Parental Serotonin Modulation Alters Monoamine Balance in Identified Neurons and Affects Locomotor Activity in Progeny of Lymnaea stagnalis (Mollusca: Gastropoda)
Abstract
:1. Introduction
2. Results
2.1. Detection of Serotonin in Apical Neurons of Lymnaea stagnalis Veliger Stage Embryo
2.2. Serotonin Detection in L. stagnalis Apical Neurons Is Season-Dependent
2.3. Pharmacological Modulation of Parental Serotonin Leads to Enhanced Relative 5-HT Level in Premature Oocytes and Follicle Cells Within the Gonad
2.4. Alteration in the 5-HT/DA Balance in the Apical Neurons of Offspring from Animals with Elevated 5-HT Levels
2.5. A Decrease in Maternal 5-HT or an Increase in 5-HT During the Embryo Cleavage Stage Does Not Affect the 5-HT/DA Relative Levels in Apical Neurons
2.6. The Expression of the Tryptophan Hydroxylase Gene Is a Prerequisite for the Increased Levels of 5-HT in Apical Neurons
2.7. Embryo Rotation Within Eggs Responds to Changes in Parental Monoamine Level
3. Discussion
3.1. Maternal Influence as a Driver of Neuronal Plasticity
3.2. Neurotransmitter Plasticity and Evolutionary Adaptation
3.3. Mechanistic Insights into Neurotransmitter Regulation
3.4. Functional Implications of Neurotransmitter Changes
3.5. Evolutionary and Developmental Implications
4. Materials and Methods
4.1. Animals
4.2. Pharmacological Manipulations of Monoamine Level in Parental Snail and Embryo
4.3. Immunochemical Visualization of 5-HT
4.4. Histochemical Visualization of DA Using the Faglu Method
4.5. Image Acquisition
4.6. Determining Fluorescence Intensity
4.7. Scanning Electron Microscopy
4.8. Real-Time PCR
4.9. Embryo Rotation Assay
4.10. Statistics
5. Conclusions
6. Future Research and Possible Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eccles, J.C.; Fatt, P.; Koketsu, K. Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. 1954, 126, 524–562. [Google Scholar] [CrossRef] [PubMed]
- Cournil, I.; Geffard, M.; Moulins, M.; Le Moal, M. Coexistence of dopamine and serotonin in an identified neuron of the lobster nervous system. Brain Res. 1984, 310, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Brownstein, M.J.; Saavedra, J.M.; Axelrod, J.; Zeman, G.H.; Carpenter, D.O. Coexistence of several putative neurotransmitters in single identified neurons of Aplysia. Proc. Natl. Acad. Sci. USA 1974, 7, 4662–4665. [Google Scholar] [CrossRef] [PubMed]
- Cools, R.; Robbins, T.W. Chemistry of the adaptive mind. Philos Trans. Math Phys. Eng. Sci. 2004, 362, 2871–2888. [Google Scholar] [CrossRef]
- Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 2007, 30, 259–288. [Google Scholar] [CrossRef]
- Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef]
- Moroz, L.L. The genealogy of genealogy of neurons. Commun. Integr. Biol. 2014, 7, e993269. [Google Scholar] [CrossRef]
- Voronezhskaya, E.; Croll, R. Mollusca: Gastropoda. In Structure and Evolution of Invertebrate Nervous Systems; A. Schmidt-Rhaesa, A., Harzsch, S., Purschke, G., Eds.; Oxford University Press: Oxford, UK, 2016; pp. 196–221. [Google Scholar] [CrossRef]
- Sakharov, D.A. Evolutionary aspects of transmitter heterogeneity. J. Neural Transm. 1974, 11, 43–59. [Google Scholar] [CrossRef]
