Profiling of snoRNAs in Exosomes Secreted from Cells Infected with Influenza A Virus
Abstract
:1. Introduction
2. Results
2.1. snoRNA Dysregulation Analysis
2.2. snoRNAs Interaction Analysis
3. Discussion
4. Materials and Methods
4.1. Exosome Purification and Small RNA Sequencing
4.2. High Throughput Sequencing Data Analysis
4.3. snoRNA Interaction Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | coronavirus disease 19 |
circRNA | circular RNA |
EV | extracellular vesicles |
FDR | false discovery rate |
IAV | Influenza A Virus |
IFN | interferone |
log2FC | log2 fold change |
lncRNA | long non-coding RNA |
mRNA | messenger RNA |
MDCK | Madin–Darby canine kidney cells |
miRNA | microRNA |
ncRNA | non-coding RNA |
NP | nucleoprotein |
Oct4 | octamer-binding transcription factor 4 |
PB2 | polymerase basic protein 2 |
PBS | phosphate-buffered saline |
piRNA | PIWI-interacting RNA |
RBP | RNA binding proteins |
RISC | RNA-induced silencing complex |
rRNA | ribosomal RNA |
SCARNA | small Cajal-body specific RNA |
sdRNA | sno-derived RNA |
snRNA | small nuclear RNA |
SNORA | H/ACA box snoRNA |
SNORD | C/D box snoRNA |
snoRNA | small nucleolar RNA |
snoRNP | small nucleolar ribonucleoproteins |
SPF | specific-pathogen-free |
TERC | telomerase RNA |
TF | transcription factors |
tRNA | transfer RNA |
WNV | West Nile Virus |
References
- Kaikkonen, M.U.; Lam, M.T.Y.; Glass, C.K. Non-Coding RNAs as Regulators of Gene Expression and Epigenetics. Cardiovasc. Res. 2011, 90, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Rincón-Riveros, A.; Morales, D.; Rodríguez, J.A.; Villegas, V.E.; López-Kleine, L. Bioinformatic Tools for the Analysis and Prediction of ncRNA Interactions. Int. J. Mol. Sci. 2021, 22, 11397. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, T.; Doss C, G.P. Non-Coding RNAs in Human Health and Disease: Potential Function as Biomarkers and Therapeutic Targets. Funct. Integr. Genom. 2023, 23, 33. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-Coding RNAs and Their Integrated Networks. J. Integr. Bioinform. 2019, 16, 20190027. [Google Scholar] [CrossRef] [PubMed]
- Bratkovič, T.; Božič, J.; Rogelj, B. Functional Diversity of Small Nucleolar RNAs. Nucleic Acids Res. 2020, 48, 1627–1651. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Du, Y.; Wen, J.; Lu, B.; Zhao, Y. snoRNAs: Functions and Mechanisms in Biological Processes, and Roles in Tumor Pathophysiology. Cell Death Discov. 2022, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Taft, R.J.; Glazov, E.A.; Lassmann, T.; Hayashizaki, Y.; Carninci, P.; Mattick, J.S. Small RNAs Derived from snoRNAs. RNA 2009, 15, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Zhuravlev, E.; Sergeeva, M.; Malanin, S.; Amirkhanov, R.; Semenov, D.; Grigoryeva, T.; Komissarov, A.; Stepanov, G. Analysis of Expression Pattern of snoRNAs in Human Cells A549 Infected by Influenza A Virus. Int. J. Mol. Sci. 2022, 23, 13666. [Google Scholar] [CrossRef] [PubMed]
- Wajahat, M.; Bracken, C.P.; Orang, A. Emerging Functions for snoRNAs and snoRNA-Derived Fragments. Int. J. Mol. Sci. 2021, 22, 10193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, C.; Xia, S.; Xiao, F.; Peng, J.; Gao, Y.; Yu, F.; Wang, C.; Chen, X. The Emerging Role of snoRNAs in Human Disease. Genes Dis. 2023, 10, 2064–2081. [Google Scholar] [CrossRef]
