Platelet Mitochondrial Function and Endogenous Coenzyme Q10 Levels Could Be Used as Markers of Mitochondrial Health in Infertile Men: A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Semen Parameters in Infertile Men
2.2. Platelet Mitochondrial Respiration and OXPHOS in Infertile Men
2.3. Antioxidants in Blood, Plasma, and Platelets
2.4. Lipid Peroxidation in Plasma
2.5. Correlations
2.5.1. Correlations Between Mitochondrial Respiration and CoQ10 Level in Platelets
2.5.2. Correlations Between Mitochondrial Respiration and Various Sperm Abnormalities
2.5.3. Correlations Between Various Semen Parameters
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Semen Analysis
4.3. Platelet Isolation
4.4. High-Resolution Respirometry
4.5. Determination of Coenzyme Q10-TOTAL, α-tocopherol, and γ-tocopherol in Blood And Plasma
4.6. Determination of Coenzyme Q10-TOTAL, α-tocopherol, and γ-tocopherol in Platelets
4.7. Determination of TBARS in Plasma
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240030787 (accessed on 27 December 2024).
- Kumar, N.; Singh, A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015, 8, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.L.; Henkel, R.; Vij, S.; Arafa, M.; Panner Selvam, M.K.; Shah, R. Male infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef]
- Mai, Z.; Yang, D.; Wang, D.; Zhang, J.; Zhou, Q.; Han, B.; Sun, Z. A narrative review of mitochondrial dysfunction and male infertility. Transl. Androl. Urol. 2024, 13, 2134–2145. [Google Scholar] [CrossRef]
- Llavanera, M.; Delgado-Bermudez, A.; Ribas-Maynou, J.; Salas-Huetos, A.; Yeste, M. Reply of the Authors: A systematic review identifying fertility biomarkers in semen: A clinical approach through Omics to diagnose male infertility. Fertil. Steril. 2023, 119, 159. [Google Scholar] [CrossRef]
- Kaltsas, A.; Moustakli, E.; Zikopoulos, A.; Georgiou, I.; Dimitriadis, F.; Symeonidis, E.N.; Markou, E.; Michaelidis, T.M.; Tien, D.M.B.; Giannakis, I.; et al. Impact of Advanced Paternal Age on Fertility and Risks of Genetic Disorders in Offspring. Genes 2023, 14, 486. [Google Scholar] [CrossRef]
- Amor, H.; Hammadeh, M.E. A Systematic Review of the Impact of Mitochondrial Variations on Male Infertility. Genes 2022, 13, 1182. [Google Scholar] [CrossRef]
- Boguenet, M.; Bouet, P.E.; Spiers, A.; Reynier, P.; May-Panloup, P. Mitochondria: Their role in spermatozoa and in male infertility. Hum. Reprod. Update 2021, 27, 697–719. [Google Scholar] [CrossRef]
- Costa, J.; Braga, P.C.; Rebelo, I.; Oliveira, P.F.; Alves, M.G. Mitochondria quality control and male fertility. Biology 2023, 12, 827. [Google Scholar] [CrossRef] [PubMed]
- Chemes, H.E.; Alvarez Sedo, C. Tales of the tail and sperm headaches: Changing concepts on the prognostic significance of sperm pathologies affecting the head, neck and tail. Asian J. Androl. 2012, 14, 14–23. [Google Scholar] [CrossRef]
- Gnaiger, E. Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg. Commun. 2020, 2, 112. [Google Scholar] [CrossRef]
- Crane, F.L. Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. 2001, 20, 591–598. [Google Scholar] [CrossRef]
- Mantle, D.; Dewsbury, M.; Hargreaves, I.P. The Ubiquinone-Ubiquinol Redox Cycle and Its Clinical Consequences: An Overview. Int. J. Mol. Sci. 2024, 25, 6765. [Google Scholar] [CrossRef] [PubMed]
- Balercia, G.; Mancini, A.; Paggi, F.; Tiano, L.; Pontecorvi, A.; Boscaro, M.; Lenzi, A.; Littarru, G.P. Coenzyme Q10 and male infertility. J. Endocrinol. Investig. 2009, 32, 626–632. [Google Scholar] [CrossRef]