- Weiss, K.R.; Kupfermann, I. Homology of the giant serotonergic neurons (metacerebral cells) in Aplysia and pulmonate molluscs. Brain Res. 1976, 117, 33–49. [Google Scholar] [CrossRef]
- Croll, R.P. Identified Neurons and Cellular Homologies. In Nervous Systems in Invertebrates; Ali, M.A., Ed.; Springer: Boston, MA, USA, 1987; pp. 41–59. [Google Scholar] [CrossRef]
- Richter, S.; Loesel, R.; Purschke, G.; Schmidt-Rhaesa, A.; Scholtz, G.; Stach, T.; Vogt, L.; Wanninger, A.; Brenneis, G.; Döring, C.; et al. Invertebrate neurophylogeny: Suggested terms and definitions for a neuroanatomical glossary. Front. Zool 2010, 7, 29. [Google Scholar] [CrossRef]
- Voronezhskaya, E.E.; Khabarova, M.Y.; Nezlin, L.P. Apical sensory neurones mediate developmental retardation induced by conspecific environmental stimuli in freshwater pulmonate snails. Development 2004, 131, 3671–3680. [Google Scholar] [CrossRef]
- Marois, R.; Croll, R.P. Development of serotoninlike immunoreactivity in the embryonic nervous system of the snail Lymnaea stagnalis. J. Comp. Neurol. 1992, 322, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Voronezhskaya, E.; Elekes, K. Distribution of serotonin-like immunoreactive neurons in the embryonic nervous system of lymnaeid and planorbid snails. Neurobiology 1993, 1, 371–383. [Google Scholar] [PubMed]
- Voronezhskaya, E.; Hiripi, L.; Elekes, K.; Croll, R. Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis: I. Embryonic development of dopamine-containing neurons and dopamine-dependent behaviors. J. Comp. Neurol. 1999, 404, 285–296. [Google Scholar] [CrossRef]
- Glebov, K.; Voronezhskaya, E.E.; Khabarova, M.Y.; Ivashkin, E.; Nezlin, L.P.; Ponimaskin, E.G. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). BMC Dev. Biol. 2014, 14, 14. [Google Scholar] [CrossRef]
- Diefenbach, T.; Koehncke, N.; Goldberg, J. Characterization and development of rotational behavior in Helisoma embryos: Role of endogenous serotonin. J. Neurobiol. 1991, 22, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.I.; Rich, D.R.; Muruganathan, S.P.; Liu, M.B.; Pon, J.R.; Tam, R.; Diefenbach, T.J.; Kuang, S. Identification and evolutionary implications of neurotransmitter-ciliary interactions underlying the behavioral response to hypoxia in Lymnaea stagnalis embryos. J. Exp. Biol. 2011, 214 (Pt 16), 2660–2670. [Google Scholar] [CrossRef]
- Filla, A.; Hiripi, L.; Elekes, K. Serotonergic and dopaminergic influence of the duration of embryogenesis and intracapsular locomotion of Lymnaea stagnalis L. Acta Biol. Hung. 2004, 55, 315–321. [Google Scholar] [CrossRef]
- Filla, A.; Hiripi, L.; Elekes, K. Role of aminergic (serotonin and dopamine) systems in the embryogenesis and different embryonic behaviors of the pond snail, Lymnaea stagnalis. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2009, 149, 73–82. [Google Scholar] [CrossRef]
- Ivashkin, E.; Khabarova, M.Y.; Melnikova, V.; Nezlin, L.P.; Kharchenko, O.; Voronezhskaya, E.E.; Adameyko, I. Serotonin Mediates Maternal Effects and Directs Developmental and Behavioral Changes in the Progeny of Snails. Cell Rep. 2015, 12, 1144–1158. [Google Scholar] [CrossRef]