- Stamm, S.; Lodmell, J.S. C/D Box snoRNAs in Viral Infections: RNA Viruses Use Old Dogs for New Tricks. Non-Coding RNA Res. 2019, 4, 46–53. [Google Scholar] [CrossRef]
- Peng, X.; Gralinski, L.; Ferris, M.T.; Frieman, M.B.; Thomas, M.J.; Proll, S.; Korth, M.J.; Tisoncik, J.R.; Heise, M.; Luo, S.; et al. Integrative Deep Sequencing of the Mouse Lung Transcriptome Reveals Differential Expression of Diverse Classes of Small RNAs in Response to Respiratory Virus Infection. mBio 2011, 2, e00198-11. [Google Scholar] [CrossRef]
- Samir, M.; Vidal, R.O.; Abdallah, F.; Capece, V.; Seehusen, F.; Geffers, R.; Hussein, A.; Ali, A.A.H.; Bonn, S.; Pessler, F. Organ-Specific Small Non-Coding RNA Responses in Domestic (Sudani) Ducks Experimentally Infected with Highly Pathogenic Avian Influenza Virus (H5N1). RNA Biol. 2020, 17, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.; Bouvier, D.; Crépin, T.; McCarthy, A.A.; Hart, D.J.; Baudin, F.; Cusack, S.; Ruigrok, R.W.H. The Cap-Snatching Endonuclease of Influenza Virus Polymerase Resides in the PA Subunit. Nature 2009, 458, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Bercovich-Kinori, A.; Tai, J.; Gelbart, I.A.; Shitrit, A.; Ben-Moshe, S.; Drori, Y.; Itzkovitz, S.; Mandelboim, M.; Stern-Ginossar, N. A Systematic View on Influenza Induced Host Shutoff. eLife 2016, 5, e18311. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.; Breyne, K.; Ughetto, S.; Laurent, L.C.; Breakefield, X.O. RNA Delivery by Extracellular Vesicles in Mammalian Cells and Its Applications. Nat. Rev. Mol. Cell Biol. 2020, 21, 585–606. [Google Scholar] [CrossRef] [PubMed]
- Nation, G.K.; Saffold, C.E.; Pua, H.H. Secret Messengers: Extracellular RNA Communication in the Immune System. Immunol. Rev. 2021, 304, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.-J. Therapeutic siRNA: State of the Art. Signal Transduct. Target. Ther. 2020, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ali, M.K.; Zhao, L.; Dua, K.; Mao, Y. The Emerging Diagnostic and Therapeutic Roles of Small Nucleolar RNAs in Lung Diseases. Biomed. Pharmacother. 2023, 161, 114519. [Google Scholar] [CrossRef] [PubMed]
- Slonchak, A.; Clarke, B.; Mackenzie, J.; Amarilla, A.A.; Setoh, Y.X.; Khromykh, A.A. West Nile Virus Infection and Interferon Alpha Treatment Alter the Spectrum and the Levels of Coding and Noncoding Host RNAs Secreted in Extracellular Vesicles. BMC Genom. 2019, 20, 474. [Google Scholar] [CrossRef]
- Dou, D.; Revol, R.; Östbye, H.; Wang, H.; Daniels, R. Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front. Immunol. 2018, 9, 1581. [Google Scholar] [CrossRef] [PubMed]
- Kwasnik, M.; Socha, W.; Czech, B.; Wasiak, M.; Rola, J.; Rozek, W. Protein-Coding Region Derived Small RNA in Exosomes from Influenza A Virus–Infected Cells. Int. J. Mol. Sci. 2023, 24, 867. [Google Scholar] [CrossRef]
- Kang, J.; Tang, Q.; He, J.; Li, L.; Yang, N.; Yu, S.; Wang, M.; Zhang, Y.; Lin, J.; Cui, T.; et al. RNAInter v4.0: RNA Interactome Repository with Redefined Confidence Scoring System and Improved Accessibility. Nucleic Acids Res. 2022, 50, D326–D332. [Google Scholar] [CrossRef] [PubMed]
