Development of a Magnetic Solid-Phase Extraction-Liquid Chromatography Targeted to Five Fluoroquinolones in Food Based on Aptamer Recognition
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Mixed Magnetic Materials
2.2.1. Synthesis of Fe3O4-NH2
2.2.2. Synthesis of Fe3O4/MOF-5-NH2 Composite Magnetic Material
2.3. Assembly of Aptamer-Mixed Magnetic Materials
2.4. Characterization of Materials
2.4.1. Analysis of Fourier-Transform Infrared Spectroscopy (FTIR)
2.4.2. Determination of Zeta Potential
2.4.3. Material Microscopic Characterization
2.4.4. Other Characterization
2.5. Sample Pretreatment
2.6. Optimization and Application of HPLC-Fe3O4/MOF-5-W-G1 Detection Method
2.6.1. Liquid Chromatography Conditions
2.6.2. Establishment of Standard Curve
2.6.3. Optimization of Absorption Conditions
2.6.4. Method Evaluation
3. Results and Discussion
3.1. Characterization of Fe3O4/MOF-5-NH2 Material
3.1.1. Fourier-Transform Infrared Spectroscopic Characterization
3.1.2. Zeta Potential Characterization
3.1.3. X-Ray Diffraction Characterization
3.1.4. Magnetic Property Characterization
3.1.5. SEM and TEM Characterization
3.2. Characterization of Fe3O4/MOF-5-W-G1 Composites
3.3. Optimization of the Sample Pretreatment Adsorption Time
3.4. Optimization of Extractant Dosage
3.5. Verification of the Fe3O4/MOF-5-W-G1 Adsorption Performance
3.6. Methodological Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Lastours, V.; Fantin, B. Impact of fluoroquinolones on human microbiota. Focus on the emergence of antibiotic resistance. Future Microbiol. 2015, 10, 1241–1255. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, C.; Wei, Q.; Song, Y.; Chen, P.; Wang, L.; Yang, X.; Chen, X. A sensitive aptasensor based on rolling circle amplification and G-rich ssDNA/terbium (III) luminescence enhancement for ofloxacin detection in food. Talanta Int. J. Pure Appl. Anal. Chem. 2021, 235, 122783. [Google Scholar] [CrossRef] [PubMed]
- Capsoni, D.; Lucini, P.; Conti, D.M.; Bianchi, M.; Maraschi, F.; De Felice, B.; Bruni, G.; Abdolrahimi, M.; Peddis, D.; Parolini, M.; et al. Fe3O4-Halloysite Nanotube Composites as Sustainable Adsorbents: Efficiency in Ofloxacin Removal from Polluted Waters and Ecotoxicity. Nanomaterials 2022, 12, 4330. [Google Scholar] [CrossRef]
- Weng, X.; Cai, W.; Owens, G.; Chen, Z. Magnetic iron nanoparticles calcined from biosynthesis for fluoroquinolone antibiotic removal from wastewater. J. Clean. Prod. 2021, 319, 128734. [Google Scholar] [CrossRef]
- Hu, K.; Shi, Y.; Zhu, W.; Cai, J.; Zhao, W.; Zeng, H.; Zhang, Z.; Zhang, S. Facile synthesis of magnetic sulfonated covalent organic framework composites for simultaneous dispersive solid-phase extraction and determination of β-agonists and fluoroquinolones in food samples. Food Chem. 2021, 339, 128079. [Google Scholar] [CrossRef] [PubMed]
- Rizzetti, T.M.; De Souza, M.P.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Optimization of sample preparation by central composite design for multi-class determination of veterinary drugs in bovine muscle, kidney and liver by ultra-high-performance liquid chromatographic-tandem mass spectrometry. Food Chem. 2018, 246, 404. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xu, T.; Lin, S.; Liang, S. Development of Magnetic Porous Polymer Composite for Magnetic Solid Phase Extraction of Three Fluoroquinolones in Milk. Foods 2024, 13, 2511. [Google Scholar] [CrossRef] [PubMed]
- Yiruhan; Wang, R.J.; Mo, R.H.; Li, R.W.; Gao, R.; Tai, R.P.; Zhang, R.; Ruan, R.L.; Xu, J.W. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environ. Pollut. 2010, 158, 2350–2358. [Google Scholar] [CrossRef] [PubMed]
- EU Regulation. On pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin, No. 37/2010. L15. Off. J. Eur. Union 2010, 50, 1–72. [Google Scholar]
- GB 31650–2019; National Food Safety Standard Maximum Residue Limits for Veterinary Drugs in Foods. Ministry of Agriculture and Rural Affairs: Beijing, China; National Health Commission: Beijing, China; State Administration for Market Regulation: Beijing, China, 2019. Available online: http://www.ivdc.org.cn/xxgk/ggtz/gg/201910/P020241227613722035742.pdf (accessed on 16 December 2023).