- Goldberg, J.I.; Doran, S.A.; Shartau, R.B. Integrative biology of an embryonic respiratory behavior in pond snails: The ‘embryo stir-bar hypothesis’. J. Exp. Biol. 2008, 211, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, N.C. Neurotransmitter Switching? No Surprise. Neuron 2015, 86, 1131–1144. [Google Scholar] [CrossRef] [PubMed]
- Abramova, M.; Marsais, F.; Calas, A.; Thibault, J.; Ugrumov, M. Dynamical study of tyrosine hydroxylase expression and its correlation with vasopressin turnover in the magnocellular neurons of the supraoptico-posthypophysial system under long-term salt loading of adult rats. Brain Res. 2002, 925, 67–75. [Google Scholar] [CrossRef]
- Ershov, P.V.; Ugrumov, M.V.; Calas, A.; Krieger, M.; Thibault, J. Degeneration of dopaminergic neurons triggers an expression of individual enzymes of dopamine synthesis in non-dopaminergic neurons of the arcuate nucleus in adult rats. J. Chem. Neuroanat. 2005, 30, 27–33. [Google Scholar] [CrossRef]
- Frolova, V.S.; Nikishina, Y.O.; Shmukler, Y.B.; Nikishin, D.A. Serotonin Signaling in Mouse Preimplantation Development: Insights from Transcriptomic and Structural-Functional Analyses. Int. J. Mol. Sci. 2024, 25, 12954. [Google Scholar] [CrossRef] [PubMed]
- Alyoshina, N.M.; Tkachenko, M.D.; Malchenko, L.A.; Shmukler, Y.B.; Nikishin, D.A. Uptake and Metabolization of Serotonin by Granulosa Cells Form a Functional Barrier in the Mouse Ovary. Int. J. Mol. Sci. 2022, 23, 14828. [Google Scholar] [CrossRef]
- Spitzer, N.C. Neurotransmitter Switching in the Developing and Adult Brain. Annu. Rev. Neurosci. 2017, 40, 1–19. [Google Scholar] [CrossRef]
- Best, C.; Kurrasch, D.; Vijayan, M. Maternal cortisol stimulates neurogenesis and affects larval behavior in zebrafish. Sci. Rep. 2017, 7, 40905. [Google Scholar] [CrossRef]
- Harman, A.R.; Contreras-Correa, Z.E.; Messman, R.D.; Swanson, R.M.; Lemley, C.O. Maternal nutrient restriction and dietary melatonin alter neurotransmitter pathways in placental and fetal tissues. Placenta 2023, 131, 13–22. [Google Scholar] [CrossRef]
- Teng, L.L.; Lu, G.L.; Chiou, L.C.; Lin, W.S.; Cheng, Y.Y.; Hsueh, T.E.; Huang, Y.C.; Hwang, N.H.; Yeh, J.W.; Liao, R.M.; et al. Serotonin receptor HTR6-mediated mTORC1 signaling regulates dietary restriction-induced memory enhancement. PLoS Biol. 2019, 17, e2007097. [Google Scholar] [CrossRef]
- Xie, M.; Kaiser, M.; Gershtein, Y.; Schnyder, D.; Deviatiiarov, R.; Gazizova, G.; Shagimardanova, E.; Zikmund, T.; Kerckhofs, G.; Ivashkin, E.; et al. The level of protein in the maternal murine diet modulates the facial appearance of the offspring via mTORC1 signaling. Nat. Commun. 2024, 15, 2367. [Google Scholar] [CrossRef] [PubMed]
- Voronezhskaya, E.E. Maternal Serotonin: Shaping Developmental Patterns and Behavioral Strategy on Progeny in Molluscs. Front. Ecol. Evol. 2021, 9, 739787. [Google Scholar] [CrossRef]
- Ivashkin, E.G.; Khabarova, M.Y.; Melnikova, V.I.; Kharchenko, O.A.; Voronezhskaya, E.E. Local serotonin-immunoreactive plexus in the female reproductive system of hermaphroditic gastropod mollusc lymnaea stagnalis. Invertebr. Zool. 2017, 14, 134–139. [Google Scholar] [CrossRef]
