Arrested Coalescence: A Tool to Explore Tissue Rheology
Abstract
:1. Introduction
2. The Role of Tissue Rheology in Development and Disease
2.1. Tissue Rheology in Development
2.2. Tissue Rheology in Disease
3. Arrested Coalescence to Explore Tissue Rheology In Vitro
4. Theoretical Modelling of Tissue Fusion
4.1. Continuum Modeling of Tissue Fusion
4.2. Agent Based Modelling of Tissue Fusion
4.2.1. Centre Based Models—The Overlapping Sphere Model
4.2.2. Deformable Cell Models
Cellular Particle Dynamics and Subcellular Elements Method
Active Cellular Foam Models
5. Final Remarks and Future Directions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tripathi, S.; Mandal, S.S.; Bauri, S.; Maiti, P. 3D bioprinting and its innovative approach for biomedical applications. MedComm 2023, 4, e194. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Eglen, R.M. Three-dimensional cell cultures in drug discovery and development. Slas Discov. Adv. Life Sci. R&D 2017, 22, 456–472. [Google Scholar]
- Nunes, A.S.; Barros, A.S.; Costa, E.C.; Moreira, A.F.; Correia, I.J. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol. Bioeng. 2019, 116, 206–226. [Google Scholar] [CrossRef] [PubMed]
- Griffin, K.H.; Fok, S.W.; Kent Leach, J. Strategies to capitalize on cell spheroid therapeutic potential for tissue repair and disease modeling. NPJ Regen. Med. 2022, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Lutolf, M.P. Engineering organoids. Nat. Rev. Mater. 2021, 6, 402–420. [Google Scholar] [CrossRef] [PubMed]
- Gritti, N.; Oriola, D.; Trivedi, V. Rethinking embryology in vitro: A synergy between engineering, data science and theory. Dev. Biol. 2021, 474, 48–61. [Google Scholar] [CrossRef]
- Goldrick, C.; Guri, I.; Herrera-Oropeza, G.; O’Brien-Gore, C.; Roy, E.; Wojtynska, M.; Spagnoli, F.M. 3D multicellular systems in disease modelling: From organoids to organ-on-chip. Front. Cell Dev. Biol. 2023, 11, 1083175. [Google Scholar] [CrossRef]
- Vandereyken, K.; Sifrim, A.; Thienpont, B.; Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 2023, 24, 494–515. [Google Scholar] [CrossRef]
- Otto, O.; Rosendahl, P.; Mietke, A.; Golfier, S.; Herold, C.; Klaue, D.; Girardo, S.; Pagliara, S.; Ekpenyong, A.; Jacobi, A.; et al. Real-time deformability cytometry: On-the-fly cell mechanical phenotyping. Nat. Methods 2015, 12, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Shiomi, A.; Kaneko, T.; Nishikawa, K.; Tsuchida, A.; Isoshima, T.; Sato, M.; Toyooka, K.; Doi, K.; Nishikii, H.; Shintaku, H. High-throughput mechanical phenotyping and transcriptomics of single cells. Nat. Commun. 2024, 15, 3812. [Google Scholar] [CrossRef]
- Campas, O. A toolbox to explore the mechanics of living embryonic tissues. Semin. Cell Dev. Biol. 2016, 55, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Sugimura, K.; Lenne, P.F.; Graner, F. Measuring forces and stresses in situ in living tissues. Development 2016, 143, 186–196. [Google Scholar] [CrossRef]
- Gómez-González, M.; Latorre, E.; Arroyo, M.; Trepat, X. Measuring mechanical stress in living tissues. Nat. Rev. Phys. 2020, 2, 300–317. [Google Scholar] [CrossRef]
- Foty, R.A.; Forgacs, G.; Pfleger, C.M.; Steinberg, M.S. Liquid properties of embryonic tissues: Measurement of interfacial tensions. Phys. Rev. Lett. 1994, 72, 2298. [Google Scholar] [CrossRef]
- Manning, M.L.; Foty, R.A.; Steinberg, M.S.; Schoetz, E.M. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. Proc. Natl. Acad. Sci. USA 2010, 107, 12517–12522. [Google Scholar] [CrossRef]
- Barriga, E.H.; Franze, K.; Charras, G.; Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 2018, 554, 523–527. [Google Scholar] [CrossRef]
- Guevorkian, K.; Colbert, M.J.; Durth, M.; Dufour, S.; Brochard-Wyart, F. Aspiration of biological viscoelastic drops. Phys. Rev. Lett. 2010, 104, 218101. [Google Scholar] [CrossRef]