- GB 31650.1–2022; National Food Safety Standard Maximum Residue Limits for 41 Veterinary Drugs in Foods. Ministry of Agriculture and Rural Affairs: Beijing, China; National Health Commission: Beijing, China; State Administration for Market Regulation: Beijing, China, 2022. Available online: http://www.aqsc.agri.cn/tzgg/202301/P020230106054799701588.pdf (accessed on 19 March 2024).
- Zhang, J.; Chen, Z.; Tang, F.; Wu, F.; Luo, X.; Liu, G. Fabrication of highly fluorinated porphyrin-based covalent organic frameworks decorated Fe3O4 nanospheres for magnetic solid phase extraction of fluoroquinolones. Microchim. Acta 2022, 189, 449. [Google Scholar] [CrossRef] [PubMed]
- Tekkeli, S.E.K.; Gazioglu, I.; Kiziltas, M.V. An HPLC method for the determination of moxifloxacin in breast milk by fluorimetric detection with precolumn derivatization. Acta Chromatogr. 2017, 29, 57–65. [Google Scholar] [CrossRef]
- Salamat, Q.; Soylak, M. Magnetic covalent organic frameworks-based adsorbents in solid phase extraction of trace analytes in environmental samples. Trends Environ. Anal. Chem. 2024, 41, e00222. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Yang, L.; Zhang, W.; Lin, J.; Li, C. Determination of eight quinolones in milk using immunoaffinity microextraction in a packed syringe and liquid chromatography with fluorescence detection. J. Chromatogr. B 2017, 1064, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Shulman-Peleg, A.; Shatsky, M.; Nussinov, R.; Wolfson, H.J. Prediction of Interacting Single-Stranded RNA Bases by Protein-Binding Patterns. J. Mol. Biol. 2008, 379, 299–316. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Hu, C.; Wang, C.; Chen, X.; Huang, Y. Application of Aptamer Biosensor in the Determination of Fluoroquinolones Residues in Food. J. Chin. Inst. Food Sci. Technol. 2021, 21, 409–419. [Google Scholar]
- Aslipashaki, S.N.; Khayamian, T.; Hashemian, Z. Aptamer based extraction followed by electrospray ionization-ion mobility spectrometry for analysis of tetracycline in biological fluids. J. Chromatogr. B 2013, 925, 26–32. [Google Scholar] [CrossRef]
- Ma, W.; Wan, S.; Lin, C.; Lin, X.; Xie, Z. Towards online specific recognition and sensitive analysis of bisphenol A by using AuNPs@aptamer hybrid-silica affinity monolithic column with LC-MS. Talanta 2020, 219, 121275. [Google Scholar] [CrossRef]
- Huang, Y.; Song, Y.; Chen, X.; Yang, L.; Yang, X.; Tian, H.; Wang, L.; Lin, H. A nucleic acid aptamer probe for fluoroquinolone veterinary drug residues in food and its analytical application. CN2021107431431. 30 June 2021. Available online: http://epub.cnipa.gov.cn/Dxb/IndexQuery (accessed on 20 January 2021).
