Structure–Tissue Exposure/Selectivity Relationship (STR) on Carbamates of Cannabidiol
Abstract
1. Introduction
2. Results and Discussion
2.1. Drug Exposure in Tissue but Not in Plasma Was Associated with Efficacy/Toxicity
2.1.1. No Correlation Between Drug Exposure in Plasma and in Disease-Targeted Tissues
2.1.2. Structural Correlation of Drug Exposure with Drug Efficacy/Safety
2.1.3. Relationship of Drug Exposure in Tissue and Plasma
2.2. Drug Tissue Selectivity May Impact the Balance of Efficacy/Toxicity, Which Is Often Overlooked in the Drug Optimization Process
2.3. Structural Modification Altered Drug Exposure and Selectivity in Various Tissues Despite Similar Drug Exposure in the Plasma
2.4. ADMET and Physicochemical Property Prediction of CBD Carbamates
2.5. Pharmacokinetics Study of CBD and Its Carbamates L1–L4
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Animal Experiments
3.3. Samples Preparation Procedures
3.4. UPLC–HRMS Analysis of Drug Candidate Concentration
3.5. ADMET and Physicochemical Properties Prediction of CBD Carbamates
3.6. Pharmacokinetics
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takebe, T.; Imai, R.; Ono, S. The current status of drug discovery and development as originated in United States academia: The influence of industrial and academic collaboration on drug discovery and development. Clin. Transl. Sci. 2018, 11, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Pathak, R.K. Chapter 16—Discovery and optimization of lead molecules in drug designing. In Bioinformatics Methods and Applications; Academic Press: Cambridge, MA, USA, 2022; pp. 253–267. [Google Scholar]
- Davies, M.; Jones, R.D.O.; Grime, K.; Jansson-Löfmark, R.; Fretland, A.J.; Winiwarter, S.; Morgan, P.; McGinnity, D.F. Improving the Accuracy of Predicted Human Pharmacokinetics: Lessons Learned from the AstraZeneca Drug Pipeline Over Two Decades. Trends Pharmacol. Sci. 2020, 41, 390–408. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it. Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef] [PubMed]
- Dowden, H.; Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 2019, 18, 495–496. [Google Scholar] [CrossRef]
- Harrison, R.K. Phase II and Phase III failures: 2013–2015. Nat. Rev. Drug Discov. 2016, 15, 817–818. [Google Scholar] [CrossRef]
- Rizk, M.L.; Zou, L.; Savic, R.M.; Dooley, K.E. Importance of drug pharmacokinetics at the site of action. Clin. Transl. Sci. 2017, 10, 133–142. [Google Scholar] [CrossRef]
- Dong, W.C.; Song, M.Y.; Zheng, T.L.; Zhang, Z.Q.; Jiang, Y.; Guo, J.L.; Zhang, Y.Z. Development of an hollow fiber solid phase microextraction method for the analysis of unbound fraction of imatinib and N-desmethyl imatinib in human plasma. J. Pharm. Biomed. Anal. 2024, 250, 116405. [Google Scholar] [CrossRef]
- Luo, X.; Ding, Y.; Cao, Y.; Liu, Z.; Zhang, W.; Zeng, S.; Cheng, S.H.; Li, H.; Haggarty, S.J.; Wang, X.; et al. Few-shot meta-learning applied to whole brain activity maps improves systems neuropharmacology and drug discovery. iScience 2024, 27, 110875. [Google Scholar] [CrossRef]
