Joint User Association, Power Allocation and Beamforming for NOMA-Based Integrated Satellite–Terrestrial Networks
Abstract
:1. Introduction
- We propose an uplink NOMA-based ISTN, where each user can access either BSs or the satellite. With the goal of maximizing the achievable sum rate of all the UEs, an optimization problem of jointly optimizing the transmit power, receiving beamforming, and user association is established by considering the backhaul link capacity of BSs and the satellite, as well as individual quality of service (QoS) constraints.
- We develop a two-stage algorithm to solve the problem. At the first stage, each user is associated with a corresponding access point (AP), i.e., either a BS or the satellite, based on their preference list and the backhaul link capacity of the APs. At the second stage, the power allocation and the receiving beamforming vectors are optimized iteratively. Within each iteration, the closed-form solution for the transmit power is derived.
- The simulation results demonstrate the superiority of the proposed scheme compared with the random power allocation scheme and the traditional OMA scheme. In scenarios where the backhaul link capacity of terrestrial BSs is sufficient, UEs tend to access these BSs. However, when the backhaul link capacity of terrestrial BSs is insufficient, the satellite can offer QoS guarantees to UEs. Moreover, the system’s overall performance achieves its peak when the number of UEs in the system aligns with the number of receive antennas at the APs.
2. System Model and Problem Formulation
2.1. System Model
2.2. Problem Formulation
3. The Proposed Optimization Algorithm
3.1. User Association
3.2. Power Allocation
3.3. Receive Beamforming
3.4. Complexity Analysis
Algorithm 1: The proposed two-stage algorithm to solve (7) |
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, Z.; Gong, F.; Chen, G.; Li, G.; Hui, T.; Xu, S. Energy Efficiency Design in RIS-Assisted Satellite–Terrestrial Integrated Networks with NOMA. IEEE Wirel. Commun. Lett. 2024, 13, 1948–1952. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, B.; Lin, M.; Ouyang, J.; Wang, J.-B.; Wang, J. IRS-Aided Uplink Transmission Scheme in Integrated Satellite-Terrestrial Networks. IEEE Trans. Veh. Technol. 2023, 72, 1847–1861. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, C. Integrated Satellite-Terrestrial Networks Toward 6G: Architectures, Applications, and Challenges. IEEE Internet Things J. 2022, 9, 437–461. [Google Scholar] [CrossRef]
- Lin, M.; Lin, Z.; Zhu, W.-P.; Wang, J.-B. Joint beamforming for secure communication in cognitive satellite terrestrial networks. IEEE J. Sel. Areas Commun. 2018, 36, 1017–1029. [Google Scholar] [CrossRef]
- Dai, C.-Q.; Li, S.; Wu, J.; Chen, Q. Distributed User Association with Grouping in Satellite–Terrestrial Integrated Networks. IEEE Internet Things J. 2022, 9, 10244–10256. [Google Scholar] [CrossRef]
- Chan, S.; Lee, H.; Kim, S.; Oh, D. Intelligent Low Complexity Resource Allocation Method for Integrated Satellite-Terrestrial Systems. IEEE Wirel. Commun. Lett. 2022, 11, 1087–1091. [Google Scholar] [CrossRef]
- Ruan, Y.; Li, Y.; Zhang, R.; Jiang, L. Energy Efficient Power Control for Cognitive Multibeam-Satellite Terrestrial Networks with Poisson Distributed Users. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 964–974. [Google Scholar] [CrossRef]
- Peng, D.; Bandi, A.; Li, Y.; Chatzinotas, S.; Ottersten, B. Hybrid Beamforming, User Scheduling, and Resource Allocation for Integrated Terrestrial-Satellite Communication. IEEE Trans. Veh. Technol. 2021, 70, 8868–8882. [Google Scholar]
- Zhu, L.; Bai, L.; Zhou, L.; Choi, J. Efficient User Scheduling for Uplink Hybrid Satellite-Terrestrial Communication. IEEE Trans. Wirel. Commun. 2023, 22, 1885–1899. [Google Scholar] [CrossRef]
- Li, X.; Zhao, M.; Zeng, M.; Mumtaz, S.; Menon, V.G.; Ding, Z.; Dobre, O.A. Hardware Impaired Ambient Backscatter NOMA Systems: Reliability and Security. IEEE Trans. Commun. 2021, 69, 2723–2736. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Zhou, Z.; Qin, P.; Geng, S.; Xu, C. Robust Resource Allocation for Lightweight Secure Transmission in Multicarrier NOMA-Assisted Full Duplex IoT Networks. IEEE Internet Things J. 2022, 9, 6443–6457. [Google Scholar] [CrossRef]
