Alkaloids from Waltheria spp. (Malvaceae): Chemosystematic Aspects, Biosynthesis, Total Synthesis, and Biological Activities
Abstract
:1. Introduction
2. Traditional Medicine
3. Alkaloids from Waltheria
3.1. Quinolone Alkaloids
3.2. Cyclopeptide Alkaloids
4. Chemosystematic Aspects
5. Biosynthesis
5.1. Biosynthesis of 4-quinolone Alkaloids
5.2. Biosynthesis of Cyclopeptide Alkaloids
6. Total Synthesis
7. Pharmacological Properties of Alkaloids
8. Derivatives of 4-Quinolone Alkaloids
9. Other Applications
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WFO. The World Flora Online. Available online: http://www.worldfloraonline.org/taxon/wfo-4000040514 (accessed on 10 April 2023).
- Coutinho, T.S.; Colli-Silva, M.; Alves, M. Novelties in Brazilian Waltheria L. (Byttnerioideae, Malvaceae): Two New Species and One Re-Establishment. Acta Bot. Bras. 2020, 34, 449–459. [Google Scholar] [CrossRef]
- Coutinho, T.S.; Sader, M.A.; Pedrosa-harand, A.; Alves, M. Waltheria marielleae (Byttnerioideae, Malvaceae), a New Species from North-Eastern Brazil Supported by Morphological and Phylogenetic Evidence. Plant Ecol. Evol. 2022, 155, 353–362. [Google Scholar] [CrossRef]
- Coutinho, T.S.; Colli-Silva, M.; Pirani, J.R. Waltheria L. In Flora do Brasil 2020; Jardim Botânico do Rio de Janeiro: Rio de Janeiro, Brazil, 2024. [Google Scholar]
- Viegas, C.C.d.S.D.; Rodrigues, L.T.D.; Pires, H.F.O.; de Assis, T.S. Propriedades Bioativas in vitro e in vivo do Gênero Waltheria Pertencente à Família Malvaceae: Uma Revisão da Literatura. Res. Soc. Dev. 2022, 11, e19011427351. [Google Scholar] [CrossRef]
- Silva, R.; Domingos, L.; de Castro, G.; Laport, M.; Ferreira-Pereira, A.; Lima, M.; Cotinguiba, F. Leishmanicidal and Antimicrobial Activities of 4-Quinolone Alkaloids from Stems of the Medicinal Plant Waltheria indica (Malvaceae) and Their Chemotaxonomic Significance. J. Braz. Chem. Soc. 2022, 33, 1291–1298. [Google Scholar] [CrossRef]
- Zongo, F.; Ribuot, C.; Boumendjel, A.; Guissou, I. Botany, Traditional Uses, Phytochemistry and Pharmacology of Waltheria indica L. (Syn. Waltheria americana): A Review. J. Ethnopharmacol. 2013, 148, 14–26. [Google Scholar] [CrossRef]
- Lawal, I.O.; Rafiu, B.O.; Ale, J.E.; Majebi, O.E.; Aremu, A.O. Ethnobotanical Survey of Local Flora Used for Medicinal. Plants 2022, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- Cretton, S.; Breant, L.; Pourrez, L.; Ambuehl, C.; Marcourt, L.; Ebrahimi, S.N.; Hamburger, M.; Perozzo, R.; Karimou, S.; Kaiser, M.; et al. Antitrypanosomal Quinoline Alkaloids from the Roots of Waltheria indica. J. Nat. Prod. 2014, 77, 2304–2311. [Google Scholar] [CrossRef] [PubMed]
- Monteillier, A.; Cretton, S.; Ciclet, O.; Marcourt, L.; Ebrahimi, S.N.; Christen, P.; Cuendet, M. Cancer Chemopreventive Activity of Compounds Isolated from Waltheria indica. J. Ethnopharmacol. 2017, 203, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Cretton, S.; Bréant, L.; Pourrez, L.; Ambuehl, C.; Perozzo, R.; Marcourt, L.; Kaiser, M.; Cuendet, M.; Christen, P. Chemical Constituents from Waltheria indica Exert in vitro Activity against Trypanosoma brucei and T. cruzi. Fitoterapia 2015, 105, 55–60. [Google Scholar] [CrossRef]
- Laczko, R.; Chang, A.; Watanabe, L.; Petelo, M.; Kahaleua, K.; Bingham, J.P.; Csiszar, K. Anti-Inflammatory Activities of Waltheria indica Extracts by Modulating Expression of IL-1B, TNF-α, TNFRII and NF-ΚB in Human Macrophages. Inflammopharmacology 2019, 28, 525–540. [Google Scholar] [CrossRef]
- Waltheria indica. Available online: http://pza.sanbi.org/waltheria-indica (accessed on 10 July 2023).
