Pinealectomy-Induced Melatonin Deficiency Exerts Age-Specific Effects on Sphingolipid Turnover in Rats
Abstract
:1. Introduction
2. Results
2.1. Melatonin Deficiency Associated with Hormonal Dysfunction (Pinealectomy) Can Modify Age-Related Cer Increase in the Hippocampus but Not in Plasma
2.2. Melatonin Deficiency Reversed Age-Related Decreases in ASAH1 Levels in the Hippocampus but Not in the Plasma of 14-Month-Old Rats
2.3. Melatonin Deficiency Had Beneficial Effect on Age-Associated Changes of NSMase and ASMase in the Hippocampus Only in the Middle-Aged Rats
2.4. Melatonin Deficiency Exacerbates Age-Related Increase in S1P
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Experimental Groups and Surgery
4.3. ELISA
4.3.1. Ceramide Levels in Hippocampus
4.3.2. Ceramide Levels in Blood Plasma
4.3.3. Sphingomyelin Levels in Hippocampus
4.3.4. Neutral Sphingomyelinase Levels in Hippocampus
4.3.5. Neutral Sphingomyelinase Enzymatic Activity in Blood Plasma
4.3.6. Acid Sphingomyelinase Enzymatic Activity in Hippocampus
4.3.7. Acid Sphingomyelinase Levels in Hippocampus
4.3.8. Acid Ceramidase Levels in Hippocampus
4.3.9. Acid Ceramidase Levels in Blood Plasma
4.3.10. Sphingosine-1-Phosphate Levels in Hippocampus
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jenwitheesuk, A.; Boontem, P.; Wongchitrat, P.; Tocharus, J.; Mukda, S.; Govitrapong, P. Melatonin Regulates the Aging Mouse Hippocampal Homeostasis via the Sirtuin1-FOXO1 Pathway. EXCLI J. 2017, 16, 340. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Rodríguez, G.; Vega-Rivera, N.M.; Benítez-King, G.; Castro-García, M.; Ortíz-López, L. Melatonin Supplementation Delays the Decline of Adult Hippocampal Neurogenesis During Normal Aging of Mice. Neurosci. Lett. 2012, 530, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Wurtman, R.J. Age-Related Decreases in Melatonin Secretion—Clinical Consequences. J. Clin. Endocrinol. Metab. 2000, 85, 2135–2136. [Google Scholar] [CrossRef]
- Kondratova, A.A.; Kondratov, R.V. The Circadian Clock and Pathology of the Ageing Brain. Nat. Rev. Neurosci. 2012, 13, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Cipolla-Neto, J.; Amaral, F.G.D. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr. Rev. 2018, 39, 990–1028. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Xu, B.; Zhou, X.; Reiter, R. Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland. Molecules 2018, 23, 301. [Google Scholar] [CrossRef] [PubMed]
- Hoehn, R.; Monse, M.; Pohl, E.; Wranik, S.; Wilker, B.; Keitsch, S.; Soddemann, M.; Kornhuber, J.; Kohnen, M.; Edwards, M.J.; et al. Melatonin Acts as an Antidepressant by Inhibition of the Acid Sphingomyelinase/Ceramide System. Neurosignals 2016, 24, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An Overview of Sphingolipid Metabolism: From Synthesis to Breakdown. In Sphingolipids as Signaling and Regulatory Molecules; Chalfant, C., Poeta, M.D., Eds.; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2010; Volume 688, pp. 1–23. ISBN 978-1-4419-6740-4. [Google Scholar]
- Cutler, R.G.; Kelly, J.; Storie, K.; Pedersen, W.A.; Tammara, A.; Hatanpaa, K.; Troncoso, J.C.; Mattson, M.P. Involvement of Oxidative Stress-Induced Abnormalities in Ceramide and Cholesterol Metabolism in Brain Aging and Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2004, 101, 2070–2075. [Google Scholar] [CrossRef]
