Epididymal-Born circRNA Cargo and Its Implications in Male Fertility
Abstract
:1. Introduction
2. Epididymal Structure
3. Sperm Epididymal Maturation
4. CircRNAs and Male Fertility
5. CircRNAs and Epididymis: New Insights into Epididymal Backsplicing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Non-coding RNAs | ncRNAs |
Circular RNAs | circRNAs |
Differentially expressed circRNAs | DE-circRNAs |
BEB | Blood–Epididymal Barrier |
Tight junctions | TJs |
Claudin | CLDN |
Zona occludens | ZO |
Occludin | OCLN |
Connexin43 | CX43 |
RNA-binding proteins | RBPs |
Fused in sarcoma | FUS |
Quaking | QKI |
RNA polymerase II | RNApol2 |
CircRNA/miRNA/mRNA network | ceRNET |
Non-obstructive azoospermia | NOA |
Sertoli cell-only syndrome | SCOS |
High-fat diet | HFD |
Advanced paternal age | APA |
Hematoxylin and eosin | H&E |
RNA-Binding Protein Immunoprecipitation | RIP |
Quantitative RT-PCR | RT-qPCR |
References
- Binato de Souza, A.P.; Schorr-Lenz, A.M.; Lucca, F.; Bustamante-Filho, I.C. The epididymis and its role on sperm quality and male fertility. Anim. Reprod. 2017, 14, 1234–1244. [Google Scholar] [CrossRef]
- Elbashir, S.; Magdi, Y.; Rashed, A.; Henkel, R.; Agarwal, A. Epididymal contribution to male infertility: An overlooked problem. Andrologia 2021, 53, e13721. [Google Scholar] [CrossRef] [PubMed]
- Gervasi, M.G.; Visconti, P.E. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 2017, 5, 204–218. [Google Scholar] [CrossRef] [PubMed]
- James, E.R.; Carrell, D.T.; Aston, K.I.; Jenkins, T.G.; Yeste, M.; Salas-Huetos, A. The Role of the Epididymis and the Contribution of Epididymosomes to Mammalian Reproduction. Int. J. Mol. Sci. 2020, 21, 5377. [Google Scholar] [CrossRef] [PubMed]
- Trigg, N.A.; Eamens, A.L.; Nixon, B. The contribution of epididymosomes to the sperm small RNA profile. Reproduction 2019, 157, R209–R223. [Google Scholar] [CrossRef]
- Sullivan, R.; Saez, F. Epididymosomes, prostasomes, and liposomes: Their roles in mammalian male reproductive physiology. Reproduction 2013, 146, R21–R35. [Google Scholar] [CrossRef]
- Sullivan, R. Epididymosomes: A heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian J. Androl. 2015, 17, 726–729. [Google Scholar] [CrossRef]
- Nixon, B.; De Iuliis, G.N.; Dun, M.D.; Zhou, W.; Trigg, N.A.; Eamens, A.L. Profiling of epididymal small non-protein-coding RNAs. Andrology 2019, 7, 669–680. [Google Scholar] [CrossRef]
- Méar, L.O.; Tsai, P.S.; Tamessar, C.T.; Schjenken, J.S.; Nixon, B. Epididymosomes: Composition and Functions for Sperm Maturation. Adv. Anat. Embryol. Cell Biol. 2024. [Google Scholar] [CrossRef]
- Zhou, W.; De Iuliis, G.N.; Dun, M.D.; Nixon, B. Characteristics of the epididymal luminal environment responsible for sperm maturation and storage. Front. Endocrinol. 2018, 9, 59. [Google Scholar] [CrossRef]
- Chioccarelli, T.; Manfrevola, F.; Ferraro, B.; Sellitto, C.; Cobellis, G.; Migliaccio, M.; Fasano, S.; Pierantoni, R.; Chianese, R. Expression Patterns of CircularRNAs in High Quality and Poor Quality Human Spermatozoa. Front. Endocrinol. 2019, 10, 435. [Google Scholar] [CrossRef] [PubMed]
- Manfrevola, F.; Chioccarelli, T.; Cobellis, G.; Fasano, S.; Ferraro, B.; Sellitto, C.; Marella, G.; Pierantoni, R.; Chianese, R. CircRNA Role and circRNA-Dependent Network (ceRNET) in Asthenozoospermia. Front. Endocrinol. 2020, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Manfrevola, F.; Ferraro, B.; Sellitto, C.; Rocco, D.; Fasano, S.; Pierantoni, R.; Chianese, R. CRISP2, CATSPER1 and PATE1 Expression in Human Asthenozoospermic Semen. Cells 2021, 10, 1956. [Google Scholar] [CrossRef]