- Crow, W.D.; Price, J.R. Alkaloids of the Australian Rutaceae: Melicope fareana. V. The Structure of the Alkaloids. Aust. J. Chem. 1949, 2, 282–306. [Google Scholar] [CrossRef]
- Hernández-Arteseros, J.A.; Barbosa, J.; Compañó, R.; Prat, M.D. Analysis of Quinolone Residues in Edible Animal Products. J. Chromatogr. A 2002, 945, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Donnell, T.J.O.; Park, E.; Kovacs, S.; Nakamura, K.; Dave, A.; Luo, Y.; Sun, R.; Wall, M.; Wongwiwatthananukit, S.; et al. Anti-Inflammatory Quinoline Alkaloids from the Roots of Waltheria indica. J. Nat. Prod. 2023, 86, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, G.J.; Fales, H.M. Melochinone, a Novel Quinolinone from Melochia tomentosa L. J. Am. Chem. Soc. 1975, 6814, 6814–6819. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, G.J.; Shukla, Y.N.; Basak, S.P.; Fales, H.M.; Sokoloski, E.A. Melovinone, an Open Chain Analogue of Melochinone from Melochia tomentosa. Phytochemistry 1978, 17, 1444–1445. [Google Scholar] [CrossRef]
- Bringmann, G.; Rischer, H.; Wohlfarth, M.; Schlauer, J. Biosynthesis of Antidesmone in Cell Cultures of Antidesma membranaceum (Euphorbiaceae): An Unprecedented Class of Glycine-Derived Alkaloids. J. Am. Chem. Soc. 2000, 122, 9905–9910. [Google Scholar] [CrossRef]
- Bringmann, G.; Schlauer, J.; Rischer, H.; Wohlfarth, M.; Mühlbacher, J.; Buske, A.; Porzel, A.; Schmidt, J.; Adam, G. Revised Structure of Antidesmone, an Unusual Alkaloid from Tropical Antidesma Plants (Euphorbiaceae). Tetrahedron 2000, 56, 3691–3695. [Google Scholar] [CrossRef]
- Buske, A.; Schmidt, J.; Hoffmann, P. Chemotaxonomy of the Tribe Antidesmeae (Euphorbiaceae): Antidesmone and Related Compounds. Phytochemistry 2002, 60, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Dias, G.O.C.; Porto, C.; Stüker, C.Z.; Graessler, V.; Burrow, R.A.; Dalcol, I.I.; Da Silva, U.F.; Morel, A.F. Alkaloids from Melochia chamaedrys. Planta Med. 2007, 73, 289–292. [Google Scholar] [CrossRef]
- Gressler, V.; Stüker, C.Z.; de O.C. Dias, G.; Dalcol, I.I.; Burrow, R.A.; Schmidt, J.; Wessjohann, L.; Morel, A.F. Quinolone Alkaloids from Waltheria douradinha. Phytochemistry 2008, 69, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Cretton, S.; Dorsaz, S.; Azzollini, A.; Favre-Godal, Q.; Marcourt, L.; Ebrahimi, S.N.; Voinesco, F.; Michellod, E.; Sanglard, D.; Gindro, K.; et al. Antifungal Quinoline Alkaloids from Waltheria indica. J. Nat. Prod. 2016, 79, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Yang, L.; Shao, Y.; Zhu, X.; Zhao, H.; Chen, B.; Song, W.; Song, X.; Ding, X.; Sun, R. Broad-Spectrum Antifungal Activity of Dichloromethane Extract of Waltheria indica Stems and Isolated Compounds. Ind. Crop. Prod. 2019, 142, 111855. [Google Scholar] [CrossRef]
- Lima, M.M.d.C. Estudo Dos Alcaloides Quinolônicos de Waltheria brachypetala Turcz: Isolamento, Determinação Estrutural, Biogênese, Atividades Fungitóxica e Anticolinesterase. Ph.D. Thesis, Universidade Federal de São Carlos, São Carlos, Brazil, 2012. [Google Scholar]
- Hoelzel, S.C.S.M.; Vieira, E.R.; Giacomelli, S.R.; Dalcol, I.I.; Zanatta, N.; Morel, A.F. An Unusual Quinolinone Alkaloid from Waltheria douradinha. Phytochemistry 2005, 66, 1163–1167. [Google Scholar] [CrossRef]