- Hernádi, L.; Hiripi, L.; Dyakonova, V.; Gyori, J.; Vehovszky, A. The effect of food intake on the central monoaminergic system in the snail, Lymnaea stagnalis. Acta Biol. Hung. 2004, 55, 185–194. [Google Scholar] [CrossRef]
- Aonuma, H.; Mezheritskiy, M.; Boldyshev, B.; Totani, Y.; Vorontsov, D.; Zakharov, I.; Ito, E.; Dyakonova, V. The Role of Serotonin in the Influence of Intense Locomotion on the Behavior Under Uncertainty in the Mollusk Lymnaea stagnalis. Front. Physiol. 2020, 11, 221. [Google Scholar] [CrossRef] [PubMed]
- Fossat, P.; Bacqué-Cazenave, J.; De Deurwaerdère, P.; Delbecque, J.P.; Cattaert, D. Anxiety-like behavior in crayfish is controlled by serotonin. Science 2014, 344, 1293–1297. [Google Scholar] [CrossRef]
- Muma, N.A.; Mi, Z. Serotonylation and transamidation of other monoamines. ACS Chem. Neurosci. 2015, 6, 961–969. [Google Scholar] [CrossRef]
- Farrelly, L.A.; Thompson, R.E.; Zhao, S.; Lepack, A.E.; Lyu, Y.; Bhanu, N.V. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 2019, 567, 535–539. [Google Scholar] [CrossRef]
- Bader, M. Serotonylation: Serotonin signaling and epigenetics. Front. Mol. Neurosci. 2019, 12, 288. [Google Scholar] [CrossRef]
- Vaaga, C.E.; Borisovska, M.; Westbrook, G.L. Dual-transmitter neurons: Functional implications of co-release and co-transmission. Curr. Opin. Neurobiol. 2014, 29, 25–32. [Google Scholar] [CrossRef]
- Svensson, E.; Apergis-Schoute, J.; Burnstock, G.; Nusbaum, M.P.; Parker, D.; Schiöth, H.B. General Principles of Neuronal Cotransmission: Insights From Multiple Model Systems. Front. Neural Circuits 2019, 12, 117. [Google Scholar] [CrossRef] [PubMed]
- Borodinsky, L.N.; Root, C.M.; Cronin, J.A.; Sann, S.B.; Gu, X.; Spitzer, N.C. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 2004, 429, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Walther, D.J.; Peter, J.U.; Bashammakh, S.; Hörtnagl, H.; Voits, M.; Fink, H.; Bader, M. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003, 299, 76. [Google Scholar] [CrossRef]
- Kabotyanskii, E.A.; Sakharov, D.A. Neuronal correlates of the serotonin-dependent behavior of the pteropod mollusc Clione limacina. Neurosci. Behav. Physiol. 1991, 21, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Gillette, R. Evolution and Function in Serotonergic Systems. Integr. Comp. Biol. 2006, 46, 838–846. [Google Scholar] [CrossRef]
- Obukhova, A.L.; Khabarova, M.Y.; Semenova, M.N.; Starunov, V.V.; Voronezhskaya, E.E.; Ivashkin, E.G. Spontaneous intersibling polymorphism in the development of dopaminergic neuroendocrine cells in sea urchin larvae: Impacts on the expansion of marine benthic species. Front. Neurosci. 2024, 18, 1348999. [Google Scholar] [CrossRef]
- Kotsyuba, E.; Dyachuk, V. Role of the Neuroendocrine System of Marine Bivalves in Their Response to Hypoxia. Int. J. Mol. Sci 2023, 24, 1202. [Google Scholar] [CrossRef]
- El Kholy, S.; Wang, K.; El-Seedi, H.R.; Al Naggar, Y. Dopamine Modulates Drosophila Gut Physiology, Providing New Insights for Future Gastrointestinal Pharmacotherapy. Biology 2021, 10, 983. [Google Scholar] [CrossRef]
