Fermentation and Functional Properties of Plant-Derived Limosilactobacillus fermentum for Dairy Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Lactic Acid Bacteria
2.2. Preparation of Cell-Free Supernatant (CFS)
2.3. Bacterial Strains and Culture Conditions
2.4. Hemolytic Activity
2.5. Acid Resistance
2.6. Antioxidant Activity
2.7. Antibacterial Activity of CFS Derived from the Isolated LAB
2.7.1. Paper Disk Diffusion Assay
2.7.2. 96 Well Plate Assay
2.8. Measurement of pH Stability and Thermal Stability of CFS
2.9. Milk Fermentation
2.10. Measurement of pH, Titratable Acidity, and Viable Cell Counts
2.11. Measurement of Viscosity
2.12. Statistical Analysis
3. Results and Discussion
3.1. Isolation, Identification, and Characterization of LAB
3.2. Hemolytic Activity
3.3. Acid Resistance
3.4. Antioxidant Activity of CFS
3.5. Antibacterial Activity and Stability of CFS
3.6. Changes in pH, Titratable Acidity, and Viable Cell Counts During Fermentation and Storage
3.7. Viscosity Development During Storage and Functional Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumanyika, S.; Afshin, A.; Arimond, M.; Lawrence, M.; McNaughton, S.A.; Nishida, C. Approaches to defining healthy diets: A background paper for the international expert consultation on sustainable healthy diets. Food Nutr. Bull. 2020, 41, 7S–30S. [Google Scholar] [CrossRef] [PubMed]
- Argyri, A.A.; Zoumpopoulou, G.; Karatzas, K.A.G.; Tsakalidou, E.; Nychas, G.J.E.; Panagou, E.Z.; Tassou, C.C. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 2013, 33, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Kimoto, H.; Mizumachi, K.; Okamoto, T.; Kurisaki, J.I. New Lactococcus strain with immunomodulatory activity: Enhancement of Th1-type immune response. Microbiol. Immunol. 2004, 48, 75–82. [Google Scholar] [CrossRef]
- Kumagai, H.; Ohminato, T.; Nakano, M.; Ooi, M.; Kubo, A.; Inoue, H.; Oikawa, J. Very-long-period seismic signals and caldera formation at Miyake Island, Japan. Science 2001, 293, 687–690. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; De Biaggi, M.; Riondato, I.; Rakotoniaina, E.N.; Beccaro, G.L. New findings in Prunus padus L. fruits as a source of natural compounds: Characterization of metabolite profiles and preliminary evaluation of antioxidant activity. Molecules 2018, 23, 725. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; Oliveira, F.C.S.D.; Passos, T.M.; Quilty, B.; Thiré, R.M.D.S.M.; McGuinness, G.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria 2016, 21, 767–779. [Google Scholar] [CrossRef]
- Choi, J.H.; Cha, D.S.; Jeon, H. Anti-inflammatory and anti-nociceptive properties of Prunus padus. J. Ethnopharmacol. 2012, 144, 379–386. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Sircelj, H. Wild Prunus Fruit Species as a Rich Source of Bioactive Compounds. J. Food Sci. 2016, 81, C1928–C1937. [Google Scholar] [CrossRef]
- Snyder, M.L.; Lichstein, H.C. Sodium azide as an inhibiting substance for gram-negative bacteria. J. Infect. Dis. 1940, 67, 113–115. [Google Scholar] [CrossRef]
- Lkhagvasuren, N.; Kim, G.H.; Namshir, B.; Kim, W.S. Antibacterial Activity against Pathogenic Bacteria of Lactiplantibacillus argentratensis Isolated from Blueberries. J. Dairy Sci. Biotechnol. 2023, 41, 191–202. [Google Scholar] [CrossRef]