- Lima, M.M.C.; López, J.A.; David, J.M.; Silva, E.P.; Giulietti, A.M.; De Queiroz, L.P.; David, J.P. Acetylcholinesterase Activity of Alkaloids from the Leaves of Waltheria brachypetala. Planta Med. 2009, 75, 335–337. [Google Scholar] [CrossRef]
- Jang, J.Y.; Le Dang, Q.; Choi, G.J.; Park, H.W.; Kim, J.C. Control of Root-Knot Nematodes Using Waltheria indica Producing 4-Quinolone Alkaloids. Pest Manag. Sci. 2019, 75, 2264–2270. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.D.L.; Fernandes, D.A.; Nunes, F.C.; Teles, Y.C.F.; Rolim, Y.M.; da Silva, C.M.; de Albuquerque, J.B.L.; Agra, M. de F.; de Souza, M. de F.V. Phytochemical Study of Waltheria viscosissima and Evaluation of Its Larvicidal Activity against Aedes aegypti. Rev. Bras. Farmacogn 2019, 29, 582–590. [Google Scholar] [CrossRef]
- Jadulco, R.C.; Pond, C.D.; Van Wagoner, R.M.; Koch, M.; Gideon, O.G.; Matainaho, T.K.; Piskaut, P.; Barrows, L.R. 4-Quinolone Alkaloids From Melochia odorata. J. Nat. Prod. 2014, 77, 183–187. [Google Scholar] [CrossRef]
- Païs, M.; Mainil, J.; Goutarel, R. The Adouetins X, Y and Z, Alkaloids of Waltheria americana L. (Sterculia). Ann. Pharm. Françaises 1963, 21, 139–146. [Google Scholar]
- Tschesche, R.; Kaussman, E.U. The Cyclopeptide Alkaloids. In The Alkaloids; Manske, A.P., Ed.; Elsevier Inc.: New York, NY, USA, 1975; Volume 15, pp. 165–205. ISBN 9788578110796. [Google Scholar]
- Tan, N.H.; Zhou, J. Plant Cyclopeptides. Chem. Rev. 2006, 106, 840–895. [Google Scholar] [CrossRef] [PubMed]
- Gournelis, D.C.; Laskaris, G.G.; Verpoorte, R. Cyclopeptide Alkaloids. Nat. Prod. Rep. 1997, 14, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Gehm, A.Z.; Cunha, S.B.; da Silva, B.W.; Mostardeiro, M.A.; Bastos, N.R.; Burrow, R.A.; Caro, M.S.B.; Dalcol, I.I.; Morel, A.F. New Cyclopeptide Alkaloid of Condalia buxifolia and the Absolute Stereochemistry of Condaline A. Fitoterapia 2022, 159, 105194. [Google Scholar] [CrossRef] [PubMed]
- Tuenter, E.; Exarchou, V.; Apers, S.; Pieters, L. Cyclopeptide Alkaloids. Phytochem. Rev. 2017, 16, 623–637. [Google Scholar] [CrossRef]
- Païs, M.; Marchand, J.; Jarreau, F.; Goutarel, R. Reptide Alkaloids. V. Structures of Adouetines X,Y,Y1, and Z, the Alkaloids of Waltheria americana L. (Sterculiaceae). Bull. Société Chim. Fr. 1968, 3, 1145–1148. [Google Scholar]
- Dias, G.C.D.; Gressler, V.; Hoenzel, S.C.S.M.; Silva, U.F.; Dalcol, I.I.; Morel, A.F. Constituents of the Roots of Melochia chamaedrys. Phytochemistry 2007, 68, 668–672. [Google Scholar] [CrossRef]
- Emile, A.; Waikedre, J.; Herrenknecht, C.; Fourneau, C.; Gantier, J.-C.; Hnawia, E.; Cabalion, P.; Hocquemiller, R.; Fournet, A. Bioassay-Guided Isolation of Antifungal Alkaloids from Melochia odorata. Phytother. Res. 2007, 21, 398–400. [Google Scholar] [CrossRef]
- Erwin; Noor, A.; Soekamto, N.H.; van Altena, I.; Syah, Y.M. Waltherione C and Cleomiscosin from Melochia umbellata Vardegrabrata K. (Malvaceae), Biosynthetic and Chemotaxonomic Significance. Biochem. Syst. Ecol. 2014, 55, 358–361. [Google Scholar] [CrossRef]
- De Medeiros Silva, R.; de Castro Lima, M.M.; Cotinguiba, F. Dereplication of 4-Quinolone Alkaloids from Waltheria indica (Malvaceae) Tissues Using Molecular Network Tools. Chem. Biodivers. 2024, 21, e202400665. [Google Scholar] [CrossRef]