- Mancini, A.; De Marinis, L.; Littarru, G.P.; Balercia, G. An update of Coenzyme Q10 implications in male infertility: Biochemical and therapeutic aspects. Biofactors 2005, 25, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Panner Selvam, M.K.; Arafa, M.; Okada, H.; Homa, S.; Killeen, A.; Balaban, B.; Saleh, R.; Armagan, A.; Roychoudhury, S.; et al. Multi-center evaluation of oxidation-reduction potential by the MiOXSYS in males with abnormal semen. Asian J. Androl. 2019, 21, 565–569. [Google Scholar] [CrossRef]
- Doerrier, C.; Garcia-Souza, L.F.; Krumschnabel, G.; Wohlfarter, Y.; Mészáros, A.T.; Gnaiger, E. High-resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated mitochondria. Methods Mol. Biol. 2018, 1782, 31–70. [Google Scholar] [CrossRef]
- Gao, Y.; Mruk, D.D.; Cheng, C.Y. Sertoli cells are the target of environmental toxicants in the testis—A mechanistic and therapeutic insight. Expert Opin. Ther. Targets 2015, 19, 1073–1090. [Google Scholar] [CrossRef]
- Tesarik, J.; Mendoza-Tesarik, R. Mitochondria in human fertility and infertility. Int. J. Mol. Sci. 2023, 24, 8950. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-J.; Pang, M.-G. Mitochondrial Functionality in Male Fertility: From Spermatogenesis to Fertilization. Antioxidants 2021, 10, 98. [Google Scholar] [CrossRef]
- Maharramova, S.; Atakishizade, S.; Valiyeva, M.; Khalilov, R.; Eftekhari, A. Structure and function of mitochondria and its role in male infertility. Cent. Asian J. Med. Pharm. Sci. Innov. 2022, 2, 176–185. [Google Scholar]
- Meng, K.; Liu, Q.; Qin, Y.; Qin, W.; Zhu, Z.; Sun, L.; Jiang, M.; Adu-Amankwaah, J.; Gao, F.; Tan, R.; et al. Mechanism of mitochondrial oxidative phosphorylation disorder in male infertility. Chin. Med. J. 2024. [Google Scholar] [CrossRef]
- Bansal, A.K.; Bilaspuri, G.S. Impacts of oxidative stress and antioxidants on semen functions. Vet. Med. Int. 2010, 2011, 686137. [Google Scholar] [CrossRef] [PubMed]
- Koppers, A.J.; De Iulis, G.N.; Finnie, J.M.; McLaughlin, E.A.; Aitken, R.J. Significance of mitochondrial reactive species in the generation of oxidative stress in spermatozoa. J. Clin. Endocrinol. Metab. 2008, 93, 3199–3207. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Parekh, N.; Panner Selvam, M.K.; Henkel, R.; Shah, R.; Homa, S.T.; Ramasamy, R.; Ko, E.; Tremellen, K.; Esteves, S.; et al. Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility. World J. Mens Health 2019, 37, 296–312. [Google Scholar] [CrossRef]
- Shahrokhi, S.Z.; Salehi, P.; Alyasin, A.; Taghiyar, S.; Deemeh, M.R. Asthenozoospermia: Cellular and molecular contributing factors and treatment strategies. Andrologia 2020, 52, e13463. [Google Scholar] [CrossRef] [PubMed]
- Cedíková, M.; Miklíková, M.; Grundmanová, M.; Zech, N.H.; Králíčková, M.; Kuncová, J. Funkce mitochondrií ve spermii u mužů s normozoospermií a astenozoospermií [Sperm mitochondrial function in men with normozoospermia and asthenozoospermia]. Ceska Gynekol. 2014, 79, 22–28. (In Czech) [Google Scholar] [PubMed]
- Ferramosca, A.; Albani, D.; Coppola, L.; Zara, V. Varicocele negatively affects sperm mitochondrial respiration. Urology 2015, 86, 735–739. [Google Scholar] [CrossRef]
- Alahmar, A.T.; Calogero, A.E.; Singh, R.; Cannarella, R.; Sengupta, P.; Dutta, S. Coenzyme Q10, oxidative stress, and male infertility: A review. Clin. Exp. Reprod. Med. 2021, 48, 97–104. [Google Scholar] [CrossRef]
- Ahmadi, S.; Bashiri, R.; Ghadiri-Anari, A.; Nadjarzadeh, A. Antioxidant supplements and semen parameters: An evidence based review. Int. J. Reprod. Biomed. 2016, 14, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Salvio, G.; Cutini, M.; Ciarloni, A.; Giovannini, L.; Perrone, M.; Balercia, G. Coenzyme Q10 and male infertility: A systematic review. Antioxidants 2021, 10, 874. [Google Scholar] [CrossRef] [PubMed]