- Manfrevola, F.; Chioccarelli, T.; Mele, V.G.; Porreca, V.; Mattia, M.; Cimini, D.; D’Agostino, A.; Cobellis, G.; Fasano, S.; Schiraldi, C.; et al. Novel Insights into circRNA Saga Coming from Spermatozoa and Epididymis of HFD Mice. Int. J. Mol. Sci. 2023, 24, 6865. [Google Scholar] [CrossRef] [PubMed]
- Mele, V.G.; Chioccarelli, T.; Finamore, R.; D’Agostino, A.; D’Agostino, M.; Cimini, D.; Mattia, M.; Porreca, V.; Giori, A.M.; Fasano, S.; et al. Antioxidants positively regulate obesity dependent circRNAs-sperm quality-functional axis. Front. Endocrinol. 2023, 14, 1290971. [Google Scholar] [CrossRef] [PubMed]
- Manfrevola, F.; Potenza, N.; Chioccarelli, T.; Di Palo, A.; Siniscalchi, C.; Porreca, V.; Scialla, A.; Mele, V.G.; Petito, G.; Russo, A.; et al. Actin remodeling driven by circLIMA1: Sperm cell as an intriguing cellular model. Int. J. Biol. Sci. 2022, 18, 5136–5153. [Google Scholar] [CrossRef]
- Mele, V.G.; Chioccarelli, T.; Diano, N.; Cappetta, D.; Ferraro, B.; Telesca, M.; Moggio, M.; Porreca, V.; De Angelis, A.; Berrino, L.; et al. Variation of sperm quality and circular RNA content in men exposed to environmental contamination with heavy metals in ’Land of Fires’, Italy. Hum. Reprod. 2024, 39, 1628–1644. [Google Scholar] [CrossRef]
- Jones, R.; Lopez, K.H. Human Reproductive Biology, 4th ed.; Academic Press: Cambridge, NY, USA, 2004. [Google Scholar]
- Cornwall, G.A. New insights into epididymal biology and function. Hum. Reprod. Updat. 2009, 15, 213–227. [Google Scholar] [CrossRef]
- Murashima, A.; Bingfang, X.; Hinton, B.T. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice. Asian J. Androl. 2015, 17, 749–755. [Google Scholar]
- De Mello Santos, T.; Hinton, B.T. We, the developing rete testis, efferent ducts, and Wolffian duct, all hereby agree that we need to connect. Andrology 2019, 7, 581–587. [Google Scholar] [CrossRef]
- Breton, S.; Nair, A.V.; Battistone, M.A. Epithelial dynamics in the epididymis: Role in the maturation, protection, and storage of Spermatozoa. Andrology 2019, 7, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Adamali, H.I.; Hermo, L. Apical and narrow cells are distinct cell types differing in their structure, distribution, and functions in the adult rat epididymis. J. Androl. 1996, 17, 208–222. [Google Scholar] [CrossRef] [PubMed]
- Seiler, P.; Wenzel, I.; Wagenfeld, A.; Yeung, C.H.; Nieschlag, E.; Cooper, T.G. The appearance of basal cells in the developing murine epididymis and their temporal expression of macrophage antigens. Int. J. Androl. 1998, 21, 217–226. [Google Scholar] [CrossRef]
- Mandon, M.; Hermo, L.; Cyr, D.G. Isolated Rat Epididymal Basal Cells Share Common Properties with Adult Stem Cells. Biol. Reprod. 2015, 93, 115. [Google Scholar] [CrossRef] [PubMed]
- Leung, G.P.; Cheung, K.H.; Leung, C.T.; Tsang, M.W.; Wong, P.Y. Regulation of epididymal principal cell functions by basal cells: Role of transient receptor potential (Trp) proteins and cyclooxygenase-1 (COX-1). Mol. Cell Endocrinol. 2004, 216, 5–13. [Google Scholar] [CrossRef]
- Robaire, B.; Hinton, B.T.; Orgebin-Crist, M. The Epididymis. In Knobil and Neill’s Physiology of Reproduction, 3rd ed.; Neill, K., Ed.; Academic Press: Cambridge, NY, USA, 2006. [Google Scholar]
- Shum, W.W.; Ruan, Y.C.; Da Silva, N.; Breton, S. Establishment of cell-cell cross talk in the epididymis: Control of luminal acidification. J. Androl. 2011, 32, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, J.; Gregory, M.; Pinel, L.; Cyr, D.G. Three-Dimensional Cell Culture of Epididymal Basal Cells and Organoids: A Novel Tool for Toxicology. Curr. Protoc. 2024, 4, e975. [Google Scholar] [CrossRef]
- Park, Y.J.; Battistone, M.A.; Kim, B.; Breton, S. Relative contribution of clear cells and principal cells to luminal pH in the mouse epididymis. Biol. Reprod. 2017, 96, 366–375. [Google Scholar] [CrossRef]