- Dewick, P.M. Medicinal Natural Products A Biosynthetic Approach, 3rd ed.; John Wiley & Sons, L., Ed.; Wiley: Oxford, UK, 2009; ISBN 0471496413. [Google Scholar]
- Lichman, B.R. The Scaffold-Forming Steps of Plant Alkaloid Biosynthesis. Nat. Prod. Rep. 2021, 38, 103–129. [Google Scholar] [CrossRef]
- Chekan, J.R.; Mydy, L.S.; Pasquale, M.A.; Kersten, R.D. Plant Peptides—Redefining an Area of Ribosomally Synthesized and Post-Translationally Modified Peptides. Nat. Prod. Rep. 2024, 41, 1020–1059. [Google Scholar] [CrossRef] [PubMed]
- Marchand, J.; Païs, M.; Monseur, X.; Jarreau, F.X. Peptide Alkaloids. VII. Lasiodines A and B, Alkaloids of Lasiodiscus marmoratus C. H. Wright (Rhamnaceae). Tetrahedron 1969, 25, 937–954. [Google Scholar] [CrossRef] [PubMed]
- Warnhoff, E.W. Peptide Alkaloids. In The Alkaloids; The Royal Society of Chemistry: Cambridge, UK, 1971; Volume 1, pp. 444–454. [Google Scholar]
- Bhat, K.L.; Joullk, M.M. Cyclopeptide Alkaloids. J. Chem. Educ. 1987, 64, 21. [Google Scholar] [CrossRef]
- Schmidt, U.; Lieberknecht, A.; Haslinger, E. Peptide Alkaloids. In The Alkaloids: Chemistry and Pharmacology; Academic Press: Cambridge, MA, USA, 1985; Volume 26, pp. 299–326. [Google Scholar]
- Lima, S.T.; Ampolini, B.G.; Underwood, E.B.; Graf, T.N.; Earp, C.E.; Khedi, I.C.; Pasquale, M.A.; Chekan, J.R. A Widely Distributed Biosynthetic Cassette Is Responsible for Diverse Plant Side-Chain-Cross-Linked Cyclopeptides. Angew. Chem. Int. Ed. 2023, 62, e202218082. [Google Scholar] [CrossRef] [PubMed]
- Arroyo Aguilar, A.A.; Bolívar Avila, S.J.; Kaufman, T.S.; Larghi, E.L. Total Synthesis of Waltherione F, a Nonrutaceous 3-Methoxy-4-Quinolone, Isolated from Waltheria indica L. F. Org. Lett. 2018, 20, 5058–5061. [Google Scholar] [CrossRef]
- El-Maiss, J.; El Dine, T.M.; Lu, C.S.; Karamé, I.; Kanj, A.; Polychronopoulou, K.; Shaya, J. Recent Advances in Metal-Catalyzed Alkyl–Boron (C(sp3))–C(sp2)) Suzuki-Miyaura Cross-Couplings. Catalysts 2020, 10, 296. [Google Scholar] [CrossRef]
- Lennox, A.J.J.; Lloyd-Jones, G.C. Selection of Boron Reagents for Suzuki-Miyaura Coupling. Chem. Soc. Rev. 2014, 43, 412–443. [Google Scholar] [CrossRef]
- Doucet, H. Suzuki-Miyaura Cross-Coupling Reactions of Alkylboronic Acid Derivatives or Alkyltrifluoroborates with Aryl, Alkenyl or Alkyl Halides and Triflates. Eur. J. Org. Chem. 2008, 2008, 2013–2030. [Google Scholar] [CrossRef]
- Volochnyuk, D.M.; Gorlova, A.O.; Grygorenko, O.O. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021, 27, 15277–15326. [Google Scholar] [CrossRef]
- Aguilar, A.A.A.; Ledesma, G.N.; Tirloni, B.; Kaufman, T.S.; Larghi, E.L. Convergent First Total Synthesis of Melovinone: A Densely Substituted 3-Methoxy-4-Quinolone Isolated from Melochia tomentosa L. Synthesis 2019, 51, 4253–4262. [Google Scholar] [CrossRef]
- Zdorichenko, V.; Paumier, R.; Whitmarsh-Everiss, T.; Roe, M.; Cox, B. The Synthesis of Waltherione F and Its Analogues with Modifications at the 2- and 3-Positions as Potential Antitrypanosomal Agents. Chem. A Eur. J. 2019, 25, 1286–1292. [Google Scholar] [CrossRef]
- Rocha, D.H.A.; Pinto, D.C.G.A.; Silva, A.M.S. Applications of the Wittig Reaction on the Synthesis of Natural and Natural-Analogue Heterocyclic Compounds. Eur. J. Org. Chem. 2018, 2018, 2443–2457. [Google Scholar] [CrossRef]
