Metabolomic Biomarkers in Bovine Embryo Culture Media and Their Relationship with the Developmental Potential of In Vitro-Produced Embryos
Abstract
:1. Introduction
2. Results
2.1. Metabolites Differing in Culture Media of Viable and Non-Viable Blastocysts
2.1.1. Amino Acids and Derivative Metabolism
2.1.2. Lipid Metabolism
2.2. Metabolite Sums and Ratios Differing Between Culture Media of Viable and Non-Viable Blastocysts
2.3. Metabolites Differing Between the Culture Media of Viable Early and Hatched Blastocysts
3. Discussion
3.1. Lipid Metabolism
3.2. Monosaccharide Metabolism
3.3. Amino Acid and Derivative Metabolism
3.4. Polyamine Metabolism
3.5. Summary
3.6. Limitations and Future Research Directions
4. Materials and Methods
4.1. Media
4.2. Experimental Design
4.3. Oocyte Collection and In Vitro Maturation
4.4. In Vitro Fertilization and Cultivation
4.5. Collection of Media for LC-MS/MS and Categorization of Samples
4.6. Preparation of Culture Medium Samples for LC-MS/MS and Spectrometry
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabel, R.A.C.; Marchioretto, P.V.; Bangert, E.A.; Wilson, K.; Milner, D.J.; Wheeler, M.B. Pre-Implantation Bovine Embryo Evaluation—From Optics to Omics and Beyond. Animals 2023, 13, 2102. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, I.; García-Manrique, P.; Carrocera, S.; López-Hidalgo, C.; Valledor, L.; Martín-González, D.; Gómez, E. The Metabolic Signature of in Vitro Produced Bovine Embryos Helps Predict Pregnancy and Birth after Embryo Transfer. Metabolites 2021, 11, 484. [Google Scholar] [CrossRef] [PubMed]
- Viana, J.H.M. 2022 Statistics of Embryo Production and Transfer in Domestic Farm Animals. Embryo Technol. Newsl. 2023, 41, 4. [Google Scholar]
- Gómez, E.; Carrocera, S.; Martín, D.; Pérez-Jánez, J.J.; Prendes, J.; Prendes, J.M.; Vázquez, A.; Murillo, A.; Gimeno, I.; Muñoz, M. Efficient One-Step Direct Transfer to Recipients of Thawed Bovine Embryos Cultured in Vitro and Frozen in Chemically Defined Medium. Theriogenology 2020, 146, 39–47. [Google Scholar] [CrossRef]
- Hansen, P.J. The Incompletely Fulfilled Promise of Embryo Transfer in Cattle-Why Aren’t Pregnancy Rates Greater and What Can We Do about It? J. Anim. Sci. 2020, 98, skaa288. [Google Scholar] [CrossRef]
- Illingworth, P.J.; Venetis, C.; Gardner, D.K.; Nelson, S.M.; Berntsen, J.; Larman, M.G.; Agresta, F.; Ahitan, S.; Ahlström, A.; Cattrall, F.; et al. Deep learning versus manual morphology-based embryo selection in IVF: A randomized, double-blind noninferiority trial. Nat. Med. 2024, 30, 3114–3120. [Google Scholar] [CrossRef]
- De Vries, A.; Kaniyamattam, K. A Review of Simulation Analyses of Economics and Genetics for the Use of In-Vitro Produced Embryos and Artificial Insemination in Dairy Herds. Anim. Reprod. 2020, 17, e20200020. [Google Scholar] [CrossRef]
- Magata, F. Time-Lapse Monitoring Technologies for the Selection of Bovine in Vitro Fertilized Embryos with High Implantation Potential. J. Reprod. Dev. 2023, 69, 57–64. [Google Scholar] [CrossRef]