- Kitatani, K.; Idkowiak-Baldys, J.; Hannun, Y.A. The Sphingolipid Salvage Pathway in Ceramide Metabolism and Signaling. Cell. Signal. 2008, 20, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez, R.; Fernández, A.; Prieto-Domínguez, N.; Martínez, L.; García-Ruiz, C.; Fernández-Checa, J.C.; Mauriz, J.L.; González-Gallego, J. Ceramide Metabolism Regulates Autophagy and Apoptotic Cell Death Induced by Melatonin in Liver Cancer Cells. J. Pineal Res. 2015, 59, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Mencarelli, C.; Martinez–Martinez, P. Ceramide Function in the Brain: When a Slight Tilt Is Enough. Cell. Mol. Life Sci. 2013, 70, 181–203. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kim, H.-E. Implications of Sphingolipids on Aging and Age-Related Diseases. Front. Aging 2022, 2, 797320. [Google Scholar] [CrossRef] [PubMed]
- Brodowicz, J.; Przegaliński, E.; Müller, C.P.; Filip, M. Ceramide and Its Related Neurochemical Networks as Targets for Some Brain Disorder Therapies. Neurotox. Res. 2018, 33, 474–484. [Google Scholar] [CrossRef]
- Newton, J.; Lima, S.; Maceyka, M.; Spiegel, S. Revisiting the Sphingolipid Rheostat: Evolving Concepts in Cancer Therapy. Exp. Cell Res. 2015, 333, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.; Förl, M.; Winoto-Morbach, S.; Seite, S.; Schunck, M.; Proksch, E.; Schütze, S. Acid and Neutral Sphingomyelinase, Ceramide Synthase, and Acid Ceramidase Activities in Cutaneous Aging. Exp. Dermatol. 2005, 14, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Venable, M.E.; Lee, J.Y.; Smyth, M.J.; Bielawska, A.; Obeid, L.M. Role of Ceramide in Cellular Senescence. J. Biol. Chem. 1995, 270, 30701–30708. [Google Scholar] [CrossRef] [PubMed]
- Lightle, S.A.; Oakley, J.I.; Nikolova-Karakashian, M.N. Activation of Sphingolipid Turnover and Chronic Generation of Ceramide and Sphingosine in Liver during Aging. Mech. Ageing Dev. 2000, 120, 111–125. [Google Scholar] [CrossRef]
- Munk, R.; Anerillas, C.; Rossi, M.; Tsitsipatis, D.; Martindale, J.L.; Herman, A.B.; Yang, J.-H.; Roberts, J.A.; Varma, V.R.; Pandey, P.R.; et al. Acid Ceramidase Promotes Senescent Cell Survival. Aging 2021, 13, 15750–15769. [Google Scholar] [CrossRef] [PubMed]
- Monette, J.S.; Gómez, L.A.; Moreau, R.F.; Dunn, K.C.; Butler, J.A.; Finlay, L.A.; Michels, A.J.; Shay, K.P.; Smith, E.J.; Hagen, T.M. (R)-α-Lipoic Acid Treatment Restores Ceramide Balance in Aging Rat Cardiac Mitochondria. Pharmacol. Res. 2011, 63, 23–29. [Google Scholar] [CrossRef]
- Pierpaoli, W.; Bulian, D. The Pineal Aging and Death Program: Life Prolongation in Pre-aging Pinealectomized Mice. Ann. N. Y. Acad. Sci. 2005, 1057, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Pierpaoli, W. Pineal Gland: A Circadian Or. Seas. Aging Clock? Aging Clin. Exp. Res. 1991, 3, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Pierpaoli, W. The Pineal Gland as Ontogenetic Scanner of Reproduction, Immunity, and Aging The Aging Clock. Ann. N. Y. Acad. Sci. 1994, 741, 46–49. [Google Scholar] [CrossRef]
- Tchekalarova, J.; Hrischev, P.; Ivanova, P.; Boyadjiev, N.; Georgieva, K. Metabolic Footprint in Young, Middle-Aged and Elderly Rats with Melatonin Deficit. Physiol. Behav. 2022, 250, 113786. [Google Scholar] [CrossRef] [PubMed]
- Tchekalarova, J.; Krushovlieva, D.; Ivanova, P.; Nenchovska, Z.; Toteva, G.; Atanasova, M. The Role of Melatonin Deficiency Induced by Pinealectomy on Motor Activity and Anxiety Responses in Young Adult, Middle-Aged and Old Rats. Behav. Brain Funct. 2024, 20, 3. [Google Scholar] [CrossRef]