- Petridou, N.I.; Corominas-Murtra, B.; Heisenberg, C.P.; Hannezo, E. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell 2021, 184, 1914–1928. [Google Scholar] [CrossRef]
- Boot, R.C.; Roscani, A.; van Buren, L.; Maity, S.; Koenderink, G.H.; Boukany, P.E. High-throughput mechanophenotyping of multicellular spheroids using a microfluidic micropipette aspiration chip. Lab Chip 2023, 23, 1768–1778. [Google Scholar] [CrossRef]
- Campàs, O.; Mammoto, T.; Hasso, S.; Sperling, R.A.; O’connell, D.; Bischof, A.G.; Maas, R.; Weitz, D.A.; Mahadevan, L.; Ingber, D.E. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 2014, 11, 183. [Google Scholar] [CrossRef]
- Serwane, F.; Mongera, A.; Rowghanian, P.; Kealhofer, D.A.; Lucio, A.A.; Hockenbery, Z.M.; Campas, O. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 2017, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Girardo, S.; Traeber, N.; Wagner, K.; Cojoc, G.; Herold, C.; Goswami, R.; Schluessler, R.; Abuhattum, S.; Taubenberger, A.; Reichel, F.; et al. Standardized microgel beads as elastic cell mechanical probes. J. Mater. Chem. B 2018, 6, 6245–6261. [Google Scholar] [CrossRef] [PubMed]
- Mohagheghian, E.; Luo, J.; Chen, J.; Chaudhary, G.; Chen, J.; Sun, J.; Ewoldt, R.H.; Wang, N. Quantifying compressive forces between living cell layers and within tissues using elastic round microgels. Nat. Commun. 2018, 9, 1878. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Tao, H.; Samani, M.; Luo, M.; Wang, X.; Hopyan, S.; Sun, Y. Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud. Proc. Natl. Acad. Sci. USA 2020, 117, 4781–4791. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, D.; Mitchel, J. Pulling the strings on solid-to-liquid phase transitions in cell collectives. Curr. Opin. Cell Biol. 2024, 86, 102310. [Google Scholar] [CrossRef]
- Lenne, P.F.; Trivedi, V. Sculpting tissues by phase transitions. Nat. Commun. 2022, 13, 664. [Google Scholar] [CrossRef]
- Hannezo, E.; Heisenberg, C.P. Rigidity transitions in development and disease. Trends Cell Biol. 2022, 32, 433–444. [Google Scholar] [CrossRef]
- Lawson-Keister, E.; Manning, M.L. Jamming and arrest of cell motion in biological tissues. Curr. Opin. Cell Biol. 2021, 72, 146–155. [Google Scholar] [CrossRef]
- Mao, Y.; Wickström, S.A. Mechanical state transitions in the regulation of tissue form and function. Nat. Rev. Mol. Cell Biol. 2024, 25, 654–670. [Google Scholar] [CrossRef]
- Petridou, N.I.; Heisenberg, C. Tissue rheology in embryonic organization. EMBO J. 2019, 38, e102497. [Google Scholar] [CrossRef]
- Mongera, A.; Rowghanian, P.; Gustafson, H.J.; Shelton, E.; Kealhofer, D.A.; Carn, E.K.; Serwane, F.; Lucio, A.A.; Giammona, J.; Campàs, O. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 2018, 561, 401–405. [Google Scholar] [CrossRef]
- Angelini, T.E.; Hannezo, E.; Trepat, X.; Marquez, M.; Fredberg, J.J.; Weitz, D.A. Glass-like dynamics of collective cell migration. Proc. Natl. Acad. Sci. USA 2011, 108, 4714–4719. [Google Scholar] [CrossRef] [PubMed]
- Shellard, A.; Mayor, R. Rules of collective migration: From the wildebeest to the neural crest. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190387. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Bullo, F.; Campàs, O. Connecting Individual to Collective Cell Migration. Sci. Rep. 2017, 7, 9720. [Google Scholar] [CrossRef] [PubMed]
- Stramer, B.; Mayor, R. Mechanisms and in vivo functions of contact inhibition of locomotion. Nat. Rev. Mol. Cell Biol. 2016, 18, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, D.; Bellaïche, Y. Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. Dev. Cell 2018, 47, 3–19. [Google Scholar] [CrossRef]
- Lenne, P.F.; Rupprecht, J.F.; Viasnoff, V. Cell Junction Mechanics beyond the Bounds of Adhesion and Tension. Dev. Cell 2021, 56, 202–212. [Google Scholar] [CrossRef]