- Imakawa, K.; Matsuno, Y.; Fujiwara, H. New Roles for EVs, MiRNA and LncRNA in Bovine Embryo Implantation. Front. Vet. Sci. 2022, 9, 944370. [Google Scholar] [CrossRef]
- Pallisco, R.; Lazzarino, G.; Bilotta, G.; Marroni, F.; Mangione, R.; Saab, M.W.; Brundo, M.V.; Pittalà, A.; Caruso, G.; Capoccia, E.; et al. Metabolic Signature of Energy Metabolism Alterations and Excess Nitric Oxide Production in Culture Media Correlate with Low Human Embryo Quality and Unsuccessful Pregnancy. Int. J. Mol. Sci. 2023, 24, 890. [Google Scholar] [CrossRef]
- Lechniak, D.; Sell-Kubiak, E.; Warzych, E. The Metabolic Profile of Bovine Blastocysts Is Affected by in Vitro Culture System and the Pattern of First Zygotic Cleavage. Theriogenology 2022, 188, 43–51. [Google Scholar] [CrossRef]
- Cheredath, A.; Uppangala, S.; Asha, C.S.; Jijo, A.; Vani Lakshmi, R.; Kumar, P.; Joseph, D.; Nagana, N.G.; Kalthur, G.; Adiga, S.K. Combining Machine Learning with Metabolomic and Embryologic Data Improves Embryo Implantation Prediction. Reprod. Sci. 2023, 30, 984–994. [Google Scholar] [CrossRef]
- Gomez, E.; Canela, N.; Herrero, P.; Cereto, A.; Gimeno, I.; Carrocera, S.; Martin-gonzalez, D.; Murillo, A.; Muñoz, M. Metabolites Secreted by Bovine Embryos in Vitro Predict Pregnancies That the Recipient Plasma Metabolome Cannot, and Vice Versa. Metabolites 2021, 11, 162. [Google Scholar] [CrossRef]
- Lipinska, P.; Pawlak, P.; Warzych, E. Species and Embryo Genome Origin Affect Lipid Droplets in Preimplantation Embryos. Front. Cell Dev. Biol. 2023, 11, 1187832. [Google Scholar] [CrossRef]
- Tsopp, E.; Kilk, K.; Taalberg, E.; Pärn, P.; Viljaste-Seera, A.; Kavak, A.; Jaakma, Ü. Associations of the Single Bovine Embryo Growth Media Metabolome with Successful Pregnancy. Metabolites 2024, 14, 89. [Google Scholar] [CrossRef]
- Cabello-Pinedo, S.; Abdulla, H.; Mas, S.; Fraire, A.; Maroto, B.; Seth-Smith, M.; Escriba, M.; Teruel, J.; Crespo, J.; Munné, S.; et al. Development of a Novel Non-Invasive Metabolomics Assay to Predict Implantation Potential of Human Embryos. Reprod. Sci. 2024, 31, 2706–2717. [Google Scholar] [CrossRef]
- Pohler, K.G.; Reese, S.T.; Franco, G.A.; Oliveira Filho, R.V.; Paiva, R.; Fernandez, L.; de Melo, G.; Moraes Vasconcelos, J.L.; Cooke, R.; Poole, R.K. New Approaches to Diagnose and Target Reproductive Failure in Cattle. Anim. Reprod. 2020, 17, e20200057. [Google Scholar] [CrossRef]
- Ealy, A.D.; Wooldridge, L.K.; McCoski, S.R. Board Invited Review: Post-Transfer Consequences of in Vitro-Produced Embryos in Cattle. J. Anim. Sci. 2019, 97, 2555–2568. [Google Scholar] [CrossRef]
- Hansen, P.J. Review: Some Challenges and Unrealized Opportunities toward Widespread Use of the in Vitro-Produced Embryo in Cattle Production. Animal 2023, 17, 100745. [Google Scholar] [CrossRef]
- de Andrade Melo-Sterza, F.; Poehland, R. Lipid Metabolism in Bovine Oocytes and Early Embryos under in Vivo, in Vitro, and Stress Conditions. Int. J. Mol. Sci. 2021, 22, 3421. [Google Scholar] [CrossRef]