- Halder, D.; Mandal, M.; Chatterjee, S.S.; Pal, N.K.; Mandal, S. Indigenous probiotic Lactobacillus isolates presenting antibiotic like activity against human pathogenic bacteria. Biomedicines 2017, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.J.; Jung, D.S. Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented millet alcoholic beverage in Korea. LWT Food Sci. Technol. 2015, 63, 437–444. [Google Scholar] [CrossRef]
- Jemil, I.; Mora, L.; Nasri, R.; Abdelhedi, O.; Aristory, M.C.; Hajji, M.; Nasri, M.; Toldra, F. A peptidomic approach for the identification of antioxidant and ACE-inhibitory peptides in sardinelle protein hydrolysates fermented by Bacillus subtilis A26 and Bacillus amyloliquefaciens An6. Food Res. Int. 2016, 89, 347–358. [Google Scholar] [CrossRef]
- Coeuret, V.; Dubernet, S.; Bernardeau, M.; Guéguen, M.; Vernoux, J.P. Isolation, characterisation and identification of lactobacilli focusing mainly on cheeses and other dairy products. Lait 2003, 83, 269–306. [Google Scholar] [CrossRef]
- Dimitonova, S.P.; Bakalov, B.V.; Aleksandrova-Georgieva, R.N.; Danova, S.T. Phenotypic and molecular identification of lactobacilli isolated from vaginal secretions. J. Microbiol. Immunol. Infect. 2008, 41, 469–477. [Google Scholar]
- Herbel, S.R.; Vahjen, W.; Wieler, L.H.; Guenther, S. Timely approaches to identify probiotic species of the genus Lactobacillus. Gut Pathog. 2013, 5, 27. [Google Scholar] [CrossRef]
- Kalui, C.; Mathara, J.; Kutima, P.; Kiiyukia, C.; Wongo, L. Functional characteristics of Lactobacillus plantarum and Lactobacillus rhamnosus from ikii, a Kenyan traditional fermented maize porridge. Afr. J. Biotechnol. 2009, 8, 4363–4373. [Google Scholar]
- Pereira, D.I.; Gibson, G.R. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Environ. Microbiol. 2002, 68, 4689–4693. [Google Scholar] [CrossRef]
- Freeman, H.J.; Kim, Y.S. Digestion and absorption of protein. Annu. Rev. Med. 1978, 29, 99–116. [Google Scholar] [CrossRef]
- Martini, M.C.; Bollweg, G.L.; Levitt, M.D.; Savaiano, D.A. Lactose digestion by yogurt beta-galactosidase: Influence of pH and microbial cell integrity. Am. J. Clin. Nutr. 1987, 45, 432–436. [Google Scholar] [CrossRef]
- McDonald, L.C.; Fleming, H.P.; Hassan, H. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 1990, 56, 2120–2124. [Google Scholar] [CrossRef] [PubMed]
- Ouwehand, A.C.; Kirjavainen, P.V.; Grönlund, M.M.; Isolauri, E.; Salminen, S.J. Adhesion of probiotic micro-organisms to intestinal mucus. Int. Dairy J. 1999, 9, 623–630. [Google Scholar] [CrossRef]
- Ozen, M.; Piloquet, H.; Schaubeck, M. Limosilactobacillus fermentum CECT5716: Clinical potential of a probiotic strain isolated from human milk. Nutrients 2023, 15, 2207. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Olivares, M.; Marín, M.L.; Fernández, L.; Xaus, J.; Rodríguez, J.M. Probiotic potential of 3 lactobacilli strains isolated from breast milk. J. Hum. Lact. 2005, 21, 8–17. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Kang, S.; Lee, N.R.; Ryu, M.S.; Wu, X.; Kim, D.S.; Park, S. Production and physicochemical properties of black bean yogurt made with lactic acid bacteria isolated from vinegar and kimchi. Korean J. Food Sci. Technol. 2018, 50, 76–82. [Google Scholar]
- Meng, Z.; Oh, S. Antioxidant and antimelanogenic activities of kimchi-derived Limosilactobacillus fermentum JNU532 in B16F10 melanoma cells. J. Microbiol. Biotechnol. 2021, 31, 990. [Google Scholar] [CrossRef]