- Kalvari, I.; Nawrocki, E.P.; Ontiveros-Palacios, N.; Argasinska, J.; Lamkiewicz, K.; Marz, M.; Griffiths-Jones, S.; Toffano-Nioche, C.; Gautheret, D.; Weinberg, Z.; et al. Rfam 14: Expanded Coverage of Metagenomic, Viral and microRNA Families. Nucleic Acids Res. 2021, 49, D192–D200. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.L.; Sheng, J.; Rubin, D.H. A Role for H/ACA and C/D Small Nucleolar RNAs in Viral Replication. Mol. Biotechnol. 2014, 56, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Li, P.; Zhang, Z.; Wu, M. Insights Into Exosomal Non-Coding RNAs Sorting Mechanism and Clinical Application. Front. Oncol. 2021, 11, 664904. [Google Scholar] [CrossRef]
- Bergeron, D.; Laforest, C.; Carpentier, S.; Calvé, A.; Fafard-Couture, É.; Deschamps-Francoeur, G.; Scott, M.S. SnoRNA Copy Regulation Affects Family Size, Genomic Location and Family Abundance Levels. BMC Genom. 2021, 22, 414. [Google Scholar] [CrossRef]
- Iarovaia, O.V.; Ioudinkova, E.S.; Velichko, A.K.; Razin, S.V. Manipulation of Cellular Processes via Nucleolus Hijaking in the Course of Viral Infection in Mammals. Cells 2021, 10, 1597. [Google Scholar] [CrossRef] [PubMed]
- Saxena, T.; Tandon, B.; Sharma, S.; Chameettachal, S.; Ray, P.; Ray, A.R.; Kulshreshtha, R. Combined miRNA and mRNA Signature Identifies Key Molecular Players and Pathways Involved in Chikungunya Virus Infection in Human Cells. PLoS ONE 2013, 8, e79886. [Google Scholar] [CrossRef]
- Mourtada-Maarabouni, M.; Pickard, M.R.; Hedge, V.L.; Farzaneh, F.; Williams, G.T. GAS5, a Non-Protein-Coding RNA, Controls Apoptosis and Is Downregulated in Breast Cancer. Oncogene 2009, 28, 195–208. [Google Scholar] [CrossRef]
- Gee, H.E.; Buffa, F.M.; Camps, C.; Ramachandran, A.; Leek, R.; Taylor, M.; Patil, M.; Sheldon, H.; Betts, G.; Homer, J.; et al. The Small-Nucleolar RNAs Commonly Used for microRNA Normalisation Correlate with Tumour Pathology and Prognosis. Br. J. Cancer 2011, 104, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Parray, A.; Mir, F.A.; Doudin, A.; Iskandarani, A.; Danjuma, I.M.M.; Kuni, R.A.T.; Abdelmajid, A.; Abdelhafez, I.; Arif, R.; Mulhim, M.; et al. SnoRNAs and miRNAs Networks Underlying COVID-19 Disease Severity. Vaccines 2021, 9, 1056. [Google Scholar] [CrossRef]
- Gu, W.; Gallagher, G.R.; Dai, W.; Liu, P.; Li, R.; Trombly, M.I.; Gammon, D.B.; Mello, C.C.; Wang, J.P.; Finberg, R.W. Influenza A Virus Preferentially Snatches Noncoding RNA Caps. RNA 2015, 21, 2067–2075. [Google Scholar] [CrossRef] [PubMed]
- Koppstein, D.; Ashour, J.; Bartel, D.P. Sequencing the Cap-Snatching Repertoire of H1N1 Influenza Provides Insight into the Mechanism of Viral Transcription Initiation. Nucleic Acids Res. 2015, 43, 5052–5064. [Google Scholar] [CrossRef]
- Qin, Y.; Meng, L.; Fu, Y.; Quan, Z.; Ma, M.; Weng, M.; Zhang, Z.; Gao, C.; Shi, X.; Han, K. SNORA74B Gene Silencing Inhibits Gallbladder Cancer Cells by Inducing PHLPP and Suppressing Akt/mTOR Signaling. Oncotarget 2017, 8, 19980–19996. [Google Scholar] [CrossRef] [PubMed]
- Zaret, K.S.; Carroll, J.S. Pioneer Transcription Factors: Establishing Competence for Gene Expression. Genes Dev. 2011, 25, 2227–2241. [Google Scholar] [CrossRef]
- Wang, Y.-D.; Cai, N.; Wu, X.-L.; Cao, H.-Z.; Xie, L.-L.; Zheng, P.-S. OCT4 Promotes Tumorigenesis and Inhibits Apoptosis of Cervical Cancer Cells by miR-125b/BAK1 Pathway. Cell Death Dis. 2013, 4, e760. [Google Scholar] [CrossRef]
- Rodda, D.J.; Chew, J.-L.; Lim, L.-H.; Loh, Y.-H.; Wang, B.; Ng, H.-H.; Robson, P. Transcriptional Regulation of Nanog by OCT4 and SOX2. J. Biol. Chem. 2005, 280, 24731–24737. [Google Scholar] [CrossRef]