- Dulcis, D.; Jamshidi, P.; Leutgeb, S.; Spitzer, N.C. Neurotransmitter switching in the adult brain regulates behavior. Science 2013, 340, 449–453. [Google Scholar] [CrossRef]
- Meshcheryakov, V.N. The common pond snail Lymnaea stagnalis. In Animal Species for Developmental Studies Invertebrates; Dettlaff, T.A., Vassetzky, S.G., Eds.; Consultants Bureau: New York, NY, USA, 1990; Volume 1, pp. 69–132. [Google Scholar] [CrossRef]
- Morril, J.B. Development of Pulmonate Gastropod, Lymnaea. In Developmental Biology of Fresh Water Invertebrates; Harrison, F.W., Cowden, R.R., Eds.; Mc Grad Hill: New York, NY, USA, 1982; pp. 399–483. [Google Scholar]
- Goldstein, R.S.; Schwartz, J.H. Catecholamine neurons in Aplysia: Improved light-microscopic resolution and Ultrastructural study using paraformaldehyde and glutaraldehyde (FaGlu) cytochemistry. J. Neurobiol. 1989, 20, 203–218. [Google Scholar] [CrossRef]
- Wreford, N.; Singhaniyom, W.; Smith, G. Microspectrofluorometric characterization of the fluorescent derivatives of biogenic amines produced by aqueous aldehyde (Faglu) fixation. Histochem 1982, 14, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Jonkman, J.; Brown, C.M.; Wright, G.D.; Anderson, K.I.; North, A.J. Guidance for quantitative confocal microscopy. Nat. Protoc. 2020, 15, 1585–1611. [Google Scholar] [CrossRef] [PubMed]
- Shihan, M.H.; Novo, S.G.; Le Marchand, S.J.; Wang, Y.; Duncan, M.K. A simple method for quantitating confocal fluorescent images. Biochem. Biophys. Rep. 2021, 25, 100916. [Google Scholar] [CrossRef]
- Schmittgen, T.; Livak, K. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
Primer Sequences | Gene Name |
---|---|
TAA CTG CTG CTG CTT CAC | APDH-F |
GGA CTT CTT GGG AGA TAA CC | GAPDH-R |
GCT CAC GCC CAC AGT AAA CAT C | TPH-F |
GTC CAG CAA TGG TCA CAG TCT C | TPH-R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shestipalova, A.; Nikishchenko, V.; Bogomolov, A.; Voronezhskaya, E.E. Parental Serotonin Modulation Alters Monoamine Balance in Identified Neurons and Affects Locomotor Activity in Progeny of Lymnaea stagnalis (Mollusca: Gastropoda). Int. J. Mol. Sci. 2025, 26, 2454. https://doi.org/10.3390/ijms26062454
Shestipalova A, Nikishchenko V, Bogomolov A, Voronezhskaya EE. Parental Serotonin Modulation Alters Monoamine Balance in Identified Neurons and Affects Locomotor Activity in Progeny of Lymnaea stagnalis (Mollusca: Gastropoda). International Journal of Molecular Sciences. 2025; 26(6):2454. https://doi.org/10.3390/ijms26062454
Chicago/Turabian StyleShestipalova, Anastasiia, Viktoriya Nikishchenko, Anton Bogomolov, and Elena E. Voronezhskaya. 2025. "Parental Serotonin Modulation Alters Monoamine Balance in Identified Neurons and Affects Locomotor Activity in Progeny of Lymnaea stagnalis (Mollusca: Gastropoda)" International Journal of Molecular Sciences 26, no. 6: 2454. https://doi.org/10.3390/ijms26062454
APA StyleShestipalova, A., Nikishchenko, V., Bogomolov, A., & Voronezhskaya, E. E. (2025). Parental Serotonin Modulation Alters Monoamine Balance in Identified Neurons and Affects Locomotor Activity in Progeny of Lymnaea stagnalis (Mollusca: Gastropoda). International Journal of Molecular Sciences, 26(6), 2454. https://doi.org/10.3390/ijms26062454