- Li, N.; Wu, P.; Ning, B.; Zhu, L. Sum Rate Maximization for Movable Antenna Enabled Uplink NOMA. IEEE Wirel. Commun. Lett. 2024, 13, 2140–2144. [Google Scholar] [CrossRef]
- Ghanbarzadeh, V.; Zahabi, M.; Amiriara, H.; Jafari, F.; Kaddoum, G. Resource Allocation in NOMA Networks: Convex Optimization and Stacking Ensemble Machine Learning. IEEE Open J. Commun. Soc. 2024, 5, 5276–5288. [Google Scholar] [CrossRef]
- Esmaeily, A.; Mendis, H.K.; Mahmoodi, T.; Kralevska, K. Beyond 5G Resource Slicing with Mixed-Numerologies for Mission Critical URLLC and eMBB Coexistence. IEEE Open J. Commun. Soc. 2023, 4, 727–747. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Zhang, H.; Choi, S.; Leung, V.C.M. Resource Allocation for NOMA Based Space-Terrestrial Satellite Networks. IEEE Trans. Wirel. Commun. 2021, 20, 1065–1075. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Zhou, H.; Long, K.; Karagiannidis, G.K. Resource Allocation in Terrestrial-Satellite-Based Next Generation Multiple Access Networks with Interference Cooperation. IEEE J. Sel. Areas Commun. 2022, 40, 1210–1221. [Google Scholar] [CrossRef]
- Kong, H.; Lin, M.; Han, L.; Zhu, W.-P.; Ding, Z.; Alouini, M.-S. Uplink Multiple Access with Semi-Grant-Free Transmission in Integrated Satellite-Aerial-Terrestrial Networks. IEEE J. Sel. Areas Commun. 2023, 41, 1723–1736. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Wang, J.-B.; de Cola, T.; Wang, J. Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks with Non-Orthogonal Multiple Access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670. [Google Scholar] [CrossRef]
- Morello, A.; Mignone, V. DVB-S2: The second generation standard for satellite broad-band services. Proc. IEEE 2006, 94, 210–227. [Google Scholar] [CrossRef]
- Shen, K.; Yu, W. Fractional programming for communication systems—Part I: Power control and beamforming. IEEE Trans. Signal Process. 2018, 66, 2616–2630. [Google Scholar] [CrossRef]
- Cheung, K.T.K.; Yang, S.; Hanzo, L. Achieving maximum energy-efficiency in multi-relay OFDMA cellular networks: A fractional programming approach. IEEE Trans. Commun. 2013, 16, 2746–2757. [Google Scholar] [CrossRef]
- Iimori, H.; de Abreu, G.T.F.; Alexandropoulos, G.C. MIMO Beamforming Schemes for Hybrid SIC FD Radios with Imperfect Hardware and CSI. IEEE Trans. Wirel. Commun. 2019, 18, 4816–4830. [Google Scholar] [CrossRef]
- Di, B.; Zhang, H.; Song, L.; Li, Y.; Li, G.Y. Ultra-Dense LEO: Integrating Terrestrial-Satellite Networks Into 5G and Beyond for Data Offloading. IEEE Trans. Wirel. Commun. 2019, 18, 47–62. [Google Scholar] [CrossRef]
- Toka, M.; Lee, B.; Seong, J.; Kaushik, A.; Lee, J.; Lee, J.; Lee, N.; Shin, W.; Poor, H.V. RIS-Empowered LEO Satellite Networks for 6G: Promising Usage Scenarios and Future Directions. IEEE Commun. Mag. 2024, 62, 128–135. [Google Scholar] [CrossRef]
Parameter | Setting |
---|---|
Path loss model | [15] |
Parameters in path loss | = −30 dB, = 1 m, = 3, 2 [15] |
Noise power | −174 dBm/Hz [15] |
Altitude of satellite | 300 km [1] |
Number of BSs | M = 4 |
Coordinates of BSs | (0.75 km, 0.75 km), (0.75 km, 0.25 km) |
(0.75 km, 0.75 km), (0.75 km, 0.25 km) | |
Backhaul link capacity for BS | = 50 bps/Hz |
Number of receive antennas at BS | = 10, 20, 40 |
Number of users | K = 10, 20, 30, 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, P.; Fu, Z.; Chen, Z.; Jiang, J.; Zou, J.; Zhang, Y.; Hu, X. Joint User Association, Power Allocation and Beamforming for NOMA-Based Integrated Satellite–Terrestrial Networks. Entropy 2024, 26, 1055. https://doi.org/10.3390/e26121055
Xin P, Fu Z, Chen Z, Jiang J, Zou J, Zhang Y, Hu X. Joint User Association, Power Allocation and Beamforming for NOMA-Based Integrated Satellite–Terrestrial Networks. Entropy. 2024; 26(12):1055. https://doi.org/10.3390/e26121055
Chicago/Turabian StyleXin, Peizhe, Zihao Fu, Zhiyi Chen, Jing Jiang, Jing Zou, Yu Zhang, and Xinyue Hu. 2024. "Joint User Association, Power Allocation and Beamforming for NOMA-Based Integrated Satellite–Terrestrial Networks" Entropy 26, no. 12: 1055. https://doi.org/10.3390/e26121055
APA StyleXin, P., Fu, Z., Chen, Z., Jiang, J., Zou, J., Zhang, Y., & Hu, X. (2024). Joint User Association, Power Allocation and Beamforming for NOMA-Based Integrated Satellite–Terrestrial Networks. Entropy, 26(12), 1055. https://doi.org/10.3390/e26121055