- Ghosh, K.K.; Padmanabhan, P.; Yang, C.T.; Ng, D.C.E.; Palanivel, M.; Mishra, S.; Halldin, C.; Gulyás, B. Positron emission tomographic imaging in drug discovery. Drug Discov. Today 2022, 27, 280–291. [Google Scholar] [CrossRef]
- Rankovic, Z. CNS drug design: Balancing physicochemical properties for optimal brain exposure. J. Med. Chem. 2015, 58, 2584–2608. [Google Scholar] [CrossRef]
- Gao, W.; Hu, H.; Dai, L.; He, M.; Yuan, H.; Zhang, H.; Liao, J.; Wen, B.; Li, Y.; Palmisano, M.; et al. Structure–tissue exposure/selectivity relationship (STR) correlates with clinical efficacy/safety. Acta Pharm. Sin. B 2022, 12, 2462–2478. [Google Scholar] [CrossRef] [PubMed]
- Matošević, A.; Bosak, A. Carbamate group as structural motif in drugs: A review of carbamate derivatives used as therapeutic agents. Arh. Hig. Rada Toksikol. 2020, 71, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Gonec, T.; Pindjakova, D.; Vrablova, L.; Strharsky, T.; Michnova, H.; Kauerova, T.; Kollar, P.; Oravec, M.; Jendrzejewska, I.; Cizek, A.; et al. Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates. Pharmaceuticals 2022, 15, 715. [Google Scholar] [CrossRef] [PubMed]
- Biancardi, A.; Aimo, C.; Piazza, P.; Lo Chiano, F.; Rubini, S.; Baldini, E.; Vertuani, S.; Manfredini, S. Acetylcholinesterase (AChE) Reversible Inhibitors: The Role of Oxamyl in the Production of Poisoned Baits. Toxics 2022, 10, 432. [Google Scholar] [CrossRef]
- Eskander, M.F.; Nagykery, N.G.; Leung, E.Y.; Khelghati, B.; Geula, C. Rivastigmine is a potent inhibitor of acetyl- and butyrylcholinesterase in Alzheimer’s plaques and tangles. Brain Res. 2005, 1060, 144–152. [Google Scholar] [CrossRef]
- Brewer, L.; Bennett, K.; McGreevy, C.; Williams, D. A population-based study of dosing and persistence with anti-dementia medications. Eur. J. Clin. Pharmacol. 2013, 69, 1467–1475. [Google Scholar] [CrossRef]
- Tse, F.L.; Laplanche, R. Absorption, metabolism, and disposition of [14C]SDZ ENA 713, an acetylcholinesterase inhibitor, in minipigs following oral, intravenous, and dermal administration. Pharm. Res. 1998, 15, 1614–1620. [Google Scholar] [CrossRef]
- Polinsky, R.J. Clinical pharmacology of rivastigmine: A new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin. Ther. 1998, 20, 634–647. [Google Scholar] [CrossRef]
- Somani, S.M. Pharmacokinetics and pharmacodynamics of physostigmine in the rat after oral administration. Biopharm. Drug Dispos. 1989, 10, 187–203. [Google Scholar] [CrossRef]
- Utsuki, T.; Uchimura, N.; Irikura, M.; Moriuchi, H.; Holloway, H.W.; Yu, Q.S.; Spangler, E.L.; Mamczarz, J.; Ingram, D.K.; Irie, T.; et al. Preclinical investigation of the topical administration of phenserine: Transdermal flux, cholinesterase inhibition, and cognitive efficacy. J. Pharmacol. Exp. Ther. 2007, 321, 353–361. [Google Scholar] [CrossRef]
- Dong, X. Current Strategies for Brain Drug Delivery. Theranostics 2018, 8, 1481–1493. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, R.I.; Preda, M.D.; Niculescu, A.G.; Vladâcenco, O.; Radu, C.I.; Grumezescu, A.M.; Teleanu, D.M. Current Strategies to Enhance Delivery of Drugs across the Blood-Brain Barrier. Pharmaceutics 2022, 14, 987. [Google Scholar] [CrossRef] [PubMed]