- Farhadifar, R.; Röper, J.C.; Aigouy, B.; Eaton, S.; Jülicher, F. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 2007, 17, 2095–2104. [Google Scholar] [CrossRef]
- Bi, D.; Lopez, J.; Schwarz, J.; Manning, M. A density-independent rigidity transition in biological tissues. Nat. Phys. 2015, 11, 1074–1079. [Google Scholar] [CrossRef]
- Merkel, M.; Manning, M.L. A geometrically controlled rigidity transition in a model for confluent 3D tissues. New J. Phys. 2018, 20, 022002. [Google Scholar] [CrossRef]
- Wang, X.; Merkel, M.; Sutter, L.B.; Erdemci-Tandogan, G.; Manning, M.L.; Kasza, K.E. Anisotropy links cell shapes to tissue flow during convergent extension. Proc. Natl. Acad. Sci. USA 2020, 117, 13541–13551. [Google Scholar] [CrossRef] [PubMed]
- Lång, E.; Pedersen, C.; Lång, A.; Blicher, P.; Klungland, A.; Carlson, A.; Bøe, S. Mechanical coupling of supracellular stress amplification and tissue fluidization during exit from quiescence. Proc. Natl. Acad. Sci. USA 2022, 119, e2201328119. [Google Scholar] [CrossRef]
- Malinverno, C.; Corallino, S.; Giavazzi, F.; Bergert, M.; Li, Q.; Leoni, M.; Disanza, A.; Frittoli, E.; Oldani, A.; Martini, E.; et al. Endocytic reawakening of motility in jammed epithelia. Nat. Mater. 2016, 16, 587–596. [Google Scholar] [CrossRef]
- Park, J.A.; Kim, J.H.; Bi, D.; Mitchel, J.A.; Qazvini, N.T.; Tantisira, K.; Park, C.Y.; McGill, M.; Kim, S.H.; Gweon, B.; et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 2015, 14, 1040–1048. [Google Scholar] [CrossRef]
- Bi, D.; Yang, X.; Marchetti, M.C.; Manning, M.L. Motility-Driven Glass and Jamming Transitions in Biological Tissues. Phys. Rev. X 2016, 6, 021011. [Google Scholar] [CrossRef]
- Stooke-Vaughan, G.A.; Campàs, O. Physical control of tissue morphogenesis across scales. Curr. Opin. Genet. Dev. 2018, 51, 111–119. [Google Scholar] [CrossRef]
- Boutillon, A.; Banavar, S.P.; Campàs, O. Conserved physical mechanisms of cell and tissue elongation. Development 2024, 151, dev202687. [Google Scholar] [CrossRef]
- Petridou, N.; Grigolon, S.; Salbreux, G.; Hannezo, E.; Heisenberg, C.P. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nat. Cell Biol. 2019, 21, 169–178. [Google Scholar] [CrossRef]
- Fleming, M.; Ravula, S.; Tatishchev, S.F.; Wang, H.L. Colorectal carcinoma: Pathologic aspects. J. Gastrointest. Oncol. 2012, 3, 153–173. [Google Scholar] [PubMed]
- Histopathology is ripe for automation. Nat. Biomed. Eng. 2017, 1, 925.
- Deptuła, P.; Łysik, D.; Pogoda, K.; Cieśluk, M.; Namiot, A.; Mystkowska, J.; Król, G.; Głuszek, S.; Janmey, P.A.; Bucki, R. Tissue Rheology as a Possible Complementary Procedure to Advance Histological Diagnosis of Colon Cancer. ACS Biomater. Sci. Eng. 2020, 6, 5620–5631. [Google Scholar] [CrossRef] [PubMed]
- Kalli, M.; Stylianopoulos, T. Defining the Role of Solid Stress and Matrix Stiffness in Cancer Cell Proliferation and Metastasis. Front. Oncol. 2018, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Lampi, M.C.; Reinhart-King, C.A. Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials. Sci. Transl. Med. 2018, 10, eaao0475. [Google Scholar] [CrossRef] [PubMed]
- Broders Bondon, F.; Nguyen Ho-Bouldoires, T.H.; Fernandez Sanchez, M.; Farge, E. Mechanotransduction in tumor progression: The dark side of the force. J. Cell Biol. 2018, 217, jcb.201701039. [Google Scholar] [CrossRef] [PubMed]
- Northey, J.; Przybyla, L.; Weaver, V. Tissue Force Programs Cell Fate and Tumor Aggression. Cancer Discov. 2017, 7, 1224–1237. [Google Scholar] [CrossRef]
- Krndija, D.; Schmid, H.; Eismann, J.; Lother, U.; Adler, G.; Oswald, F.; Seufferlein, T.; von Wichert, G. Substrate stiffness and the receptor-type tyrosine-protein phosphatase alpha regulate spreading of colon cancer cells through cytoskeletal contractility. Oncogene 2010, 29, 2724–2738. [Google Scholar] [CrossRef]