- Singh, S.; Nerella, S.; Pabbaraja, S.; Mehta, G. Access to 2-Alkyl/Aryl-4-(1 H)-Quinolones via Orthogonal “NH3” Insertion into o-Haloaryl Ynones: Total Synthesis of Bioactive Pseudanes, Graveoline, Graveolinine, and Waltherione F. Org. Lett. 2020, 22, 1575–1579. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.-I.; Yoon, H.; Jang, W.-D. A Triazole-Bearing Picket Fence Type Nickel Porphyrin as a Cyanide Selective Allosteric Host. Chem. Commun. 2015, 51, 7486–7488. [Google Scholar] [CrossRef]
- Bernini, R.; Cacchi, S.; Fabrizi, G.; Sferrazza, A. 1,2-Disubstituted 4-Quinolones via Copper-Catalyzed Cyclization of 1-(2-Halophenyl)-2-En-3-Amin-1-Ones. Synthesis 2009, 7, 1209–1219. [Google Scholar] [CrossRef]
- Shimoi, R.; Saito, Y.; Miura, Y.; Nakagawa-Goto, K. Total Synthesis of Waltherione A, a Quinolone Alkaloid Fused with Oxabicyclo[3.2.1]Octane. Org. Lett. 2023, 25, 4755–4758. [Google Scholar] [CrossRef]
- Cotman, A.E. Escaping from Flatland: Stereoconvergent Synthesis of Three-Dimensional Scaffolds via Ruthenium(II)-Catalyzed Noyori–Ikariya Transfer Hydrogenation. Chem.-A Eur. J. 2021, 27, 39–53. [Google Scholar] [CrossRef]
- Caleffi, G.S.; Demidoff, F.C.; Nájera, C.; Costa, P.R.R. Asymmetric Hydrogenation and Transfer Hydrogenation in the Enantioselective Synthesis of Flavonoids. Org. Chem. Front. 2022, 9, 1165–1194. [Google Scholar] [CrossRef]
- Demidoff, F.C.; Caleffi, G.S.; Figueiredo, M.; Costa, P.R.R. Ru(II)-Catalyzed Asymmetric Transfer Hydrogenation of Chalcones in Water: Application to the Enantioselective Synthesis of Flavans BW683C and Tephrowatsin e. J. Org. Chem. 2022, 87, 14208–14222. [Google Scholar] [CrossRef] [PubMed]
- Caleffi, G.S.; Brum, J.D.O.C.; Costa, A.T.; Domingos, J.L.O.; Costa, P.R.R. Asymmetric Transfer Hydrogenation of Arylidene-Substituted Chromanones and Tetralones Catalyzed by Noyori-Ikariya Ru(II) Complexes: One-Pot Reduction of C═C and C═O Bonds. J. Org. Chem. 2021, 86, 4849–4858. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, F.V.; Caleffi, G.S.; Costa-Júnior, P.C.T.; Costa, P.R.R. Enantioselective Synthesis of Isoflavanones and Pterocarpans through a RuII-Catalyzed ATH-DKR of Isoflavones. ChemCatChem 2021, 13, 5097–5108. [Google Scholar] [CrossRef]
- Xiao, Z.P.; Wang, Y.C.; Du, G.Y.; Wu, J.; Luo, T.; Yi, S.F. Efficient Reducing System Based on Iron for Conversion of Nitroarenes to Anilines. Synth. Commun. 2010, 40, 661–665. [Google Scholar] [CrossRef]
- Krasovskiy, A.; Knochel, P. A LiCl-Mediated Br/Mg Exchange Reaction for the Preparation of Functionalized Aryl- and Heteroarylmagnesium Compounds from Organic Bromides. Angew. Chem.-Int. Ed. 2004, 43, 3333–3336. [Google Scholar] [CrossRef]
- Herzig, S.; Kritter, S.; Lübbers, T.; Marquardt, N.; Peters, J.U.; Weber, S. Short and Simple Preparation of N-Boc-Protected Anthranilic Acid Tert-Butyl Esters from 2-Bromo-Anilines. Synlett 2005, 2005, 3107–3108. [Google Scholar] [CrossRef]
- Fisyuk, A.S.; Kostyuchenko, A.S.; Goncharov, D.S. Camps Reaction and Related Cyclizations. Russ. J. Org. Chem. 2020, 56, 1863–1892. [Google Scholar] [CrossRef]
- Buske, A. Available online: https://patents.google.com/patent/WO2003000272A1/en. (accessed on 14 November 2024).