- Sethi, B.; Kumar, V.; Mahato, K.; Coulter, D.W.; Mahato, R.I. Recent advances in drug delivery and targeting to the brain. J. Control. Release 2022, 350, 668–687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gan, L.; Cao, F.; Wang, H.; Gong, P.; Ma, C.; Ren, L.; Lin, Y.; Lin, X. The barrier and interface mechanisms of the brain barrier, and brain drug delivery. Brain Res. Bull. 2022, 190, 69–83. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Tian, D.; Tian, L.; Ju, X.; Qi, L.; Wang, Y.; Liang, C. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer’s disease. Eur. J. Med. Chem. 2020, 192, 112163. [Google Scholar] [CrossRef]
- Watt, G.; Shang, K.; Zieba, J.; Olaya, J.; Li, H.; Garner, B.; Karl, T. Chronic Treatment with 50 mg/kg Cannabidiol Improves Cognition and Moderately Reduces Aβ40 Levels in 12-Month-Old Male AβPPswe/PS1ΔE9 Transgenic Mice. J. Alzheimers Dis. 2020, 74, 937–950. [Google Scholar] [CrossRef]
- Gombar, V.K.; Hall, S.D. Quantitative structure-activity relationship models of clinical pharmacokinetics: Clearance and volume of distribution. J. Chem. Inf. Model 2013, 53, 948–957. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Z.; Zuo, J.; Wu, C.; Zha, L.; Xu, Y.; Wang, S.; Shi, J.; Liu, X.H.; Zhang, J.; et al. Novel cannabidiol-carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer’s disease. Eur. J. Med. Chem. 2021, 223, 113735. [Google Scholar] [CrossRef]
- Gauthier, S. Cholinergic adverse effects of cholinesterase inhibitors in Alzheimer’s disease: Epidemiology and management. Drugs Aging 2001, 18, 853–862. [Google Scholar] [CrossRef]
- Tian, F.; Li, C.; Wang, X.; Ren, S.; Li, N.; Liu, Q.; Zhou, S.; Lu, Y.; Zhao, D.; Chen, X. Comparative study on pharmacokinetics of a series of anticholinergics, atropine, anisodamine, anisodine, scopolamine and tiotropium in rats. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 245–253. [Google Scholar] [CrossRef]
- Muller, P.Y.; Milton, M.N. The Determination and interpretation of the therapeutic index in drug development. Nat. Rev. Drug Discov. 2012, 11, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Hammarlund-Udenaes, M. Active-site concentrations of chemicalsdare they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin. Pharmacol. Toxicol. 2010, 106, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Loryan, I.; Reichel, A.; Feng, B.; Bundgaard, C.; Shaffer, C.; Kalvass, C.; Bednarczyk, D.; Morrison, D.; Lesuisse, D.; Hoppe, E.; et al. Unbound brain-to-plasma partition coefficient, Kp, uu, brain—A game changing parameter for CNS drug discovery and development. Pharm. Res. 2022, 39, 1321–1341. [Google Scholar] [CrossRef] [PubMed]
- Charve´riat, M.; Lafon, V.; Mouthon, F.; Zimmer, L. Innovative approaches in CNS drug discovery. Therapie 2021, 76, 101–109. [Google Scholar] [CrossRef]
- Suridjan, I.; Comley, R.A.; Rabiner, E.A. The application of positron emission tomography (PET) imaging in CNS drug development. Brain Imaging Behav. 2019, 13, 354–365. [Google Scholar] [CrossRef]
- Schmitt, W. General approach for the calculation of tissue to plasma partition coefficients. Toxicol. In Vitro 2008, 22, 457–467. [Google Scholar] [CrossRef]