- Tang, X.; Kuhlenschmidt, T.B.; Li, Q.; Ali, S.; Lezmi, S.; Chen, H.; Pires-Alves, M.; Laegreid, W.W.; Saif, T.A.; Kuhlenschmidt, M.S. A mechanically-induced colon cancer cell population shows increased metastatic potential. Mol. Cancer 2014, 13, 131. [Google Scholar] [CrossRef] [PubMed]
- Pogoda, K.; Janmey, P. Glial Tissue Mechanics and Mechanosensing by Glial Cells. Front. Cell. Neurosci. 2018, 12, 25. [Google Scholar] [CrossRef]
- Yin, Z.; Romano, A.; Manduca, A.; Ehman, R.; Huston, J. Stiffness and beyond: What MR elastography can tell us about brain structure and function under physiologic and pathologic conditions. Top. Magn. Reson. Imaging 2018, 27, 305–318. [Google Scholar] [CrossRef]
- Zhang, J.; Green, M.A.; Sinkus, R.; Bilston, L.E. Viscoelastic properties of human cerebellum using magnetic resonance elastography. J. Biomech. 2011, 44, 1909–1913. [Google Scholar] [CrossRef]
- Pepin, K.M.; McGee, K.P.; Arani, A.; Lake, D.S.; Glaser, K.J.; Manduca, A.; Parney, I.F.; Ehman, R.L.; Huston, J. MR elastography analysis of glioma stiffness and IDH1-mutation status. Am. J. Neuroradiol. 2018, 39, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Hachey, S.J.; Sobrino, A.; Lee, J.G.; Jafari, M.D.; Klempner, S.J.; Puttock, E.J.; Edwards, R.A.; Lowengrub, J.S.; Waterman, M.L.; Zell, J.A.; et al. A human vascularized microtumor model of patient-derived colorectal cancer recapitulates clinical disease. Transl. Res. 2023, 255, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Hajdu, Z.; Mironov, V.; Mehesz, A.N.; Norris, R.A.; Markwald, R.R.; Visconti, R.P. Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation. J. Tissue Eng. Regen. Med. 2010, 4, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Lin, C.; Yang, X.; Xie, Y.; Gao, L.; Yu, L. The influence of spheroid maturity on fusion dynamics and micro-tissue assembly in 3D tumor models. Biofabrication 2024, 16, 035016. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, Y.; Liu, Y.; Zhang, M.; Zhang, X. Microfluidic Control of Tumor and Stromal Cell Spheroids Pairing and Merging for Three-Dimensional Metastasis Study. Anal. Chem. 2020, 92, 7638–7645. [Google Scholar] [CrossRef] [PubMed]
- Grosser, S.; Lippoldt, J.; Oswald, L.; Merkel, M.; Sussman, D.M.; Renner, F.; Gottheil, P.; Morawetz, E.W.; Fuhs, T.; Xie, X.; et al. Cell and Nucleus Shape as an Indicator of Tissue Fluidity in Carcinoma. Phys. Rev. X 2021, 11, 011033. [Google Scholar] [CrossRef]
- Fuhs, T.; Wetzel, F.; Fritsch, A.W.; Li, X.; Stange, R.; Pawlizak, S.; Kießling, T.R.; Morawetz, E.; Grosser, S.; Sauer, F.; et al. Rigid tumours contain soft cancer cells. Nat. Phys. 2022, 18, 1510–1519. [Google Scholar] [CrossRef]
- Jakab, K.; Norotte, C.; Marga, F.; Murphy, K.; Vunjak-Novakovic, G.; Forgacs, G. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2010, 2, 022001. [Google Scholar] [CrossRef]
- Kosztin, I.; Vunjak-Novakovic, G.; Forgacs, G. Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering. Rev. Mod. Phys. 2012, 84, 1791. [Google Scholar] [CrossRef]
- Arjoca, S.; Robu, A.; Neagu, M.; Neagu, A. Mathematical and computational models in spheroid-based biofabrication. Acta Biomater. 2023, 165, 125–139. [Google Scholar] [CrossRef]
- Jakab, K.; Damon, B.; Marga, F.; Doaga, O.; Mironov, V.; Kosztin, I.; Markwald, R.; Forgacs, G. Relating cell and tissue mechanics: Implications and applications. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2008, 237, 2438–2449. [Google Scholar] [CrossRef] [PubMed]
- Dechristé, G.; Fehrenbach, J.; Griseti, E.; Lobjois, V.; Poignard, C. Viscoelastic modeling of the fusion of multicellular tumor spheroids in growth phase. J. Theor. Biol. 2018, 454, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Kosheleva, N.V.; Efremov, Y.M.; Shavkuta, B.S.; Zurina, I.M.; Zhang, D.; Zhang, Y.; Minaev, N.V.; Gorkun, A.A.; Wei, S.; Shpichka, A.I.; et al. Cell spheroid fusion: Beyond liquid drops model. Sci. Rep. 2020, 10, 12614. [Google Scholar] [CrossRef] [PubMed]