- Zhang, X.; Peng, F.; Wang, D. MOFs and MOF-Derived Materials for Antibacterial Application. J. Funct. Biomater. 2022, 13, 215. [Google Scholar] [CrossRef]
- Sultana, A.; Kathuria, A.; Gaikwad, K.K. Metal–organic frameworks for active food packaging. A review. Environ. Chem. Lett. 2022, 20, 1479–1495. [Google Scholar] [CrossRef]
- Mehdinia, A.; Jahedi Vaighan, D.; Jabbari, A. Cation Exchange Superparamagnetic Al-Based Metal Organic Framework (Fe3O4/MIL-96(Al)) for High Efficient Removal of Pb(II) from Aqueous Solutions. ACS Sustain. Chem. Eng. 2018, 6, 7b03301. [Google Scholar] [CrossRef]
- Ma, J.; Wu, G.; Li, S.; Tan, W.; Wang, X.; Li, J.; Chen, L. Magnetic solid-phase extraction of heterocyclic pesticides in environmental water samples using metal-organic frameworks coupled to high performance liquid chromatography determination. J. Chromatogr. A 2018, 1553, 57–66. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, Z.; Liao, J.; Li, G. A Chemical Bonding Approach for Fabrication of Hybrid Magnetic MOF-5: High Efficient Adsorbents for Magnetic Enrichment of Trace Analytes. Anal. Chem. 2013, 85, 6885–6893. [Google Scholar] [CrossRef]
- Zeng, C.; Xu, C.; Tian, H.; Shao, K.; Song, Y.; Yang, X.; Che, Z.; Huang, Y. Determination of aflatoxin B1 in Pixian Douban based on aptamer magnetic solid-phase extraction. RSC Adv. 2022, 12, 19528–19536. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, L.; Jia, J.; Dong, F.; Jia, Y.; Liu, X. In Situ Electrospun Porous MIL-88A/PAN Nanofibrous Membranes for Efficient Removal of Organic Dyes. Molecules 2023, 28, 760. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wu, D.; Chen, J.; Ma, N.; Dai, W. Boosting highly capture of trace tetracycline with a novel water-resistant and magnetic (ZIF-8)-on-(Cu-BTC@Fe3O4) composite. J. Solid State Chem. 2022, 319, 123797. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Sun, Z.; Cai, T.; Wang, X.; Zhao, S.; Liu, H.; Gong, B. Restricted access media-imprinted nanomaterials based on a metal–organic framework for highly selective extraction of fluoroquinolones in milk and river water. J. Chromatogr. A 2020, 1626, 461364. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Song, J.; Yan, H.; Chen, S. Functionalized aqueous biphasic system coupled with HPLC for highly sensitive detection of quinolones in milk. LWT 2023, 173, 114398. [Google Scholar] [CrossRef]
- Capsoni, D.; Guerra, G.; Puscalau, C.; Maraschi, F.; Bruni, G.; Monteforte, F.; Profumo, A.; Sturini, M. Zinc Based Metal-Organic Frameworks as Ofloxacin Adsorbents in Polluted Waters: ZIF-8 vs. Zn3(BTC)2. Int. J. Environ. Res. Public Health 2021, 18, 1433. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, G.; Kaur, A.; Umar, A.; Khan, M.A.; Algarni, H.; Kansal, S.K. Removal of fluoroquinolone drug, levofloxacin, from aqueous phase over iron based MOFs, MIL-100(Fe). J. Solid State Chem. 2020, 281, 121029. [Google Scholar] [CrossRef]
- Guo, X.; Kang, C.; Huang, H.; Chang, Y.; Zhong, C. Exploration of functional MOFs for efficient removal of fluoroquinolone antibiotics from water. Microporous Mesoporous Mater. Off. J. Int. Zeolite Assoc. 2019, 286, 84–91. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, X.; Ding, R.; Huang, H.; Gao, X.; Liu, B. Post-synthesis introduction of dual functional groups in metal-organic framework for enhanced adsorption of moxifloxacin antibiotic. J. Colloid Interface Sci. 2023, 639, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Wu, Z. High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment. Microporous Mesoporous Mater. 2020, 308, 110494. [Google Scholar] [CrossRef]
- Lin, S.; Zhao, Z.; Lv, J.; Guan, L.; Du, H.; Liang, S.-X. Designing a novel metal-organic framework@covalent organic framework composite for the selective removal of fluoroquinolones: Adsorption behaviors and theoretical investigation. Appl. Surf. Sci. 2023, 609, 155433. [Google Scholar] [CrossRef]
- Li, H.L.; Eddaoudi, M.M.; O’Keeffe, M.; Yaghi, O.M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef]
- GB 29692–2013; Determination of Multiple Residues of Quinolones in Milk by High Performance Liquid Chromatography. Ministry of Agriculture and Rural Affairs: Beijing, China; Commission of National Health and Family Planning: Beijing, China, 2013. Available online: https://www.anan.gov.cn/anan/cpbz/201802/20142d2d763d43a592b23d64b52a3b21/files/7209d795d6c742d19b25ebb331dee1f3.pdf (accessed on 20 January 2021).
- Announcement NO. 1025-14-2008; Determination of Fluoroquinolones Residues in Animal Derived Food by High Performance Liquid Chromatography. Ministry of Agriculture: Beijing, China, 2008. Available online: http://down.foodmate.net/standard/sort/3/17141.html (accessed on 15 January 2021).