- Zhang, D.; Hop, C.; Patilea-Vrana, G.; Gampa, G.; Seneviratne, H.K.; Unadkat, J.D.; Kenny, J.R.; Nagapudi, K.; Di, L.; Zhou, L.; et al. Drug concentration asymmetry in tissues and plasma for small molecule-related therapeutic modalities. Drug Metab. Dispos. 2019, 47, 1122–1135. [Google Scholar] [CrossRef]
- Chen, Z.; Yuan, Y.; Li, Z.; Kutner, M.; Owonikoko, T.; Curran, W.J.; Khuri, F.; Kowalski, J. Dose escalation with over-dose and under-dose controls in Phase I/II clinical trials. Contemp. Clin. Trials 2015, 43, 133–141. [Google Scholar] [CrossRef]
- Patel, N.C. Methods to optimize CNS exposure of drug candidates. Bioorg. Med. Chem. Lett. 2020, 30, 127503. [Google Scholar] [CrossRef]
- Tonge, P.J. Drug-target kinetics in drug discovery. ACS Chem. Neurosci. 2018, 9, 29–39. [Google Scholar] [CrossRef]
- Harrell, A.W.; Sychterz, C.; Ho, M.Y.; Weber, A.; Valko, K.; Negash, K. Interrogating the relationship between rat in vivo tissue distribution and drug property data for >200 structurally unrelated molecules. Pharmacol. Res. Perspect. 2015, 3, e00173. [Google Scholar] [CrossRef] [PubMed]
- Zolotarev, Y.A.; Mitkevich, V.A.; Shram, S.I.; Adzhubei, A.A.; Tolstova, A.P.; Talibov, O.B.; Dadayan, A.K.; Myasoyedov, N.F.; Makarov, A.A.; Kozin, S.A. Pharmacokinetics and Molecular Modeling Indicate nAChRα4-Derived Peptide HAEE Goes through the Blood-Brain Barrier. Biomolecules 2021, 11, 909. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Korolj, A.; Lai, B.F.L.; Radisic, M. Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 2018, 3, 257–278. [Google Scholar] [CrossRef]
- David, L.; Thakkar, A.; Mercado, R.; Engkvist, O. Molecular representations in AI-driven drug discovery: A review and practical guide. J. Cheminform. 2020, 12, 56. [Google Scholar] [CrossRef]
- Millar, S.A.; Stone, N.L.; Yates, A.S.; O’Sullivan, S.E. A Systematic Review on the Pharmacokinetics of Cannabidiol in Humans. Front. Pharmacol. 2018, 9, 1365. [Google Scholar] [CrossRef]
- Crockett, J.; Critchley, D.; Tayo, B.; Berwaerts, J.; Morrison, G. A phase 1, randomized, pharmacokinetic trial of the effect of different meal compositions, whole milk, and alcohol on cannabidiol exposure and safety in healthy subjects. Epilepsia 2020, 61, 267–277. [Google Scholar] [CrossRef]
- Rong, K.; Li, Z.; Wu, X.; Gao, S.; Zhao, J.; Yang, J.; Jiang, X.; Zhang, J.; Tang, W. Natural phenol carbamates: Selective BuChE/FAAH dual inhibitors show neuroprotection in an Alzheimer’s disease mouse model. Eur. J. Med. Chem. 2025, 281, 117003. [Google Scholar] [CrossRef]
- Citti, C.; Palazzoli, F.; Licata, M.; Vilella, A.; Leo, G.; Zoli, M.; Vandelli, M.A.; Forni, F.; Pacchetti, B.; Cannazza, G. Untargeted rat brain metabolomics after oral administration of a single high dose of cannabidiol. J. Pharm. Biomed. Anal. 2018, 161, 1–11. [Google Scholar] [CrossRef]
Compound | AUCplasma (ng·h/mL) | IC50, µM (or Inhibition Rate % at 20 µM) | |
---|---|---|---|
AChE b | BuChE c | ||
CBD | 157.5 | 17.07 ± 2.43 | 0.67 ± 0.06 |
L1 | 191.2 | 18.88 ± 1.11 | 0.128 ± 0.022 |
L2 | 561.4 | 14.95 ± 1.02 | 0.077 ± 0.005 |