- Cabo, M.L.; Braber, A.F.; Koenraad, P.M. Apparent antifungal activity of several lactic acid bacteria against Penicillium discolor is due to acetic acid in the medium. J. Food Prot. 2002, 65, 1309–1316. [Google Scholar] [CrossRef]
- Xin, W.G.; Li, X.D.; Zhou, H.Y.; Li, X.; Liu, W.X.; Lin, L.B.; Wang, F. Isolation, antibacterial characterization, and alternating tangential flow–based preparation of viable cells of Lacticaseibacillus paracasei XLK 401: Potential application in milk preservation. J. Dairy Sci. 2024, 107, 1355–1369. [Google Scholar] [CrossRef]
- Fijan, S. Microorganisms with claimed probiotic properties: An overview of recent literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef] [PubMed]
- Dan, T.; Chen, H.; Li, T.; Tian, J.; Ren, W.; Zhang, H.; Sun, T. Influence of Lactobacillus plantarum P-8 on Fermented Milk Flavor and Storage Stability. Front. Microbiol. 2019, 9, 3133. [Google Scholar] [CrossRef]
- Dave, R.I.; Shah, N.P. Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int. Dairy J. 1997, 7, 31–41. [Google Scholar] [CrossRef]
- Farag, M.A.; Saleh, H.A.; El Ahmady, S.; Elmassry, M.M. Dissecting yogurt: The impact of milk types, probiotics, and selected additives on yogurt quality. Food Rev. Int. 2022, 38, 634–650. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, S.; Lv, X.; Wang, C.; Xu, B.; Ping, L.; Guo, J.; Li, X.; Evivie, S.E.; Lui, F.; et al. Analysis of the complete genome sequence of Lactobacillus delbrueckii ssp. bulgaricus with post-acidification capacity and its influence on yogurt in storage. J. Dairy Sci. 2022, 105, 1058–1071. [Google Scholar] [CrossRef]
- Dunand, E.; Burns, P.; Binetti, A.; Bergamini, C.; Peralta, G.H.; Forzani, L.; Reinheimer, J.; Vinderola, G. Postbiotics produced at laboratory and industrial level as potential functional food ingredients with the capacity to protect mice against Salmonella infection. J. Appl. Microbiol. 2019, 127, 219–229. [Google Scholar] [CrossRef]
- Horne, D.S. Casein interactions: Casting light on the black boxes, the structure in dairy products. Int. Dairy J. 1998, 8, 171–177. [Google Scholar] [CrossRef]
- Kim, B.; Hong, V.M.; Yang, J.; Hyun, H.; Im, J.J.; Hwang, J.; Yoon, S.; Kim, J.E. A review of fermented foods with beneficial effects on brain and cognitive function. Pre. Nutr. Food Sci. 2016, 21, 297. [Google Scholar] [CrossRef]
- Sadat-Mekmene, L.; Genay, M.; Atlan, D.; Lortal, S.; Gagnaire, V. Original features of cell-envelope proteinases of Lactobacillus helveticus—A review. Int. J. Food Microbiol. 2011, 146, 1–13. [Google Scholar] [CrossRef]
- Vinderola, G.; Matar, C.; Palacios, J.; Perdigón, G. Mucosal immunomodulation by the non-bacterial fraction of milk fermented by Lactobacillus helveticus R389. Int. J. Food Microbiol. 2007, 115, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Haque, M.M.; Chowdhury, M.M.R.; Shariful, M.I. In vitro protein digestibility of different feed ingredients in Thai koi (Anabas testudineus). J. Bangladesh Agril. Univ. 2009, 7, 205–210. [Google Scholar] [CrossRef]
- Hayes, M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnol. J. 2007, 2, 435–449. [Google Scholar] [CrossRef]
- Kitts, D.D.; Weiler, K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 2003, 9, 1309–1323. [Google Scholar] [CrossRef]