- Dambrova, M.; Makrecka-Kuka, M.; Kuka, J.; Vilskersts, R.; Nordberg, D.; Attwood, M.M.; Smesny, S.; Sen, Z.D.; Guo, A.C.; Oler, E.; et al. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol. Rev. 2022, 74, 506–551. [Google Scholar] [CrossRef]
- Dunning, K.R.; Cashman, K.; Russell, D.L.; Thompson, J.G.; Norman, R.J.; Robker, R.L. Beta-Oxidation Is Essential for Mouse Oocyte Developmental Competence and Early Embryo Development. Biol. Reprod. 2010, 83, 909–918. [Google Scholar] [CrossRef]
- Taghizadeh, H.; Emamgholipour, S.; Hosseinkhani, S.; Arjmand, B.; Rezaei, N.; Dilmaghani-Marand, A.; Ghasemi, E.; Panahi, N.; Dehghanbanadaki, H.; Ghodssi-Ghassemabadi, R.; et al. The Association between Acylcarnitine and Amino Acids Profile and Metabolic Syndrome and Its Components in Iranian Adults: Data from STEPs 2016. Front. Endocrinol. 2023, 14, 1058952. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel Metabolic and Physiological Functions of Branched Chain Amino Acids: A Review. J. Anim. Sci. Biotechnol. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Wongsrikeao, P.; Otoi, T.; Taniguchi, M.; Karja, N.W.K.; Agung, B.; Nii, M.; Nagai, T. Effects of Hexoses on in Vitro Oocyte Maturation and Embryo Development in Pigs. Theriogenology 2006, 65, 332–343. [Google Scholar] [CrossRef]
- Hufnagel, A.; Grant, I.D.; Aiken, C.E.M. Glucose and Oxygen in the Early Intrauterine Environment and Their Role in Developmental Abnormalities. Semin. Cell Dev. Biol. 2022, 131, 25–34. [Google Scholar] [CrossRef]
- Ferrick, L.; Lee, Y.S.L.; Gardner, D.K. Metabolic Activity of Human Blastocysts Correlates with Their Morphokinetics, Morphological Grade, KIDScore and Artificial Intelligence Ranking. Human Reprod 2020, 35, 2004–2016. [Google Scholar] [CrossRef]
- Cai, S.; Ye, Q.; Zeng, X.; Yang, G.; Ye, C.; Chen, M.; Yu, H.; Wang, Y.; Wang, G.; Huang, S.; et al. CBS and MAT2A Improve Methionine-Mediated DNA Synthesis through SAMTOR/MTORC1/S6K1/CAD Pathway during Embryo Implantation. Cell Prolif. 2021, 54, e12950. [Google Scholar] [CrossRef]
- Sun, H.; Kang, J.; Su, J.; Zhang, J.; Zhang, L.; Liu, X.; Zhang, J.; Wang, F.; Lu, Z.; Xing, X.; et al. Methionine Adenosyltransferase 2A Regulates Mouse Zygotic Genome Activation and Morula to Blastocyst Transition. Biol. Reprod. 2019, 100, 601–617. [Google Scholar] [CrossRef]
- Hugentobler, S.A.; Diskin, M.G.; Leese, H.J.; Humpherson, P.G.; Watson, T.; Sreenan, J.M.; Morris, D.G. Amino Acids in Oviduct and Uterine Fluid and Blood Plasma during the Estrous Cycle in the Bovine. Mol. Reprod. Dev. 2007, 74, 445–454. [Google Scholar] [CrossRef]
- Drazic, A.; Winter, J. The Physiological Role of Reversible Methionine Oxidation. Biochim. Et Biophys. Acta Proteins Proteom. 2014, 1844, 1367–1382. [Google Scholar] [CrossRef]