- Herter, E.K.; Stauch, M.; Gallant, M.; Wolf, E.; Raabe, T.; Gallant, P. snoRNAs Are a Novel Class of Biologically Relevant Myc Targets. BMC Biol. 2015, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Smallwood, H.S.; Duan, S.; Morfouace, M.; Rezinciuc, S.; Shulkin, B.L.; Shelat, A.; Zink, E.E.; Milasta, S.; Bajracharya, R.; Oluwaseum, A.J.; et al. Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention. Cell Rep. 2017, 19, 1640–1653. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Wang, H.F.; He, H.X. Regulation of Yamanaka Factors during H5N1 Virus Infection in A549 Cells and HEK293T Cells. Biotechnol. Biotechnol. Equip. 2018, 32, 1548–1557. [Google Scholar] [CrossRef]
- Bermudez, Y.; Hatfield, D.; Muller, M. A Balancing Act: The Viral–Host Battle over RNA Binding Proteins. Viruses 2024, 16, 474. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Moreno, M.; Järvelin, A.I.; Castello, A. Unconventional RNA-binding Proteins Step into the Virus–Host Battlefront. WIREs RNA 2018, 9, e1498. [Google Scholar] [CrossRef] [PubMed]
- Liu, S. IGF2BP3 Inhibits Host Antiviral Innate Immunity against RNA Viruses by Targeting SOCS3. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2024. [Google Scholar] [CrossRef]
- D’Souza, M.N.; Gowda, N.K.C.; Tiwari, V.; Babu, R.O.; Anand, P.; Dastidar, S.G.; Singh, R.; James, O.G.; Selvaraj, B.; Pal, R.; et al. FMRP Interacts with C/D Box snoRNA in the Nucleus and Regulates Ribosomal RNA Methylation. iScience 2018, 9, 399–411. [Google Scholar] [CrossRef]
- Zhou, Z.; Cao, M.; Guo, Y.; Zhao, L.; Wang, J.; Jia, X.; Li, J.; Wang, C.; Gabriel, G.; Xue, Q.; et al. Fragile X Mental Retardation Protein Stimulates Ribonucleoprotein Assembly of Influenza A Virus. Nat. Commun. 2014, 5, 3259. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, S.; Deng, L.; Zhang, Y.; Jiang, C.; Wei, Y.; Xia, J.; Ping, J. Host-Specific SRSF7 Regulates Polymerase Activity and Replication of Influenza A Virus. Microbes Infect. 2024, 26, 105401. [Google Scholar] [CrossRef]
- Tang, Y.-S.; So, W.-K.; Ng, K.-L.A.; Mok, K.-P.C.; Shaw, P.-C. Interaction of Influenza A Nucleoprotein with Host hnRNP-C Is Implicated in Viral Replication. Int. J. Mol. Sci. 2022, 23, 13613. [Google Scholar] [CrossRef] [PubMed]
- Dupont, M.; Krischuns, T.; Gianetto, Q.G.; Paisant, S.; Bonazza, S.; Brault, J.-B.; Douché, T.; Arragain, B.; Florez-Prada, A.; Perez-Perri, J.I.; et al. The RBPome of Influenza A Virus NP-mRNA Reveals a Role for TDP-43 in Viral Replication. Nucleic Acids Res. 2024, 52, 7188–7210. [Google Scholar] [CrossRef] [PubMed]
- The RNAcentral Consortium; Sweeney, B.A.; Petrov, A.I.; Burkov, B.; Finn, R.D.; Bateman, A.; Szymanski, M.; Karlowski, W.M.; Gorodkin, J.; Seemann, S.E.; et al. RNAcentral: A Hub of Information for Non-Coding RNA Sequences. Nucleic Acids Res. 2019, 47, D221–D229. [Google Scholar] [CrossRef]
- Almende, B.V.; Thieurmel, B.; Robert, T. Network Visualization Using’vis. Js’ Library, R Package Version 2.1.2; R Core Team: Vienna, Austria, 2022.
- Csardi, G.; Nepusz, T. The Igraph Software Package for Complex Network Research. InterJ. Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Posit Team RStudio: Integrated Development Environment for R; R Core Team: Vienna, Austria, 2023.