- Mital, P.; Hinton, B.T.; Dufour, J.M. The Blood-Testis and Blood-Epididymis Barriers Are More than Just Their Tight Junctions. Biol. Reprod. 2011, 84, 851–858. [Google Scholar] [CrossRef]
- Manfrevola, F.; Martinez, G.; Coutton, C.; Rocco, D.; Reynaud, K.; Le Vern, Y.; Froment, P.; Beauclair, L.; Aubert, D.; Pierantoni, R.; et al. Ankrd31 in Sperm and Epididymal Integrity. Front. Cell. Dev. Biol. 2021, 9, 741975. [Google Scholar] [CrossRef]
- Dubé, E.; Dufresne, J.; Chan, P.T.K.; Hermo, L.; Cyr, D.G. Assessing the role of claudins in maintaining the integrity of epididymal tight junctions using novel human epididymal cell lines. Biol. Reprod. 2010, 82, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Cyr, D.G.; Hermo, L.; Blaschuk, O.W.; Robaire, B. Distribution and regulation of epithelial-cadherin messenger ribonucleic acid and immunocytochemical localization of epithelial cadherin in the rat epididymis. Endocrinology 1992, 130, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Cyr, D.G.; Gregory, M.; Dubé, E.; Dufresne, J.; Chan, P.T.K.; Hermo, L. Orchestration of occludins, claudins, catenins and cadherins as players involved in maintenance of the blood-epididymal barrier in animals and humans. Asian J. Androl. 2007, 9, 463–475. [Google Scholar] [CrossRef]
- Cyr, D.G. Connexins and pannexins. coordinating cellular communication in the testis and epididymis. Spermatogenesis 2011, 1, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Elfgen, V.; Mietens, A.; Mewe, M.; Hau, T.; Middendorff, R. Contractility of the epididymal duct: Function, regulation and potential drug effects. Reproduction 2018, 156, R125–R141. [Google Scholar] [CrossRef]
- Töpfer-Petersen, E.; Petrounkina, A.M.; Ekhlasi-Hundrieser, M. Oocyte-sperm interactions. Anim. Reprod. Sci. 2000, 60–61, 653–662. [Google Scholar] [CrossRef]
- Maldera, J.A.; Weigel Muñoz, M.; Chirinos, M.; Busso, D.; Raffo, F.G.E.; Battistone, M.A.; Blaquier, J.A.; Larrea, F.; Cuasnicu, P.S. Human fertilization: Epididymal hCRISP1 mediates sperm-zona pellucida binding through its interaction with ZP3. Mol. Hum. Reprod. 2014, 20, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Skerget, S.; Rosenow, M.A.; Petritis, K.; Karr, T.L. Sperm Proteome Maturation in the Mouse Epididymis. PLoS ONE 2015, 10, e0140650. [Google Scholar] [CrossRef]
- Wong, G.E.; Zhu, X.; Prater, C.E.; Oh, E.; Evans, J.P. Analysis of fertilin alpha (ADAM1)-mediated sperm-egg cell adhesion during fertilization and identification of an adhesion-mediating sequence in the disintegrin-like domain. J. Biol. Chem. 2001, 276, 24937–24945. [Google Scholar] [CrossRef]
- Sullivan, R.; Mieusset, R. The human epididymis: Its function in sperm maturation. Hum. Reprod. Updat. 2016, 22, 574–587. [Google Scholar] [CrossRef]
- Martinez, G.; Cappetta, D.; Telesca, M.; Urbanek, K.; Castaldo, G.; Dhellemmes, M.; Mele, V.G.; Chioccarelli, T.; Porreca, V.; Barbotin, A.L.; et al. Cytochalasin D restores nuclear size acting on F-actin and IZUMO1 localization in low-quality spermatozoa. Int. J. Biol. Sci. 2023, 19, 2234–2255. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, C. Orchestrating the antioxidant defenses in the epididymis. Andrology 2019, 7, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Chianese, R.; Pierantoni, R. Mitochondrial Reactive Oxygen Species (ROS) Production Alters Sperm Quality. Antioxidants 2021, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.L.; Yang, L. Regulation of circRNA biogenesis. RNA Biol. 2015, 12, 381–388. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Chen, L.L. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol. Cell. 2018, 71, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.W.; Li, H.M.; Qing, X.R.; Huang, D.H.; Li, H.G. Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma. Sci. Rep. 2016, 6, 39080. [Google Scholar] [CrossRef]