- Deckers, T.; Hall, G.N.; Papantoniou, I.; Aerts, J.M.; Bloemen, V. A platform for automated and label-free monitoring of morphological features and kinetics of spheroid fusion. Front. Bioeng. Biotechnol. 2022, 10, 946992. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Trivedi, V.; Heemskerk, I. Mapping morphogenesis and mechanics in embryo models. Nat. Methods 2023, 20, 1859–1862. [Google Scholar] [CrossRef]
- Schötz, E.M.; Burdine, R.D.; Jülicher, F.; Steinberg, M.S.; Heisenberg, C.P.; Foty, R.A. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP J. 2008, 2, 42–56. [Google Scholar] [CrossRef]
- Chaigne, A.; Campillo, C.; Gov, N.S.; Voituriez, R.; Azoury, J.; Umaña-Diaz, C.; Almonacid, M.; Queguiner, I.; Nassoy, P.; Sykes, C.; et al. A soft cortex is essential for asymmetric spindle positioning in mouse oocytes. Nat. Cell Biol. 2013, 15, 958–966. [Google Scholar] [CrossRef]
- Maître, J.L.; Niwayama, R.; Turlier, H.; Nédélec, F.; Hiiragi, T. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat. Cell Biol. 2015, 17, 849–855. [Google Scholar] [CrossRef]
- Oriola, D.; Marin-Riera, M.; Anlaş, K.; Gritti, N.; Sanaki-Matsumiya, M.; Aalderink, G.; Ebisuya, M.; Sharpe, J.; Trivedi, V. Arrested coalescence of multicellular aggregates. Soft Matter 2022, 18, 3771–3780. [Google Scholar] [CrossRef]
- Tsai, A.C.; Liu, Y.; Yuan, X.; Ma, T. Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate. Tissue Eng. Part A 2015, 21, 1705–1719. [Google Scholar] [CrossRef]
- Pawar, A.B.; Caggioni, M.; Hartel, R.W.; Spicer, P.T. Arrested coalescence of viscoelastic droplets with internal microstructure. Faraday Discuss. 2012, 158, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, P.; Caggioni, M.; Spicer, P.T. Arrested coalescence of viscoelastic droplets: Polydisperse doublets. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150132. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, P. Arrested Coalescence in Food Emulsions. Ph.D. Thesis, The University of New South Wales, Sydney, Australia, 2017. [Google Scholar]
- Goff, H.D. Instability and partial coalescence in whippable dairy emulsions. J. Dairy Sci. 1997, 80, 2620–2630. [Google Scholar] [CrossRef]
- Muguet, V.; Seiller, M.; Barratt, G.; Ozer, O.; Marty, J.; Grossiord, J. Formulation of shear rate sensitive multiple emulsions. J. Control. Release 2001, 70, 37–49. [Google Scholar] [CrossRef]
- Garabedian, R.S.; Helble, J.J. A model for the viscous coalescence of amorphous particles. J. Colloid Interface Sci. 2001, 234, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Walstra, P. Physical Chemistry of Foods; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Hu, D.; Phonekeo, S.; Altshuler, E.; Brochard-Wyart, F. Entangled active matter: From cells to ants. Eur. Phys. J. Spec. Top. 2016, 225, 629–649. [Google Scholar] [CrossRef]
- Pönisch, W.; Eckenrode, K.B.; Alzurqa, K.; Nasrollahi, H.; Weber, C.; Zaburdaev, V.; Biais, N. Pili mediated intercellular forces shape heterogeneous bacterial microcolonies prior to multicellular differentiation. Sci. Rep. 2018, 8, 16567. [Google Scholar] [CrossRef]
- Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 2011, 10, 188–195. [Google Scholar] [CrossRef]
- Beghin, A.; Grenci, G.; Sahni, G.; Guo, S.; Rajendiran, H.; Delaire, T.; Mohamad Raffi, S.B.; Blanc, D.; de Mets, R.; Ong, H.T.; et al. Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification. Nat. Methods 2022, 19, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.C.; de Melo-Diogo, D.; Moreira, A.F.; Carvalho, M.P.; Correia, I.J. Spheroids formation on non-adhesive surfaces by liquid overlay technique: Considerations and practical approaches. Biotechnol. J. 2018, 13, 1700417. [Google Scholar] [CrossRef]