- Bringmann, G.; Schlauer, S.; Rischer, H.; Wohlfahrt, M.; Haller, R.; Bär, S.; Brun, R. Antidesmone, a Novel Antitrypanosomal Alkaloid. Pharm. Pharmacol. Lett. 2001, 11, 47–48. [Google Scholar]
- Yougbare-Ziebrou, M.N.; Lompo, M.; Ouedraogo, N.; Yaro, B.; Guissoun, I.P. Antioxidant, Analgesic and Anti-Inflammatory Activities of the Leafy Stems of Waltheria indica L. (Sterculiaceae). J. Appl. Pharm. Sci. 2016, 6, 124–129. [Google Scholar] [CrossRef]
- Caldas da Silva Dantas Viegas, C.; Sérgio Silva, A.; Marinho Braga, R.; Nunes de Andrade, H.H.; Felício de Sousa Santos, A.K.; Leite Ferreira, M.D.; Ribeiro, M.D.; Agra Cavalcante Silva, L.H.; Alves de Lima, L.; Nobrega de Almeida, R.; et al. Antinociceptive, Anti-Inflammatory and Antioxidant Activities of the Crude Ethanolic Extract and Alkaloid Fraction of Waltheria viscosissima A. St.—Hil. (Malvaceae). J. Ethnopharmacol. 2022, 292, 115173. [Google Scholar] [CrossRef] [PubMed]
- Yabré, Z.; Belem-Kabré, W.L.M.E.; Boly, R.; Ouédraogo, R.; Boly, A.G.L.; Traoré, T.K.; Ouédraogo, N.; Youl, N.H.E. Evaluation of the Antiasthmatic Properties of Stems and Leaves of Waltheria indica L. (Malvaceae): Focus on Antioxidant and Anti-Inflammatory Activity, and Quantification of Phenolic Compounds. Phytomedicine Plus 2024, 4, 100600. [Google Scholar] [CrossRef]
- Morel, A.F.; Flach, A.; Zanatta, N.; Ethur, E.M.; Mostardeiro, M.A.; Gehrke, I.T.S. A New Cyclopeptide Alkaloid from the Bark of Waltheria douradinha. Tetrahedron Lett. 1999, 40, 9205–9209. [Google Scholar] [CrossRef]
- Dahmer, J.; do Carmo, G.; Mostardeiro, M.A.; Neto, A.T.; da Silva, U.F.; Dalcol, I.I.; Morel, A.F. Antibacterial Activity of Discaria americana Gillies Ex Hook (Rhamnaceae). J. Ethnopharmacol. 2019, 239, 111635. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Liu, W.; Chen, Y.; Ru, J.; Guo, S.; Yu, X.; Cui, Y.; Liu, X.; Gu, Y.; Xue, C.; et al. Synthesis, Fungicidal Activity, and Mechanism of Action of Pyrazole Amide and Ester Derivatives Based on Natural Products l -Serine and Waltherione Alkaloids. J. Agric. Food Chem. 2021, 69, 11470–11484. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Chen, Z.; Hua, X.; Liu, W.; Xue, C.; Liu, Y.; Zhu, X.; Yuan, M.; Cheng, S.; Wang, B.; et al. Synthesis and Biological Activity of Amide Derivatives Derived from Natural Product Waltherione F. Med. Chem. Res. 2022, 31, 485–496. [Google Scholar] [CrossRef]
- Chen, Z.; Fang, H.; Chang, J.; Zhang, T.; Cui, Y.; Zhang, L.; Sui, J.; Ma, Q.; Su, P.; Wang, J.; et al. Natural Alkaloid Waltherione F-Derived Hydrazide Compounds Evaluated in an Agricultural Fungicidal Field. J. Agric. Food Chem. 2023, 71, 12333–12345. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Dang, Q.L.; Choi, Y.H.; Choi, G.J.; Jang, K.S.; Cha, B.; Luu, N.H.; Kim, J.C. Correction to Nematicidal Activities of 4-Quinolone Alkaloids Isolated from the Aerial Part of Triumfetta grandidens against Meloidogyne incognita. J. Agric. Food Chem. 2015, 63, 3803. [Google Scholar] [CrossRef]