- Lin, X.; Han, M.; Cheng, L.; Chen, J.; Zhang, Z.; Shen, T.; Wang, M.; Wen, B.; Ni, T.; Han, C. Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA Biol. 2016, 13, 1011–1024. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Xie, X.; Li, M.; Shi, J.; Zhou, J.J.; Knox, K.S.; Wang, T.; Chen, Q.; Gu, W. Rat BodyMap transcriptomes reveal unique circular RNA features across tissue types and developmental stages. RNA 2018, 24, 1443–1456. [Google Scholar] [CrossRef]
- Zhu, F.; Luo, Y.; Bo, H.; Gong, G.; Tang, R.; Fan, J.; Zhang, H.; Liu, G.; Zhu, W.; Tan, Y.; et al. Trace the profile and function of circular RNAs in Sertoli cell only syndrome. Genomics 2021, 113, 1845–1854. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Li, Y.; Akhtar, F.; Wang, C.; Zhang, Q. Identification of Circular RNAs of Testis and Caput Epididymis and Prediction of Their Potential Functional Roles in Donkeys. Genes 2022, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Yue, D.; Yang, R.; Xiong, C.; Yang, R. Functional prediction and profiling of exosomal circRNAs derived from seminal plasma for the diagnosis and treatment of oligoasthenospermia. Exp. Ther. Med. 2022, 24, 649. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H.; Zheng, L.; Zhang, H.; Yang, Y.; Mao, J.; Liu, D.; Zhao, L.; Liang, H.; Jiang, H. Identification and characterization of circular RNAs in the testicular tissue of patients with non-obstructive azoospermia. Asian J. Androl. 2022, 24, 660–665. [Google Scholar] [CrossRef] [PubMed]
- La, Y.; Ma, X.; Bao, P.; Chu, M.; Yan, P.; Liang, C.; Guo, X. Genome-wide landscape of mRNAs, lncRNAs, and circRNAs during testicular development of yak. Int. J. Mol. Sci. 2023, 24, 4420. [Google Scholar] [CrossRef] [PubMed]
- Babakhanzadeh, E.; Hoseininasab, F.A.; Khodadadian, A.; Nazari, M.; Hajati, R.; Ghafouri-Fard, S. Circular RNAs: Novel noncoding players in male infertility. Hereditas 2024, 161, 46. [Google Scholar] [CrossRef]
- Yan, Q.; Wang, Q. Exploring the Characters of Non-Coding RNAs in Spermatogenesis and Male Infertility. Int. J. Mol. Sci. 2025, 25, 1128. [Google Scholar] [CrossRef]
- Saberiyan, M.; Karimi, E.; Safi, A.; Movahhed, P.; Dehdehi, L.; Haririan, N.; Mirfakhraie, R. Circular RNAs: Novel Biomarkers in Spermatogenesis Defects and Male Infertility. Reprod. Sci. 2023, 30, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Chen, W.; Jiang, Y.; He, Z. Regulation of long non-coding RNAs and circular RNAs in spermatogonial stem cells. Reproduction 2019, 158, R15–R25. [Google Scholar] [CrossRef]
- Tang, W.; Xu, Q.H.; Chen, X.; Guo, W.; Ao, Z.; Fu, K.; Ji, T.; Zou, Y.; Chen, J.J.; Zhang, Y. Transcriptome sequencing reveals the effects of circRNA on testicular development and spermatogenesis in Qianbei Ma Goats. Front. Vet. Sci. 2023, 10, 1167758. [Google Scholar] [CrossRef]
- Sahlu, B.W.; Wang, H.; Hu, Z.; Heng, N.; Gong, J.; Wang, H.; Zhu, H.; Zhao, S. Identification of a circRNA-miRNA-mRNA network to explore the effects of circRNAs on Holstein bull testis after sexual maturity. Anim. Reprod. Sci. 2023, 258, 107360. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, X.; Ning, W.; Zhang, X.; Ru, Z.; Wang, S.; Sheng, M.; Zhang, J.; Zhang, X.; Luo, H.; et al. Expression analysis of circular RNAs in Young and sexually mature boar testes. Animals 2021, 11, 1430. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.; Gupta, M.K. Transcriptome Analysis Reveals Spermatogenesis-Related CircRNAs and LncRNAs in Goat Spermatozoa. Biochem. Genet. 2024, 62, 2010–2032. [Google Scholar] [CrossRef] [PubMed]