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize Implements and Enhances Circular Visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
snoRNA Category | Upregulated | Downregulated | Total |
---|---|---|---|
SNORA | 37 | 1 | 38 |
SNORD | 92 | 1 | 93 |
SCARNA | 2 | 0 | 2 |
All | 131 | 2 | 133 |
Interactor Name | Interactions | ||||
---|---|---|---|---|---|
SCARNA | SNORA | SNORD | Total | ||
1. | POU5F1 | 2 | 20 | 54 | 76 |
2. | SOX2 | 2 | 20 | 53 | 75 |
3. | RELA | 1 | 21 | 49 | 71 |
4. | CEBPB | 1 | 18 | 49 | 68 |
5. | AR | 2 | 17 | 47 | 66 |
6. | ESR1 | 1 | 16 | 49 | 66 |
7. | MYC | 2 | 19 | 45 | 66 |
8. | SPI1 | 0 | 18 | 48 | 66 |
9. | CEBPA | 2 | 16 | 47 | 65 |
10. | PPARG | 2 | 17 | 46 | 65 |
11. | STAT1 | 1 | 22 | 42 | 65 |
12. | GATA1 | 13 | 48 | 2 | 63 |
13. | ERG | 18 | 41 | 2 | 61 |
14. | KLF4 | 17 | 42 | 0 | 59 |
15. | MITF | 20 | 38 | 1 | 59 |
16. | SNAI2 | 19 | 39 | 1 | 59 |
17. | CTCF | 20 | 37 | 1 | 58 |
18. | OTX2 | 10 | 47 | 1 | 58 |
19. | RUNX1 | 18 | 39 | 1 | 58 |
20. | SRF | 13 | 45 | 0 | 58 |
Interactor Name | Interactions | ||||
---|---|---|---|---|---|
SCARNA | SNORA | SNORD | Total | ||
1. | Polr2a | 1 | 15 | 26 | 42 |
2. | TNRC6A | 0 | 1 | 40 | 41 |
3. | IGF2BP3 | 1 | 6 | 25 | 32 |
4. | FMR1 | 2 | 8 | 18 | 28 |
5. | SRSF1 | 1 | 7 | 17 | 25 |
6. | RBFOX2 | 2 | 7 | 14 | 23 |
7. | TARDBP | 2 | 4 | 17 | 23 |
8. | DGCR8 | 1 | 6 | 15 | 22 |
9. | METTL3 | 0 | 6 | 15 | 21 |
10. | METTL14 | 0 | 5 | 12 | 17 |
11. | YTHDC1 | 0 | 6 | 10 | 16 |
12. | HNRNPC | 0 | 4 | 10 | 14 |
13. | IGF2BP2 | 0 | 1 | 13 | 14 |
14. | SRSF7 | 0 | 4 | 10 | 14 |
15. | DHX9 | 1 | 8 | 3 | 12 |
16. | SRSF3 | 0 | 3 | 9 | 12 |
17. | Zfp36 | 0 | 5 | 7 | 12 |
18. | HNRNPK | 0 | 5 | 6 | 11 |
19. | LIN28A | 0 | 3 | 8 | 11 |
20. | WTAP | 0 | 8 | 3 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozek, W.; Kwasnik, M.; Socha, W.; Czech, B.; Rola, J. Profiling of snoRNAs in Exosomes Secreted from Cells Infected with Influenza A Virus. Int. J. Mol. Sci. 2025, 26, 12. https://doi.org/10.3390/ijms26010012
Rozek W, Kwasnik M, Socha W, Czech B, Rola J. Profiling of snoRNAs in Exosomes Secreted from Cells Infected with Influenza A Virus. International Journal of Molecular Sciences. 2025; 26(1):12. https://doi.org/10.3390/ijms26010012
Chicago/Turabian StyleRozek, Wojciech, Malgorzata Kwasnik, Wojciech Socha, Bartosz Czech, and Jerzy Rola. 2025. "Profiling of snoRNAs in Exosomes Secreted from Cells Infected with Influenza A Virus" International Journal of Molecular Sciences 26, no. 1: 12. https://doi.org/10.3390/ijms26010012
APA StyleRozek, W., Kwasnik, M., Socha, W., Czech, B., & Rola, J. (2025). Profiling of snoRNAs in Exosomes Secreted from Cells Infected with Influenza A Virus. International Journal of Molecular Sciences, 26(1), 12. https://doi.org/10.3390/ijms26010012