- Gvozdjáková, A.; Dúbravický, J.; Singh, R.B. Mitochondrial reproductive medicine. In Recent Advances in Mitochondrial Medicine and Coenzyme Q10, 1st ed.; Gvozdjáková, A., Cornélissen, G., Singh, R.B., Eds.; NOVA Science: New York, NY, USA, 2018; pp. 229–240. [Google Scholar]
- Alahmar, A.T.; Calogero, A.E.; Sengupta, P.; Dutta, S. Coenzyme Q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J. Mens Health 2021, 39, 346–351. [Google Scholar] [CrossRef]
- Alahmar, A.T.; Sengupta, P. Impact of coenzyme Q10 and selenium on seminal fluid parameters and antioxidant status in men with idiopathic infertility. Biol. Trace Elem. Res. 2021, 199, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Kobori, Y.; Ota, S.; Sato, R.; Yagi, H.; Soh, S.; Arai, G.; Okada, H. Antioxidant cosupplementation therapy with vitamin C, vitamin E, and coenzyme Q10 in patients with oligoasthenozoospermia. Arch. Ital. Urol. Androl. 2014, 86, 1–4. [Google Scholar] [CrossRef]
- Gvozdjáková, A.; Kucharská, J.; Dubravicky, J.; Mojto, V.; Singh, R.B. Coenzyme Q₁₀, α-tocopherol, and oxidative stress could be important metabolic biomarkers of male infertility. Dis. Markers 2015, 827941, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Shi, H.; Zhu, S.; Wang, H.; Sun, S. Effects of vitamin E and vitamin C on male infertility: A meta-analysis. Int. Urol. Nephrol. 2022, 54, 1793–1805. [Google Scholar] [CrossRef] [PubMed]
- Marin-Guzman, J.; Mahan, D.C.; Pate, J.L. Effect of dietary selenium and vitamin E on spermatogenic development in boars. J. Anim. Sci. 2000, 78, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Sabetian, S.; Jahromi, B.N.; Vakili, S.; Forouhari, S.; Alipour, S. The effect of oral vitamin E on semen parameters and IVF outcome: A double-blinded randomized placebo-controlled clinical trial. Biomed. Res. Int. 2021, 11, 5588275. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.; Pauling, A.H. “Vitamin E”. Micronutrient Information Center, Linus Pauling Institute, Oregon State University. October 2015. Available online: https://lpi.oregonstate.edu/mic/vitamins/vitamin-E (accessed on 27 December 2024).
- Jiang, Q.; Im, S.; Wagner, J.G.; Hernandez, M.L.; Peden, D.B. Gamma-tocopherol, a major form of vitamin E in diets: Insights into antioxidant and anti-inflammatory effects, mechanisms, and roles in disease management. Free Radic. Biol. Med. 2022, 178, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Schmid, T.E.; Eskenazi, B.; Marchetti, F.; Young, S.; Weldon, R.H.; Baumgartner, A.; Anderson, D.; Wyrobek, A.J. Micronutrients intake is associated with improved sperm DNA quality in older men. Fertil. Steril. 2012, 98, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Keshtgar, S.; Fanaei, H.; Bahmanpour, S.; Azad, F.; Ghannadi, A.; Kazeroni, M. In vitro effects of α-tocopherol on teratozoospermic semen samples. Andrologia 2012, 44 (Suppl. S1), 721–727. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Sharma, R.; Roychoudhury, S.; Du Plessis, S.; Sabanegh, E. MiOXSYS: A novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil. Steril. 2016, 106, 566–573.e10. [Google Scholar] [CrossRef]
- Agarwal, A.; Roychoudhury, S.; Sharma, R.; Gupta, S.; Majzoub, A.; Sabanegh, E. Diagnostic application of oxidation-reduction potential assay for measurement of oxidative stress: Clinical utility in male factor infertility. Reprod. Biomed. Online 2017, 34, 48–57. [Google Scholar] [CrossRef]
- Takalani, N.B.; Monageng, E.M.; Mohlala, K.; Monsees, T.K.; Henkel, R.; Opuwari, C.S. Role of oxidative stress in male infertility. Reprod. Fertil. 2023, 4, e230024. [Google Scholar] [CrossRef]