- Kurisingal, J.F.; Rachuri, Y.; Gu, Y.; Choe, Y.; Park, D.W. Multi-variate metal organic framework as efficient catalyst for the cycloaddition of CO2 and epoxides in a gas-liquid-solid reactor. Chem. Eng. J. 2020, 386, 121700. [Google Scholar] [CrossRef]
- Hong, D.Y.; Hwang, Y.K.; Serre, C.; Ferey, G.; Chang, J.S. Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Adv. Funct. Mater. 2010, 19, 1537–1552. [Google Scholar] [CrossRef]
Target | Retention Time | Correlation Coefficient | Linear Range (µg/kg) | LODs (µg/kg) | LOQs (µg/kg) | RSD (%, n = 6) | ME (Fish, %) | ME (Milk, %) |
---|---|---|---|---|---|---|---|---|
OFL | 13.46 | 0.9988 | 0.39–200 | 0.04 | 0.15 | 2.01 | 17.47 | 23.12 |
CIP | 14.77 | 0.9989 | 0.39–200 | 0.05 | 0.17 | 1.89 | −6.79 | 5.14 |
PEF | 15.37 | 0.9998 | 0.39–200 | 0.07 | 0.23 | 1.90 | 6.32 | 2.50 |
LOW | 17.95 | 0.9995 | 0.39–200 | 0.10 | 0.33 | 1.86 | −3.37 | 13.45 |
ENR | 22.57 | 0.9998 | 0.39–200 | 0.04 | 0.13 | 2.21 | 6.52 | −11.19 |
Matrices | Milk | Fish | |||||
---|---|---|---|---|---|---|---|
Target | Added (µg/kg) | Measured Quantity (µg/kg) | Recoveries (%) | RSD (n = 3, %) | Measured Quantity (µg/kg) | Recoveries (%) | RSD (n = 3, %) |
OFL | 6 | 4.29 | 71.50 | 2.13 | 3.92 | 65.34 | 2.35 |
47 | 40.78 | 86.77 | 1.23 | 37.42 | 79.63 | 1.67 | |
100 | 99.82 | 99.82 | 2.33 | 88.76 | 88.76 | 2.01 | |
CIP | 6 | 5.22 | 86.99 | 2.31 | 5.29 | 88.12 | 2.12 |
47 | 44.03 | 93.68 | 1.40 | 45.68 | 97.19 | 1.87 | |
100 | 93.64 | 93.64 | 1.12 | 102.05 | 102.05 | 1.65 | |
PEF | 6 | 5.08 | 84.71 | 1.02 | 5.82 | 97.08 | 2.45 |
47 | 44.94 | 95.62 | 2.20 | 47.51 | 101.09 | 1.25 | |
100 | 101.11 | 101.11 | 2.08 | 93.36 | 93.36 | 1.03 | |
LOW | 6 | 5.43 | 90.52 | 2.44 | 5.51 | 91.75 | 2.13 |
47 | 44.89 | 95.51 | 1.21 | 43.66 | 92.90 | 2.53 | |
100 | 99.29 | 99.29 | 2.21 | 95.93 | 95.93 | 2.15 | |
ENR | 6 | 5.40 | 90.07 | 2.11 | 5.49 | 91.54 | 2.31 |
47 | 45.52 | 96.63 | 1.11 | 45.73 | 97.30 | 1.39 | |
100 | 102.06 | 102.06 | 2.03 | 91.84 | 91.84 | 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Yan, X.; Song, Y.; Yang, X.; Chen, X.; Huang, Y. Development of a Magnetic Solid-Phase Extraction-Liquid Chromatography Targeted to Five Fluoroquinolones in Food Based on Aptamer Recognition. Foods 2025, 14, 798. https://doi.org/10.3390/foods14050798
Zhou H, Yan X, Song Y, Yang X, Chen X, Huang Y. Development of a Magnetic Solid-Phase Extraction-Liquid Chromatography Targeted to Five Fluoroquinolones in Food Based on Aptamer Recognition. Foods. 2025; 14(5):798. https://doi.org/10.3390/foods14050798
Chicago/Turabian StyleZhou, Haiyan, Xiaofeng Yan, Yaning Song, Xiao Yang, Xianggui Chen, and Yukun Huang. 2025. "Development of a Magnetic Solid-Phase Extraction-Liquid Chromatography Targeted to Five Fluoroquinolones in Food Based on Aptamer Recognition" Foods 14, no. 5: 798. https://doi.org/10.3390/foods14050798
APA StyleZhou, H., Yan, X., Song, Y., Yang, X., Chen, X., & Huang, Y. (2025). Development of a Magnetic Solid-Phase Extraction-Liquid Chromatography Targeted to Five Fluoroquinolones in Food Based on Aptamer Recognition. Foods, 14(5), 798. https://doi.org/10.3390/foods14050798