- Zhao, H.; Kim, G.; Liu, C.; Levine, R.L. Transgenic Mice Overexpressing Methionine Sulfoxide Reductase A: Characterization of Embryonic Fibroblasts. Free. Radic. Biol. Med. 2010, 49, 641–648. [Google Scholar] [CrossRef]
- Gouge, R.C.; Marshburn, P.; Gordon, B.E.; Nunley, W.; Huet-Hudson, Y.M. Nitric Oxide as a Regulator of Embryonic Development. Biol. Reprod. 1998, 58, 875–879. [Google Scholar] [CrossRef]
- Lee, T.-H.; Wu, M.-Y.; Chen, M.-J.; Chao, K.-H.; Ho, H.-N.; Yang, Y.-S. Nitric Oxide Is Associated with Poor Embryo Quality and Pregnancy Outcome in in Vitro Fertilization Cycles. Fertil. Steril. 2004, 82, 923–925. [Google Scholar] [CrossRef]
- Tranguch, S.; Steuerwald, N.; Huet-Hudson, Y.M. Nitric Oxide Synthase Production and Nitric Oxide Regulation of Preimplantation Embryo Development. Biol. Reprod. 2003, 68, 1538–1544. [Google Scholar] [CrossRef]
- Christophorou, M.A.; Castelo-Branco, G.; Halley-Stott, R.P.; Oliveira, C.S.; Loos, R.; Radzisheuskaya, A.; Mowen, K.A.; Bertone, P.; Silva, J.C.R.; Zernicka-Goetz, M.; et al. Citrullination Regulates Pluripotency and Histone H1 Binding to Chromatin. Nature 2014, 507, 104–108. [Google Scholar] [CrossRef]
- Read, C.C.; Edwards, L.; Schrick, N.; Rhinehart, J.D.; Payton, R.R.; Campagna, S.R.; Castro, H.F.; Klabnik, J.L.; Horn, E.J.; Moorey, S.E. Correlation between Pre-Ovulatory Follicle Diameter and Follicular Fluid Metabolome Profiles in Lactating Beef Cows. Metabolites 2021, 11, 623. [Google Scholar] [CrossRef]
- Bovo, S.; Mazzoni, G.; Galimberti, G.; Calò, D.G.; Fanelli, F.; Mezzullo, M.; Schiavo, G.; Manisi, A.; Trevisi, P.; Bosi, P.; et al. Metabolomics Evidences Plasma and Serum Biomarkers Differentiating Two Heavy Pig Breeds. Animal 2016, 10, 1741–1748. [Google Scholar] [CrossRef]
- Muccini, A.M.; Tran, N.T.; de Guingand, D.L.; Philip, M.; Gatta, P.A.D.; Galinsky, R.; Sherman, L.S.; Kelleher, M.A.; Palmer, K.R.; Berry, M.J. Creatine Metabolism in Female Reproduction, Pregnancy and Newborn Health. Nutrients 2021, 13, 490. [Google Scholar] [CrossRef]
- Lenis, Y.Y.; Johnson, G.A.; Wang, X.; Tang, W.W.; Dunlap, K.A.; Satterfield, M.C.; Wu, G.; Hansen, T.R.; Bazer, F.W. Functional Roles of Ornithine Decarboxylase and Arginine Decarboxylase during the Peri-Implantation Period of Pregnancy in Sheep. J. Anim. Sci. Biotechnol. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Aguila, L.; Treulen, F.; Therrien, J.; Felmer, R.; Valdivia, M.; Smith, L.C. Oocyte Selection for in Vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence. Animals 2020, 10, 2196. [Google Scholar] [CrossRef]
- Abraham, M.C.; Gustafsson, H.; Ruete, A.; Brandt, Y.C. Breed Influences on in Vitro Development of Abattoir-Derived Bovine Oocytes. Acta Vet. Scand. 2012, 54, 36. [Google Scholar] [CrossRef] [PubMed]