- Gvozdjáková, A.; Kucharská, J.; Lipková, J.; Bartolčičová, B.; Dubravický, J.; Voráková, M.; Černáková, I.; Singh, R.B. Importance of the assessment of coenzyme Q10, alpha-tocopherol and oxidative stress for the diagnosis and therapy of infertility in men. Bratisl. Med J. 2013, 114, 607–609. [Google Scholar] [CrossRef]
- Gvozdjáková, A. Mitochondrial “Spermatopathy”. In Mitochondrial Medicine, 1st ed.; Gvozdjáková, A., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 263–266. [Google Scholar]
- Vishvkarma, R.; Alahmar, A.T.; Gupta, G.; Rajender, S. Coenzyme Q10 effect on semen parameters: Profound or meagre? Andrologia 2020, 52, e13570. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M. Impact of Antioxidants on Conventional and Advanced Sperm Function Parameters: An Updated Review. Cureus 2024, 16, e54253. [Google Scholar] [CrossRef]
- Illiano, E.; Trama, F.; Zucchi, A.; Iannitti, R.G.; Fioretti, B.; Costantini, E. Resveratrol-based multivitamin supplement increases sperm concentration and motility in idiopathic male infertility: A pilot clinical study. J. Clin. Med. 2020, 9, 4017. [Google Scholar] [CrossRef]
- Morimoto, Y.; Gamage, U.S.K.; Yamochi, T.; Saeki, N.; Morimoto, N.; Yamanaka, M.; Koike, A.; Miyamoto, Y.; Tanaka, K.; Fukuda, A.; et al. Mitochondrial transfer into human oocytes improved embryo quality and clinical outcomes in recurrent pregnancy failure cases. Int. J. Mol. Sci. 2023, 24, 2738. [Google Scholar] [CrossRef]
- Kubikova, E.; Klein, M.; Svitok, P.; Stefanic, J.; Benus, R.; Varga, I. Fertility maintenance in male oncological patients: Current state and future perspectives. Bratisl. Med. J. 2019, 120, 485–493. [Google Scholar] [CrossRef]
- Sumbalova, Z.; Kucharska, J.; Palacka, P.; Rausova, Z.; Langsjoen, P.H.; Langsjoen, A.M.; Gvozdjakova, A. Platelet mitochondrial function and endogenous coenzyme Q10 levels are reduced in patients after COVID-19. Bratisl. Med. J. 2022, 123, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Pesta, D.; Gnaiger, E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol. Biol. 2012, 810, 25–58. [Google Scholar] [PubMed]
- Sjövall, F.; Ehinger, J.K.; Marelsson, S.E.; Morota, S.; Frostner, E.A.; Uchino, H.; Lundgren, J.; Arnbjörnsson, E.; Hansson, M.J.; Fellman, V.; et al. Mitochondrial respiration in human viable platelets--methodology and influence of gender, age and storage. Mitochondrion 2013, 13, 7–14. [Google Scholar] [CrossRef]
- Lang, J.K.; Gohil, K.; Packer, L. Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions. Anal. Biochem. 1986, 157, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Kucharská, J.; Gvozdjáková, A.; Mizera, S.; Braunová, Z.; Schreinerová, Z.; Schrameková, E.; Pecháň, I.; Fabián, J. Participation of coenzyme Q10 in the rejection development of the transplanted heart. Physiol. Res. 1998, 47, 399–404. [Google Scholar] [PubMed]
- Mosca, F.; Fattorini, D.; Bompadre, S.; Littarru, G.P. Assay of coenzyme Q10 in plasma by a single dilution step. Anal. Biochem. 2002, 305, 49–54. [Google Scholar] [CrossRef]
- Niklowitz, P.; Menke, T.; Andler, W.; Okun, J.G. Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: Comparison of the antioxidant level in blood cells and their enviroment in healthy children and after oral supplementation in adults. Clin. Chim. Acta 2021, 342, 219–226. [Google Scholar] [CrossRef]
- Janero, D.R.; Bughardt, B. Thiobarbituric acid-reactive malondialdehyd formation during suproxide-dependent, iron-catalyzed lipid peroxidation: Influence of peroxidation conditions. Lipids 1989, 24, 125–131. [Google Scholar] [CrossRef]