- Timmins, N.E.; Nielsen, L.K. Generation of multicellular tumor spheroids by the hanging-drop method. Tissue Eng. 2007, 140, 141–151. [Google Scholar]
- Maritan, S.M.; Lian, E.Y.; Mulligan, L.M. An efficient and flexible cell aggregation method for 3D spheroid production. J. Vis. Exp. 2017, 121, e55544. [Google Scholar] [CrossRef]
- Ryu, N.E.; Lee, S.H.; Park, H. Spheroid culture system methods and applications for mesenchymal stem cells. Cells 2019, 8, 1620. [Google Scholar] [CrossRef] [PubMed]
- Gsell, S.; Tlili, S.; Merkel, M.; Lenne, P.F. Marangoni-like tissue flows enhance symmetry breaking of embryonic organoids. bioRxiv 2023. [Google Scholar] [CrossRef]
- Ongenae, S.; Svitina, H.; Belpaire, T.E.; Vangheel, J.; Martens, T.; Vanden Berghe, P.; Papantoniou, I.; Smeets, B. Active foam dynamics of tissue spheroid fusion. bioRxiv 2024. [Google Scholar] [CrossRef]
- Gritti, N.; Lim, J.L.; Anlaş, K.; Pandya, M.; Aalderink, G.; Martínez-Ara, G.; Trivedi, V. MOrgAna: Accessible quantitative analysis of organoids with machine learning. Development 2021, 148, dev199611. [Google Scholar] [CrossRef]
- Flenner, E.; Marga, F.; Neagu, A.; Kosztin, I.; Forgacs, G. Relating biophysical properties across scales. Curr. Top. Dev. Biol. 2008, 81, 461–483. [Google Scholar]
- Kuan, H.S.; Pönisch, W.; Jülicher, F.; Zaburdaev, V. Continuum theory of active phase separation in cellular aggregates. Phys. Rev. Lett. 2021, 126, 018102. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rodriguez, D.; Guevorkian, K.; Douezan, S.; Brochard-Wyart, F. Soft Matter Models of Developing Tissues and Tumors. Science 2012, 338, 910–917. [Google Scholar] [CrossRef]
- Ongenae, S.; Cuvelier, M.; Vangheel, J.; Ramon, H.; Smeets, B. Activity-induced fluidization and arrested coalescence in fusion of cellular aggregates. Front. Phys. 2021, 9, 649821. [Google Scholar] [CrossRef]
- Bico, J.; Reyssat, É.; Roman, B. Elastocapillarity: When surface tension deforms elastic solids. Annu. Rev. Fluid Mech. 2018, 50, 629–659. [Google Scholar] [CrossRef]
- Style, R.W.; Jagota, A.; Hui, C.Y.; Dufresne, E.R. Elastocapillarity: Surface tension and the mechanics of soft solids. Annu. Rev. Condens. Matter Phys. 2017, 8, 99–118. [Google Scholar] [CrossRef]
- Foty, R.A.; Steinberg, M.S. The differential adhesion hypothesis: A direct evaluation. Dev. Biol. 2005, 278, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Foty, R.A.; Pfleger, C.M.; Forgacs, G.; Steinberg, M.S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 1996, 122, 1611–1620. [Google Scholar] [CrossRef]
- Yu, M.; Mahtabfar, A.; Beelen, P.; Demiryurek, Y.; Shreiber, D.I.; Zahn, J.D.; Foty, R.A.; Liu, L.; Lin, H. Coherent timescales and mechanical structure of multicellular aggregates. Biophys. J. 2018, 114, 2703–2716. [Google Scholar] [CrossRef]
- Flenner, E.; Janosi, L.; Barz, B.; Neagu, A.; Forgacs, G.; Kosztin, I. Kinetic Monte Carlo and cellular particle dynamics simulations of multicellular systems. Phys. Rev. E 2012, 85, 031907. [Google Scholar] [CrossRef]
- Frenkel, J. Viscous flow of crystalline bodies under the action of surface tension. J. Phys. 1945, 9, 385. [Google Scholar]
- Eshelby, J. Discussion of paper by AJ Shaler. Trans. AIME 1949, 185, 806. [Google Scholar]
- Bellehumeur, C.T.; Kontopoulou, M.; Vlachopoulos, J. The role of viscoelasticity in polymer sintering. Rheol. Acta 1998, 37, 270–278. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 1931, 37, 405. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal relations in irreversible processes. II. Phys. Rev. 1931, 38, 2265. [Google Scholar] [CrossRef]