- Gómez, E.; Carrocera, S.; Martin, D.; Herrero, P.; Canela, N.; Muñoz, M. Differential Release of Cell-Signaling Metabolites by Male and Female Bovine Embryos Cultured in Vitro. Theriogenology 2018, 114, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.K.; Larman, M.G.; Thouas, G.A. Sex-Related Physiology of the Preimplantation Embryo. Mol. Hum. Reprod. 2010, 16, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Merton, J.S.; Vermeulen, Z.L.; Otter, T.; Mullaart, E.; de Ruigh, L.; Hasler, J.F. Carbon-Activated Gas Filtration during in Vitro Culture Increased Pregnancy Rate Following Transfer of in Vitro-Produced Bovine Embryos. Theriogenology 2007, 67, 1233–1238. [Google Scholar] [CrossRef]
- Farin, P.W.; Farin, C.E. Transfer of Bovine Embryos Produced In Vivo or In Vitro: Survival and Fetal Development. Biol. Reprod 1995, 52, 676–682. [Google Scholar] [CrossRef]
- Yagi, A.; Miyanaga, S.; Shrestha, R.; Takeda, S.; Kobayashi, S.; Chiba, H.; Kamiya, H.; Hui, S.P. A Fatty Acid Profiling Method Using Liquid Chromatography-High Resolution Mass Spectrometry for Improvement of Assisted Reproductive Technology. Clin. Chim. Acta 2016, 456, 100–106. [Google Scholar] [CrossRef]
Metabolites | Concentrations in Culture Media | ||||
---|---|---|---|---|---|
Metabolite | DBL | VBL | HBL | CM | p-Value |
Met-SO (µM) | 0.58 (0.45–4.68) a | 0.09 (0.059–0.144) b | 0.34 (0.17–0.53) a | 0.22 (0.14–0.62) ab | 0.00012 |
LysoPC a C24:0 (nM) | 86 ± 32 a | 45 ± 13 b | 70 ± 20 a | 83 ± 5 a | 0.00075 † |
LysoPC a C20:4 (nM) | 30 ± 11 ab | 18 ± 10 a | 36 ± 17 b | 15 ± 2 a | 0.0021 † |
Cit | 5 (41.67%) a | 0 (0%) b | 0 (0%) b | 0 (0%) b | 0.0022 # |
PC.aa.C36.5 (nM) | 3.2 (2–7) a | 1.7 (1.3–2.0) b | 1.3 (0.9–2.0) ab | 2.0 (1.0–2.0) a | 0.00242 |
Ac-Orn (µM) | 0.18 (0.14–0.87) a | 0.12 (0.11–0.12) b | 0.13 (0.11–0.19) ab | 0.13 (0.12–0.19) ab | 0.00437 |
PC aa C42:4 (nM) | 4 ± 2 a | 2 ± 1 b | 3 ± 1 ab | 2 ± 1 ab | 0.0062 † |
Putrescine | 2 (16.67%) a | 0 (0%) a | 9 (56.25%) b | 3 (60%) a | 0.0073 # |
Spermine | 0 (0 %) a | 0 (0 %) a | 6 (37.5 %) b | 0 (0 %) a | 0.0082 # |
Spermidine | 4 (33.33 %) ab | 0 (0 %) a | 9 (56.25 %) b | 0 (0 %) a | 0.0085 # |
ADMA, Creatinine, Serotonin, t4-OH-Pro, Taurine | 4 (33.33 %) a | 0 (0 %) b | 0 (0 %) b | 0 (0 %) b | 0.0098 # |
C2 (µM) | 0.27 (±0.08) a | 0.195 (±0.024) b | 0.23 (±0.034) ab | 0.23 (±0.017) ab | 0.011 † |
C3 (nM) | 49 (40–130) a | 41 (36–43) b | 50 (44–58) a | 54 (45–57) ab | 0.013 |
C5 (nM) | 60 ± 23 a | 45 ± 7 b | 45 ± 6 b | 42 ± 2 ab | 0.015 † |
PC aa C34:1 (nM) | 23 (15–96 ) a | 14 (13–15) ab | 17 (13–18) ab | 19 (15–21) ab | 0.015 |
PC aa C36:3 (nM) | 7.2 (5.4–9.5) a | 4.7 (4.0–5.6) b | 5.0 (3.7–5.6) ab | 4.1 (4.0–5.2) a | 0.017 |
PC ae C42:0 (nM) | 215 ± 12 ab | 226 ± 11 a | 211 ± 15 b | 223 ± 6 ab | 0.027 † |
PC ae C40:2 (nM) | 2.7 (2.0–19.5) a | 1.8 (1.4–2.3) b | 2.0 (1.8–3.0) b | 3.0 (3.0–3.0) ab | 0.027 |
His (µM) | 53.4 (51.3–55.7) a | 44.7 (40.6–49.0) b | 50.4 (45.2–54.4) ab | 49.5 (48.5–54.7) ab | 0.028 |
PC ae C32:2 (nM) | 15 ± 8 a | 10 ± 3 b | 11 ± 1 ab | 10 ± 1 ab | 0.028 † |
LysoPC a C26:0 (nM) | 23 ± 10 a | 26 ± 9 a | 17 ± 7 b | 18 ± 4 ab | 0.029 † |
PC aa C32:1 (nM) | 9.0 (7.1–61) a | 5.9 (5.0–6.9) b | 6.7 (4.5–9.3) ab | 6.3 (6.0–6.4) ab | 0.029 |