Fifth Percentile According to WHO | Infertile | Values Above Fifth Percentile | ||
---|---|---|---|---|
Sixth Edition | N = 30 | N | % | |
Semen parameters | ||||
Semen volume (mL) | 1.4 | 3.36 ± 0.23 | 28 | 93.3 |
pH | 7.2 | 7.77 ± 0.05 | 30 | 100.0 |
Total sperm number (×106) | 39 | 93.2 ± 13.8 | 24 | 80.0 |
Sperm concentration (×106/mL) | 16 | 27.1 ± 3.2 | 23 | 76.7 |
Total motility (%) | 42 | 56.4 ± 4.1 | 21 | 70.0 |
Progressive motility (%) | 30 | 22.8 ± 2.4 | 7 | 23.3 |
Normal sperm morphology (%) | 4.0 | 2.8 ± 0.3 | 8 | 26.7 |
Morphological defects | ||||
Abnormal heads (%) | ˗ | 92.2 ± 0.9 | ||
Abnormal midpieces (%) | ˗ | 43.2 ± 2.0 | ||
Abnormal tails (%) | ˗ | 20.4 ± 1.0 | ||
Oxidative status | Normal range * | Normal range | ||
sORP (mV/106 sperm/mL) 1 | 0–1.38 | 2.85 ± 0.95 | 15 | 50 |
Sperm Concentration (106/mL) | Motile Sperm Concentration (106/mL) | Sperm with Progressive Motility (%) | Abnormal Sperm Morphology (%) | Head Abnormalities (%) | Midpiece Abnormalities (%) | Tail Abnormalities (%) | sORP (mV/106/mL/) | |
---|---|---|---|---|---|---|---|---|
Total sperm number (106) | 0.841 | 0.706 | 0.406 | −0.326 | −0.297 | −0.157 | −0.421 | −0.594 |
p-value | <0.0001 | <0.0001 | 0.0259 | 0.08 | 0.11 | 0.41 | 0.0204 | 0.0007 |
Sperm concentration (106/mL) | 0.920 | 0.636 | −0.556 | −0.510 | −0.220 | −0.621 | −0.752 | |
p-value | <0.0001 | 0.0002 | 0.0014 | 0.004 | 0.24 | 0.0003 | <0.0001 | |
Motile sperm concentration (106/mL) | 0.692 | −0.658 | −0.621 | −0.237 | −0.607 | −0.637 | ||
p-value | <0.0001 | <0.0001 | 0.0002 | 0.21 | 0.0004 | 0.0002 | ||
Sperm with progressive motility (%) | −0.406 | −0.442 | −0.296 | −0.639 | −0.582 | |||
p-value | 0.0261 | 0.0144 | 0.11 | 0.0001 | 0.0009 | |||
Abnormal sperm morphology (%) | 0.941 | 0.545 | 0.666 | 0.249 | ||||
p-value | <0.0001 | 0.0018 | <0.0001 | 0.19 | ||||
Head abnormalities (%) | 0.534 | 0.686 | 0.313 | |||||
p-value | 0.0024 | <0.0001 | 0.10 | |||||
Midpiece abnormalities (%) | 0.580 | 0.012 | ||||||
p-value | 0.0008 | 0.95 | ||||||
Tail abnormalities (%) | 0.516 | |||||||
p-value | 0.0042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumbalová, Z.; Rausová, Z.; Kucharská, J.; Šranko, P.; Harbulák, P.; Svitok, P.; López-Lluch, G.; Gvozdjáková, A. Platelet Mitochondrial Function and Endogenous Coenzyme Q10 Levels Could Be Used as Markers of Mitochondrial Health in Infertile Men: A Pilot Study. Int. J. Mol. Sci. 2025, 26, 268. https://doi.org/10.3390/ijms26010268
Sumbalová Z, Rausová Z, Kucharská J, Šranko P, Harbulák P, Svitok P, López-Lluch G, Gvozdjáková A. Platelet Mitochondrial Function and Endogenous Coenzyme Q10 Levels Could Be Used as Markers of Mitochondrial Health in Infertile Men: A Pilot Study. International Journal of Molecular Sciences. 2025; 26(1):268. https://doi.org/10.3390/ijms26010268
Chicago/Turabian StyleSumbalová, Zuzana, Zuzana Rausová, Jarmila Kucharská, Patrik Šranko, Peter Harbulák, Pavel Svitok, Guillermo López-Lluch, and Anna Gvozdjáková. 2025. "Platelet Mitochondrial Function and Endogenous Coenzyme Q10 Levels Could Be Used as Markers of Mitochondrial Health in Infertile Men: A Pilot Study" International Journal of Molecular Sciences 26, no. 1: 268. https://doi.org/10.3390/ijms26010268
APA StyleSumbalová, Z., Rausová, Z., Kucharská, J., Šranko, P., Harbulák, P., Svitok, P., López-Lluch, G., & Gvozdjáková, A. (2025). Platelet Mitochondrial Function and Endogenous Coenzyme Q10 Levels Could Be Used as Markers of Mitochondrial Health in Infertile Men: A Pilot Study. International Journal of Molecular Sciences, 26(1), 268. https://doi.org/10.3390/ijms26010268