- Sally, J.; Helena, B.; Niina, P.; Timo, J.; Leo, P.; Hannu, K.; Pauli, H.; Vuokko, K.; Ylermi, S.; Hannu, H. Antioxidant enzymes in oligodendroglial brain tumors: Association with proliferation, apoptotic activity and survival. J. Neurooncol. 2006, 77, 131–140. [Google Scholar] [CrossRef]
- Nami, Y.; Vaseghi Bakhshayesh, R.; Mohammadzadeh Jalaly, H.; Lotfi, H.; Eslami, S.; Hejazi, M.A. Probiotic properties of Enterococcus isolated from artisanal dairy products. Front. Microbiol. 2019, 10, 300. [Google Scholar] [CrossRef]
- Cha, W.S.; Bok, S.K.; Kim, M.U.; Chun, S.S.; Choi, U.K.; Cho, Y.J. Production and separation of anti-hypertensive peptide during chunggugjang fermentation with Bacillus subtilis CH-1023. Appl. Biol. Chem. 2000, 43, 247–252. [Google Scholar]
- Lucey, J.A.; Singh, H. Formation and physical properties of acid milk gels: A review. Food Res. Int. 1997, 30, 529–542. [Google Scholar] [CrossRef]
- Sung, H.G.; Kobayashi, Y.; Chang, J.; Ha, A.; Hwang, I.H.; Ha, J.K. Low ruminal pH reduces dietary fiber digestion via reduced microbial attachment. Asian-Australas. J. Anim. Sci. 2006, 20, 200–207. [Google Scholar] [CrossRef]
- Sahan, N.U.R.A.Y.; Yasar, K.; Hayaloglu, A.A. Physical, chemical and flavour quality of non-fat yogurt as affected by a β-glucan hydrocolloidal composite during storage. Food Hydrocoll. 2008, 22, 1291–1297. [Google Scholar] [CrossRef]
Carbohydrates | L. fermentum | Carbohydrates | L. fermentum |
---|---|---|---|
Control | − | Esculin | − |
Glycerol | − | Salicin | − |
Erythritol | − | D-Cellobiose | − |
D-Arabinose | − | D-Maltose | + |
L-Arabinose | − | D-Lactose | + |
Ribose | − | D-Melibiose | + |
D-Xylose | − | D-Sucrose | + |
L-Xylose | − | D-Trehalose | + |
D-Adonitol | − | Inulin | − |
Methyl-β-D-Xylopyranoside | − | D-Melezitose | − |
Galactose | + | D-Raffinose | + |
Glucose | + | Starch | − |
Fructose | + | Glycogen | − |
Mannose | − | Xylitol | − |
Sorbose | − | Gentiobiose | − |
Rhamnose | − | D-Turanose | − |
Dulcitol | − | D-Lyxose | − |
Inositol | − | D-Tagatose | − |
Mannitol | − | D-Fucose | − |
Sorbitol | − | L-Fucose | − |
Methyl-α-D-Mannopyranoside | − | D-Arabitol | − |
Methyl-α-D-Glucopyranoside | − | L-Arabitol | − |
N-Acetylglucosamine | − | Potassium Gluconate | − |
Amygdalin | − | 2-Ketogluconate | − |
Arbutin | − | 5-Ketogluconate | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namshir, B.; Kim, G.-H.; Lkhagvasuren, N.; Jeong, S.-A.; Mijid, N.; Kim, W.-S. Fermentation and Functional Properties of Plant-Derived Limosilactobacillus fermentum for Dairy Applications. Fermentation 2025, 11, 286. https://doi.org/10.3390/fermentation11050286
Namshir B, Kim G-H, Lkhagvasuren N, Jeong S-A, Mijid N, Kim W-S. Fermentation and Functional Properties of Plant-Derived Limosilactobacillus fermentum for Dairy Applications. Fermentation. 2025; 11(5):286. https://doi.org/10.3390/fermentation11050286
Chicago/Turabian StyleNamshir, Batchimeg, Gil-Ha Kim, Natsag Lkhagvasuren, Seon-A Jeong, Narangerel Mijid, and Woan-Sub Kim. 2025. "Fermentation and Functional Properties of Plant-Derived Limosilactobacillus fermentum for Dairy Applications" Fermentation 11, no. 5: 286. https://doi.org/10.3390/fermentation11050286
APA StyleNamshir, B., Kim, G.-H., Lkhagvasuren, N., Jeong, S.-A., Mijid, N., & Kim, W.-S. (2025). Fermentation and Functional Properties of Plant-Derived Limosilactobacillus fermentum for Dairy Applications. Fermentation, 11(5), 286. https://doi.org/10.3390/fermentation11050286