- Doi, M. Onsager’s variational principle in soft matter. J. Phys. Condens. Matter 2011, 23, 284118. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, M.; Walani, N.; Torres-Sánchez, A.; Kaurin, D. Onsager’s variational principle in soft matter: Introduction and application to the dynamics of adsorption of proteins onto fluid membranes. In The Role of Mechanics in the Study of Lipid Bilayers; Springer: Cham, Switzerland, 2018; pp. 287–332. [Google Scholar]
- Pokluda, O.; Bellehumeur, C.T.; Vlachopoulos, J. Modification of Frenkel’s model for sintering. AIChE J. 1997, 43, 3253–3256. [Google Scholar] [CrossRef]
- Huisken, J.; Swoger, J.; Del Bene, F.; Wittbrodt, J.; Stelzer, E.H. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 2004, 305, 1007–1009. [Google Scholar] [CrossRef]
- Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940. [Google Scholar] [CrossRef]
- Keller, P.J.; Schmidt, A.D.; Wittbrodt, J.; Stelzer, E.H. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 2008, 322, 1065–1069. [Google Scholar] [CrossRef]
- McDole, K.; Guignard, L.; Amat, F.; Berger, A.; Malandain, G.; Royer, L.A.; Turaga, S.C.; Branson, K.; Keller, P.J. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell 2018, 175, 859–876. [Google Scholar] [CrossRef]
- Shah, G.; Thierbach, K.; Schmid, B.; Waschke, J.; Reade, A.; Hlawitschka, M.; Roeder, I.; Scherf, N.; Huisken, J. Multi-scale imaging and analysis identify pan-embryo cell dynamics of germlayer formation in zebrafish. Nat. Commun. 2019, 10, 5753. [Google Scholar] [CrossRef]
- Van Liedekerke, P.; Palm, M.; Jagiella, N.; Drasdo, D. Simulating tissue mechanics with agent-based models: Concepts, perspectives and some novel results. Comput. Part. Mech. 2015, 2, 401–444. [Google Scholar] [CrossRef]
- Newman, T.J. Modeling multi-cellular systems using sub-cellular elements. arXiv 2005, arXiv:q-bio/0504028. [Google Scholar]
- Rejniak, K.A. An immersed boundary framework for modelling the growth of individual cells: An application to the early tumour development. J. Theor. Biol. 2007, 247, 186–204. [Google Scholar] [CrossRef] [PubMed]
- Sandersius, S.A.; Newman, T.J. Modeling cell rheology with the subcellular element model. Phys. Biol. 2008, 5, 015002. [Google Scholar] [CrossRef] [PubMed]
- Rejniak, K.A.; Anderson, A.R. Hybrid models of tumor growth. Wiley Interdiscip. Rev. Syst. Biol. Med. 2011, 3, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Mirams, G.R.; Arthurs, C.J.; Bernabeu, M.O.; Bordas, R.; Cooper, J.; Corrias, A.; Davit, Y.; Dunn, S.J.; Fletcher, A.G.; Harvey, D.G.; et al. Chaste: An open source C++ library for computational physiology and biology. PLoS Comput. Biol. 2013, 9, e1002970. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.G.; Cooper, F.; Baker, R.E. Mechanocellular models of epithelial morphogenesis. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20150519. [Google Scholar] [CrossRef]
- Osborne, J.M.; Fletcher, A.G.; Pitt-Francis, J.M.; Maini, P.K.; Gavaghan, D.J. Comparing individual-based approaches to modelling the self-organization of multicellular tissues. PLoS Comput. Biol. 2017, 13, e1005387. [Google Scholar] [CrossRef]
- Van Liedekerke, P.; Neitsch, J.; Johann, T.; Warmt, E.; Gonzàlez-Valverde, I.; Hoehme, S.; Grosser, S.; Kaes, J.; Drasdo, D. A quantitative high-resolution computational mechanics cell model for growing and regenerating tissues. Biomech. Model. Mechanobiol. 2020, 19, 189–220. [Google Scholar] [CrossRef]
- Torres-Sánchez, A.; Kerr Winter, M.; Salbreux, G. Interacting active surfaces: A model for three-dimensional cell aggregates. PLoS Comput. Biol. 2022, 18, e1010762. [Google Scholar] [CrossRef]
- Chattaraj, S.; Torre, M.; Kalcher, C.; Stukowski, A.; Morganti, S.; Reali, A.; Pasqualini, F.S. SEM2: A computational framework to model multiscale mechanics with subcellular elements. bioRxiv 2023. [Google Scholar] [CrossRef]