- Tchekalarova, J.; Nenchovska, Z.; Kortenska, L.; Uzunova, V.; Georgieva, I.; Tzoneva, R. Impact of Melatonin Deficit on Emotional Status and Oxidative Stress-Induced Changes in Sphingomyelin and Cholesterol Level in Young Adult, Mature, and Aged Rats. Int. J. Mol. Sci. 2022, 23, 2809. [Google Scholar] [CrossRef] [PubMed]
- Babenko, N.A.; Shakhova, E.G. Long-Term Food Restriction Prevents Aging-Associated Sphingolipid Turnover Dysregulation in the Brain. Arch. Gerontol. Geriatr. 2014, 58, 420–426. [Google Scholar] [CrossRef]
- Nikolova-Karakashian, M.; Karakashian, A.; Rutkute, K. Role of Neutral Sphingomyelinases in Aging and Inflammation. In Lipids in Health and Disease; Quinn, P.J., Wang, X., Eds.; Subcellular Biochemistry; Springer: Dordrecht, The Netherlands, 2008; Volume 49, pp. 469–486. ISBN 978-1-4020-8830-8. [Google Scholar]
- Brunkhorst, R.; Pfeilschifter, W.; Rajkovic, N.; Pfeffer, M.; Fischer, C.; Korf, H.-W.; Christoffersen, C.; Trautmann, S.; Thomas, D.; Pfeilschifter, J.; et al. Diurnal Regulation of Sphingolipids in Blood. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2019, 1864, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Rutkute, K.; Asmis, R.H.; Nikolova-Karakashian, M.N. Regulation of Neutral Sphingomyelinase-2 by GSH: A New Insight to the Role of Oxidative Stress in Aging-Associated Inflammation. J. Lipid Res. 2007, 48, 2443–2452. [Google Scholar] [CrossRef]
- Tchekalarova, J.; Atanasova, D.; Krushovlieva, D.; Barbutska, D.; Atanasova, M.; Rashev, P.; Nenchovska, Z.; Mourdjeva, M.; Koeva, Y. Age-Related Memory Decline Is Accelerated by Pinealectomy in Young Adult and Middle-Aged Rats via BDNF/ERK/CREB Signalling in the Hippocampus. 2024; preprints. [Google Scholar] [CrossRef]
- Pujol-Lereis, L.M. Alteration of Sphingolipids in Biofluids: Implications for Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 3564. [Google Scholar] [CrossRef]
- Gaudioso, Á.; Jiang, X.; Casas, J.; Schuchman, E.H.; Ledesma, M.D. Sphingomyelin 16:0 Is a Therapeutic Target for Neuronal Death in Acid Sphingomyelinase Deficiency. Cell Death Dis. 2023, 14, 248. [Google Scholar] [CrossRef]
- De Butte, M.; Pappas, B.A. Pinealectomy Causes Hippocampal CA1 and CA3 Cell Loss: Reversal by Melatonin Supplementation. Neurobiol. Aging 2007, 28, 306–313. [Google Scholar] [CrossRef]
- Reiter, R.; Carneiro, R.; Oh, C.-S. Melatonin in Relation to Cellular Antioxidative Defense Mechanisms. Horm. Metab. Res. 1997, 29, 363–372. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tchekalarova, J.; Georgieva, I.; Vukova, T.; Apostolova, S.; Tzoneva, R. Pinealectomy-Induced Melatonin Deficiency Exerts Age-Specific Effects on Sphingolipid Turnover in Rats. Int. J. Mol. Sci. 2025, 26, 1694. https://doi.org/10.3390/ijms26041694
Tchekalarova J, Georgieva I, Vukova T, Apostolova S, Tzoneva R. Pinealectomy-Induced Melatonin Deficiency Exerts Age-Specific Effects on Sphingolipid Turnover in Rats. International Journal of Molecular Sciences. 2025; 26(4):1694. https://doi.org/10.3390/ijms26041694
Chicago/Turabian StyleTchekalarova, Jane, Irina Georgieva, Teodora Vukova, Sonia Apostolova, and Rumiana Tzoneva. 2025. "Pinealectomy-Induced Melatonin Deficiency Exerts Age-Specific Effects on Sphingolipid Turnover in Rats" International Journal of Molecular Sciences 26, no. 4: 1694. https://doi.org/10.3390/ijms26041694
APA StyleTchekalarova, J., Georgieva, I., Vukova, T., Apostolova, S., & Tzoneva, R. (2025). Pinealectomy-Induced Melatonin Deficiency Exerts Age-Specific Effects on Sphingolipid Turnover in Rats. International Journal of Molecular Sciences, 26(4), 1694. https://doi.org/10.3390/ijms26041694