PC aa C38:3 (nM) | 4 (1–240) a | 1.1 (0.9–1.4) b | 1.7 (1.0–4.0) ab | 1.2 (1.0–1.4) ab | 0.0303 |
PC ae C38:2 (nM) | 4.4 (3.0–24) a | 2.1 (1.5–2.8) b | 3.6 (2.7–5.3) ab | 4.0 (3.5–4.5) ab | 0.0374 |
PC ae C44:3 (nM) | 10 (9–11) a | 13 (11–22) b | 13 (10–14) ab | 11 (10–17) ab | 0.0381 |
PC ae C38:1 (nM) | 6.0 (3.8–27) a | 2.8 (2.4–3.4) b | 3.9 (3.0–5.0) ab | 3.0 (2.8–3.8) ab | 0.0423 |
PC aa C36:2 (nM) | 58 (49–338) a | 48 (45–50) b | 50 (47–54) ab | 55 (54–57) ab | 0.0453 |
Metabolites | Concentrations in Culture Media, μM | ||||
---|---|---|---|---|---|
Metabolite | DBL | VBL | HBL | CM | p-Value |
Met-SO/Met | 0.012 (0.009–0.09) a | 0.0016 (0.001–0.003) b | 0.006 (0.003–0.011) a | 0.004 (0.003–0.011) ab | 6.3 × 10−5 |
Total SM-OH/SM-non-OH | 0.33 ± 0.16 a | 0.54 ± 0.11 b | 0.43 ± 0.13 ab | 0.57 ± 0.044 b | 0.001† |
C2/C0 | 0.14 (0.13–0.16) a | 0.14 (0.13–0.15) a | 0.16 (0.14–0.18) b | 0.16 (0.16–0.17) b | 0.00448 |
MUFA PC/SFA PC | 0.37 (0.33–2.14) a | 0.32 (0.31–0.33) b | 0.32 (0.29–0.35) ab | 0.34 (0.31–0.38) a | 0.00602 |
Total PC ae | 0.82 (0.80–1.48) ab | 0.82 (0.81–0.84) a | 0.79 (0.78–0.81) b | 0.81 (0.80–0.84) b | 0.0122 |
Hexoses | 705 (670–830) a | 891 (838–946) b | 830 (777–879) ab | 816 (781–821) ab | 0.0221 |
SFA PC | 0.80 (0.76–1.05) ab | 0.81 (0.79–0.82) a | 0.78(0.76–0.79) b | 0.80 (0.79–0.81) ab | 0.0313 |
PUFA PC/SFA PC | 0.91 (0.86–2.44) a | 0.84 (0.82–0.86) b | 0.87 (0.84–0.91) a | 0.88 (0.84–0.89) a | 0.0389 |
Total AC-DC/Total AC | 0.188 (±0.019) a | 0.202 (±0.006) b | 0.192 (±0.009) a | 0.198 (±0.006) a | 0.041 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsopp, E.; Kilk, K.; Gambini, A.; Kavak, A.; Nahkur, E.; Viljaste-Seera, A.; Viinalass, H.; Jaakma, Ü. Metabolomic Biomarkers in Bovine Embryo Culture Media and Their Relationship with the Developmental Potential of In Vitro-Produced Embryos. Int. J. Mol. Sci. 2025, 26, 2362. https://doi.org/10.3390/ijms26052362
Tsopp E, Kilk K, Gambini A, Kavak A, Nahkur E, Viljaste-Seera A, Viinalass H, Jaakma Ü. Metabolomic Biomarkers in Bovine Embryo Culture Media and Their Relationship with the Developmental Potential of In Vitro-Produced Embryos. International Journal of Molecular Sciences. 2025; 26(5):2362. https://doi.org/10.3390/ijms26052362
Chicago/Turabian StyleTsopp, Elina, Kalle Kilk, Andres Gambini, Ants Kavak, Esta Nahkur, Anni Viljaste-Seera, Haldja Viinalass, and Ülle Jaakma. 2025. "Metabolomic Biomarkers in Bovine Embryo Culture Media and Their Relationship with the Developmental Potential of In Vitro-Produced Embryos" International Journal of Molecular Sciences 26, no. 5: 2362. https://doi.org/10.3390/ijms26052362
APA StyleTsopp, E., Kilk, K., Gambini, A., Kavak, A., Nahkur, E., Viljaste-Seera, A., Viinalass, H., & Jaakma, Ü. (2025). Metabolomic Biomarkers in Bovine Embryo Culture Media and Their Relationship with the Developmental Potential of In Vitro-Produced Embryos. International Journal of Molecular Sciences, 26(5), 2362. https://doi.org/10.3390/ijms26052362