L3 | 182.1 | na d | 0.39 ± 0.04 |
L4 | 521.6 | 21.4 ± 2.8% | 0.0053 ± 0.0012 |
rivastigmine | 16.35 ± 1.54 | 0.058 ± 0.013 |
Parameter | L2 | L4 |
---|---|---|
AUCplasma | 506.8 | 492.8 |
AUCbrain | 213.8 | 43.2 |
AUCheart | 1331.9 | 7431.3 |
AUCliver | 2684.5 | 4951.2 |
AUCspleen | 1220.9 | 5773.9 |
AUClung | 1655.0 | 7421.8 |
AUCkidney | 2790.2 | 7723.4 |
Kp brain | 0.42 | 0.088 |
Kp heart | 2.63 | 15.08 |
Kp liver | 5.30 | 10.05 |
Kp spleen | 2.41 | 11.72 |
Kp lung | 3.27 | 15.06 |
Kp kidney | 5.51 | 15.67 |
Name | CBD | L1 | L2 | L3 | L4 |
---|---|---|---|---|---|
MW | 314.47 | 371.53 | 399.58 | 411.59 | 496.09 |
TPSA | 40.46 | 58.56 | 49.77 | 49.77 | 49.77 |
LogP | 6.455 | 5.887 | 6.710 | 6.913 | 8.053 |
LogD | 4.792 | 4.111 | 4.181 | 4.076 | 4.817 |
LogS | −4.654 | −4.300 | −3.840 | −4.061 | −5.751 |
Solubility | 0.010 | 0.014 | 0.021 | 0.017 | 0.003 |
BBB penetration | 0.915 | 0.804 | 0.957 | 0.921 | 0.902 |
t1/2 (hours) | 8.091 | 6.094 | 6.015 | 8.595 | 8.273 |
Pgp inhibitor | 0.128 | 0.878 | 0.102 | 0.994 | 1.000 |
Rat acute oral toxicity (LD50) | 319.474 | 22.061 | 70.497 | 80.045 | 84.020 |
Pharmacokinetic Parameters | CBD | L1 | L2 | L3 | L4 | L1→CBD |
---|---|---|---|---|---|---|
t1/2 (h) | 3.70 ± 1.26 | 2.70 ± 1.27 | 2.64 ± 0.45 | 3.09 ± 1.52 | 2.17 ± 0.19 | 3.43 ± 1.64 |
Tmax (h) | 1.20 ± 0.45 | 0.22 ± 0.07 | 1.80 ± 0.45 | 0.95 ± 0.11 | 0.80 ± 0.11 | 0.27 ± 0.15 |
Cmax (μg/L) | 48.89 ± 11.02 | 119.98 ± 15.90 | 127.03 ± 23.65 | 60.01 ± 8.63 | 210.89 ± 30.74 | 94.59 ± 27.06 |
AUC0-T (μg·h/L) | 157.50 ± 10.61 | 191.20 ± 58.69 | 561.35 ± 104.32 | 182.10 ± 13.94 | 521.56 ± 133.68 | 165.91 ± 87.56 |
AUC0-∞ (μg·h/L) | 168.17 ± 11.50 | 196.80 ± 57.97 | 590.36 ± 110.07 | 200.40 ± 32.51 | 539.00 ± 131.18 | 172.51 ± 84.52 |
MRT0-T (h) | 2.84 ± 0.23 | 2.05 ± 0.47 | 3.44 ± 0.22 | 2.72 ± 0.60 | 2.38 ± 0.21 | 2.21 ± 0.42 |
Vd (L/kg) | 474.16 ± 155.23 | 319.94 ± 171.55 | 99.38 ± 23.95 | 320.94 ± 106.75 | 91.52 ± 22.81 | 577.46 ± 442.26 |
CL (L/h/kg) | 89.55 ± 6.43 | 81.20 ± 21.71 | 26.07 ± 4.49 | 76.37 ± 11.68 | 28.99 ± 6.02 | 103.13 ± 42.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Yang, J.-G.; Rong, K.; Li, H.-H.; Wu, C.; Tang, W. Structure–Tissue Exposure/Selectivity Relationship (STR) on Carbamates of Cannabidiol. Int. J. Mol. Sci. 2024, 25, 11888. https://doi.org/10.3390/ijms252211888
Wang S, Yang J-G, Rong K, Li H-H, Wu C, Tang W. Structure–Tissue Exposure/Selectivity Relationship (STR) on Carbamates of Cannabidiol. International Journal of Molecular Sciences. 2024; 25(22):11888. https://doi.org/10.3390/ijms252211888
Chicago/Turabian StyleWang, Sheng, Jian-Guo Yang, Kuanrong Rong, Huan-Huan Li, Chengyao Wu, and Wenjian Tang. 2024. "Structure–Tissue Exposure/Selectivity Relationship (STR) on Carbamates of Cannabidiol" International Journal of Molecular Sciences 25, no. 22: 11888. https://doi.org/10.3390/ijms252211888
APA StyleWang, S., Yang, J.-G., Rong, K., Li, H.-H., Wu, C., & Tang, W. (2024). Structure–Tissue Exposure/Selectivity Relationship (STR) on Carbamates of Cannabidiol. International Journal of Molecular Sciences, 25(22), 11888. https://doi.org/10.3390/ijms252211888