Pain or sensation in the arm during infusion: 2/5 (CF Group) Bruising after blood draw: 1/5 (Healthy Group) | Metabolic Clearance of D6-25(OH)D3 (calculated as the administered dose of 25(OH)D3 divided by the area under the plasma concentration-time curve (AUC) CF Group 8 Weeks: 397 (73) Healthy Group 8 Weeks: 342 (41) AUC of D6-25(OH)D3 CF Group 8 Weeks: 58.3 (9.7) Healthy Group 8 Weeks: 67.2 (8.3) Terminal Half-life of D6-25(OH)D3 (ln2/k, where k is the slope of the terminal regression line estimated using ≥3 plasma concentrations) CF Group 8 Weeks: 16.2 (3.3) Healthy Group 8 Weeks: 15.8 (1.6) Volume of Distribution of D6-25(OH)D3 (in the central compartment is calculated as dose/C0, where the dose is the administered dose of 25(OH)D3 and C0 is the initial (estimated) concentration of drug in plasma) CF Group 8 Weeks: 8.4 (1.4) Healthy Group 8 Weeks: 7.2 (1.1) Metabolic Formation Clearance of D6-25(OH)D3 Metabolites (calculated as the daughter metabolite plasma AUC divided by the AUC of D6-25(OH)D3 (metabolite/parent AUC ratio)) CF Group 8 Weeks: 0.10 (0.02) Healthy Group 8 Weeks: 0.08 (0.01) Change in Serum Concentration of Calcium, Creatinine [mg/dL] AST, ALT [Units/L] CF Group 7 Days vs. Baseline: Calcium: 0.00 (0.37) Creatinine: 0.00 (0.03) AST: 0.60 (5.03) ALT: 0.00 (0.00) Healthy Group 7 Days vs. Baseline: Calcium: 0.14 (0.27) Creatinine: 0.00 (0.07) AST: −1.00 (2.55) ALT: 0.00 (0.00) |
Safety, Efficacy, and Feasibility of High-dose Cholecalciferol in Paediatric Patients With Cystic Fibrosis NCT02613884 Johns Hopkins All Children’s Hospital 2016–2019 | Treatment with High-Dose D3 250,000 IU once: 24 completed, 2 not completed (1 death, 1 loss to follow-up) (26 started) | ALL-CAUSE MORTALITY: 1 (3.85%) SERIOUS EVENTS: Lung infection: 1 (3.85%) Decreased lung function and weight loss: 2 (7.69%) Bronchopneumonia exacerbation: 1 (3.85%) Diarrhea: 3 (11.54%) Stomach ache: 3 (11.54%) Increased burping: 2 (7.69%) Nausea: 2 (7.69%) Heartburn/Reflux: 2 (7.69%) Constipation: 1 (3.85%) Elevated P: 4 (15.38%) Elevated PTH: 1 (3.85%) Elevated Ca: 1 (3.85%) Lung infection: 2 (7.69%) Hypoxemia: 1 (3.85%) Sinus infection: 1 (3.85%) Increased cough: 1 (3.85%) | Safety of a Single High-dose of Oral Cholecalciferol to Treat a Vitamin D Deficiency in Children With Cystic Fibrosis (serum calcium measurement after administration of treatment; treatment will be considered to be safe if the serum calcium level does not exceed 14 mg/dL14 mg/dL) Mean (SD) [mg/dL] Serum Calcium 1 Week: 9.57 (0.32) Serum Calcium 3 Months: 9.47 (0.41) Efficacy of a Single High-dose of Oral Cholecalciferol in Treating a Vitamin D Insufficiency/Deficiency in Children With Cystic Fibrosis (25OHD level measured after treatment at 3 months, 6 months, and 12 months; the treatment will be considered to be efficacious if the 25OHD level is greater than or equal to 30 ng/dL) Mean (SD/IQR) [ng/dL] Baseline: 22.69 (4.75) 3 Months: 26 (24 to 31) 6 Months: 30 (24 to 32) 12 Months: 27 (22.5 to 30.2) Feasibility of undertaking a large-scale randomized trial (acceptability and timing of previous outcome measures and obtain estimates to design a full-scale randomized trial by using both the efficacy measurement and the safety measurement; feasibility will be measured using a 5-item questionnaire that will be administered via telephone 1 week after administration of treatment) Number of Yes answers (%) Increased amount of nausea: 2 7.7% Increased frequency of emesis: 0 0.0% Increased amount of diarrhoea: 3 11.5% Constipation: 1 3.8% Increased gas production, such as burping or passing gas: 2 7.7% Increased amount of abdominal pain/stomach aches: 3 11.5% Increase in heartburn or reflux: 2 7.7% Number of No answers (%) Easy to take: 0 0.0% Something you would do next year if you had another low vitamin D level: 0 0.0% Prefer taking a one-time dose of vitamin D instead of a daily vitamin D: 0 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ducki, C.; Wojtkiewicz, M.; Bartoszewicz, M.; Fiedor, P. The Role of Vitamin D in Rare Diseases—A Clinical Review. Biomedicines 2025, 13, 558. https://doi.org/10.3390/biomedicines13030558
Ducki C, Wojtkiewicz M, Bartoszewicz M, Fiedor P. The Role of Vitamin D in Rare Diseases—A Clinical Review. Biomedicines. 2025; 13(3):558. https://doi.org/10.3390/biomedicines13030558
Chicago/Turabian StyleDucki, Czesław, Marta Wojtkiewicz, Marcin Bartoszewicz, and Piotr Fiedor. 2025. "The Role of Vitamin D in Rare Diseases—A Clinical Review" Biomedicines 13, no. 3: 558. https://doi.org/10.3390/biomedicines13030558
APA StyleDucki, C., Wojtkiewicz, M., Bartoszewicz, M., & Fiedor, P. (2025). The Role of Vitamin D in Rare Diseases—A Clinical Review. Biomedicines, 13(3), 558. https://doi.org/10.3390/biomedicines13030558