- Runser, S.; Vetter, R.; Iber, D. SimuCell3D: Three-dimensional simulation of tissue mechanics with cell polarization. Nat. Comput. Sci. 2024, 4, 299–309. [Google Scholar] [CrossRef]
- Drasdo, D.; Kree, R.; McCaskill, J. Monte Carlo approach to tissue-cell populations. Phys. Rev. E 1995, 52, 6635. [Google Scholar] [CrossRef] [PubMed]
- Purcell, E.M. Life at low Reynolds number. Am. J. Phys. 1977, 45, 3–11. [Google Scholar] [CrossRef]
- Meineke, F.A.; Potten, C.S.; Loeffler, M. Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif. 2001, 34, 253–266. [Google Scholar] [CrossRef]
- Drasdo, D.; Forgacs, G. Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2000, 219, 182–191. [Google Scholar] [CrossRef]
- Drasdo, D.; Loeffler, M. Individual-based models to growth and folding in one-layered tissues: Intestinal crypts and early development. Nonlinear Anal. Theory Methods Appl. 2001, 47, 245–256. [Google Scholar] [CrossRef]
- Germann, P.; Marin-Riera, M.; Sharpe, J. ya||a: GPU-powered Spheroid Models for Mesenchyme and Epithelium. Cell Syst. 2019, 8, 261–266. [Google Scholar] [CrossRef]
- Rey, R.; Garcia-Aznar, J. A phenomenological approach to modelling collective cell movement in 2D. Biomech. Model. Mechanobiol. 2013, 12, 1089–1100. [Google Scholar] [CrossRef]
- Lennard-Jones, J.; Dent, B.M. Cohesion at a crystal surface. Trans. Faraday Soc. 1928, 24, 92–108. [Google Scholar] [CrossRef]
- Basan, M.; Prost, J.; Joanny, J.F.; Elgeti, J. Dissipative particle dynamics simulations for biological tissues: Rheology and competition. Phys. Biol. 2011, 8, 026014. [Google Scholar] [CrossRef]
- Galle, J.; Loeffler, M.; Drasdo, D. Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophys. J. 2005, 88, 62–75. [Google Scholar] [CrossRef]
- Drasdo, D.; Höhme, S. A single-cell-based model of tumor growth in vitro: Monolayers Spheroids. Phys. Biol. 2005, 2, 133–147. [Google Scholar] [CrossRef]
- Delile, J.; Herrmann, M.; Peyriéras, N.; Doursat, R. A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation. Nat. Commun. 2017, 8, 13929. [Google Scholar] [CrossRef]
- Stamenović, D.; Rosenblatt, N.; Montoya-Zavala, M.; Matthews, B.D.; Hu, S.; Suki, B.; Wang, N.; Ingber, D.E. Rheological behavior of living cells is timescale-dependent. Biophys. J. 2007, 93, L39–L41. [Google Scholar] [CrossRef]
- Pawlizak, S.; Fritsch, A.W.; Grosser, S.; Ahrens, D.; Thalheim, T.; Riedel, S.; Kießling, T.R.; Oswald, L.; Zink, M.; Manning, M.L.; et al. Testing the differential adhesion hypothesis across the epithelial-mesenchymal transition. New J. Phys. 2015, 17, 083049. [Google Scholar] [CrossRef]
- Dahmann, C.; Oates, A.C.; Brand, M. Boundary formation and maintenance in tissue development. Nat. Rev. Genet. 2011, 12, 43–55. [Google Scholar] [CrossRef]
Method | Measure | Throughput | References | ||
---|---|---|---|---|---|
Absolute | Relative | High | Low | ||
TST | × | × | [14,15,76] | ||
MA | × | × | × | [17,18,19,77,78] | |
DS/GEP | × | × | [20,21,22,23] | ||
TF | × | × | [71,72,74,79] | ||
AFM | × | × | [16,51] | ||
MB | × | × | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samatas, S.; Planasdemunt-Hospital, M.; Oriola, D. Arrested Coalescence: A Tool to Explore Tissue Rheology. Biophysica 2024, 4, 604-618. https://doi.org/10.3390/biophysica4040040
Samatas S, Planasdemunt-Hospital M, Oriola D. Arrested Coalescence: A Tool to Explore Tissue Rheology. Biophysica. 2024; 4(4):604-618. https://doi.org/10.3390/biophysica4040040
Chicago/Turabian StyleSamatas, Sotiris, Martí Planasdemunt-Hospital, and David Oriola. 2024. "Arrested Coalescence: A Tool to Explore Tissue Rheology" Biophysica 4, no. 4: 604-618. https://doi.org/10.3390/biophysica4040040
APA StyleSamatas, S., Planasdemunt-Hospital, M., & Oriola, D. (2024). Arrested Coalescence: A Tool to Explore Tissue Rheology. Biophysica, 4(4), 604-618. https://doi.org/10.3390/biophysica4040040