- Sampaio, O.M.; Lima, M.M.d.C.; Veiga, T.A.M.; King-Díaz, B.; Silva, M.F.d.G.F.d.; Lotina-Hennsen, B. Evaluation of Antidesmone Alkaloid as a Photosynthesis Inhibitor. Pestic. Biochem. Physiol. 2016, 134, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Cretton, S.; Kaiser, M.; Karimou, S.; Ebrahimi, S.N.; Mäser, P.; Cuendet, M.; Christen, P. Pyridine-4(1 H)-One Alkaloids from Waltheria indica as Antitrypanosomatid Agents. J. Nat. Prod. 2020, 83, 3363–3371. [Google Scholar] [CrossRef]
- Hua, Y.; Zeng, K.; Liang, H.; Liang, H.; Jiang, Y.; Tu, P. Anti-Inflammatory Quinoline-4(1H)-One Derivatives from the Aerial Parts of Waltheria indica Linn. Phytochemistry 2023, 214, 113746. [Google Scholar] [CrossRef]
- Morel, A.F.; Gehrke, I.T.S.; Mostardeiro, M.A.; Ethur, E.M.; Zanatta, N.; Machado, E.C.S. Cyclopeptide Alkaloids from the Bark of Waltheria douradinha Ademir. Phytochemistry 1999, 51, 473–477. [Google Scholar] [CrossRef]
- Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; Stevens, P.F.; et al. An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- Balkrishna, A.; Joshi, B.; Srivastava, A.; Shankar, R.; Shukla, B.K. A Comparison of the Angiosperm Phylogeny Group Classification and Other Prominent Classifications of. Indian J. Plant Sci. 2019, 8, 40–75. [Google Scholar]
- Nirmala, C.; Sridevi, M. Ethnobotanical, Phytochemistry, and Pharmacological Property of Waltheria indica Linn. Future J. Pharm. Sci. 2021, 7, 11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.d.M.; Caleffi, G.S.; Cotinguiba, F. Alkaloids from Waltheria spp. (Malvaceae): Chemosystematic Aspects, Biosynthesis, Total Synthesis, and Biological Activities. Int. J. Mol. Sci. 2024, 25, 13659. https://doi.org/10.3390/ijms252413659
Silva RdM, Caleffi GS, Cotinguiba F. Alkaloids from Waltheria spp. (Malvaceae): Chemosystematic Aspects, Biosynthesis, Total Synthesis, and Biological Activities. International Journal of Molecular Sciences. 2024; 25(24):13659. https://doi.org/10.3390/ijms252413659
Chicago/Turabian StyleSilva, Raquel de M., Guilherme S. Caleffi, and Fernando Cotinguiba. 2024. "Alkaloids from Waltheria spp. (Malvaceae): Chemosystematic Aspects, Biosynthesis, Total Synthesis, and Biological Activities" International Journal of Molecular Sciences 25, no. 24: 13659. https://doi.org/10.3390/ijms252413659
APA StyleSilva, R. d. M., Caleffi, G. S., & Cotinguiba, F. (2024). Alkaloids from Waltheria spp. (Malvaceae): Chemosystematic Aspects, Biosynthesis, Total Synthesis, and Biological Activities. International Journal of Molecular Sciences, 25(24), 13659. https://doi.org/10.3390/ijms252413659