- El-Gamal, R.; Zalata, A.; Mazroa, S.A.; Comhaire, F.; Gamal, A.; Shaker, O.G.; Hazem, N.M. Evaluation of circANKLE2 & circL3MBTL4-RNAs Expression in Fertile and Infertile Men. Biochem. Genet. 2024, 1–18. [Google Scholar] [CrossRef]
- Cheng, L.; Jin, H.; Xiao, T.; Yang, X.; Zhao, T.; Xu, E.Y. Human circBOULE RNAs as potential biomarkers for sperm quality and male infertility. J. Biomed. Res. 2024, 38, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, M.; Barbagallo, D.; Chioccarelli, T.; Manfrevola, F.; Cobellis, G.; Di Pietro, C.; Brex, D.; Battaglia, R.; Fasano, S.; Ferraro, B.; et al. CircNAPEPLD is expressed in human and murine spermatozoa and physically interacts with oocyte miRNAs. RNA Biol. 2019, 16, 1237–1248. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhang, X.; Wu, X.; Guo, H.; Hu, Y.; Tang, F.; Huang, Y. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015, 16, 148. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Yan, L.; Hu, B.; Fan, X.; Ren, Y.; Li, R.; Lian, Y.; Yan, J.; Li, Q.; Zhang, Y.; et al. Tracing the expression of circular RNAs in human pre-implantation embryos. Genome Biol. 2016, 17, 130. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, Y.; He, J.; Zhang, J.; Liu, X.; Chen, X.; Su, Y.; Wang, Y.; Gao, R. Altered expression patterns of circular RNAs between implantation sites and interimplantation sites in early pregnant mice. J. Cell Physiol. 2018, 234, 9862–9872. [Google Scholar] [CrossRef]
- Chioccarelli, T.; Falco, G.; Cappetta, D.; De Angelis, A.; Roberto, L.; Addeo, M.; Ragusa, M.; Barbagallo, D.; Berrino, L.; Purrello, M.; et al. FUS driven circCNOT6L biogenesis in mouse and human spermatozoa supports zygote development. Cell Mol. Life Sci. 2021, 79, 50. [Google Scholar] [CrossRef]
- Loux, S.C.; Crawford, K.R.; Ing, N.H.; González-Fernández, L.; Macías-García, B.; Love, C.C.; Varner, D.D.; Velez, I.C.; Choi, Y.H.; Hinrichs, K. CatSper and the relationship of hyperactivated motility to intracellular calcium and pH kinetics in equine sperm. Biol. Reprod. 2013, 89, 123. [Google Scholar] [CrossRef]
- Avenarius, M.R.; Hildebrand, M.S.; Zhang, Y.; Meyer, N.C.; Smith, L.L.; Kahrizi, K.; Najmabadi, H.; Smith, R.J. Human male infertility caused by mutations in the CATSPER1 channel protein. Am. J. Hum. Genet. 2009, 84, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.J.; Liu, X.; Han, J.L.; Wang, Y.W.; Jin, S.H.; Liu, X.X.; Liu, J.; Wang, W.T.; Wang, W.J. Aged men share the sperm protein PATE1 defect with young asthenozoospermia patients. Hum. Reprod. 2015, 30, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Q.M.; Ding, X.P.; Wang, T.; Mu, X.M.; Chen, Z.Y. Association of polymorphisms in PATE1 gene with idiopathic asthenozoospermia in Sichuan, China. J. Reprod. Immunol. 2016, 118, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Heidary, Z.; Zaki-Dizaji, M.; Saliminejad, K.; Khorramkhorshid, H.R. Expression analysis of the CRISP2, CATSPER1, PATE1 and SEMG1 in the sperm of men with idiopathic asthenozoospermia. J. Reprod. Infertility. 2019, 20, 70. [Google Scholar]
- Wu, Y.; Li, H.; Zhao, X.; Baki, G.; Ma, C.; Yao, Y.; Li, J.; Yao, Y.; Wang, L. Differential expression of circRNAs of testes with high and low sperm motility in Yili geese. Front. Genet. 2022, 13, 970097. [Google Scholar] [CrossRef]
- Ge, P.; Zhang, J.; Zhou, L.; Lv, M.Q.; Li, Y.X.; Wang, J.; Zhou, D.X. CircRNA expression profile and functional analysis in testicular tissue of patients with non-obstructive azoospermia. Reprod. Biol. Endocrinol. 2019, 17, 100. [Google Scholar] [CrossRef] [PubMed]
- Bo, H.; Liu, Z.; Tang, R.; Gong, G.; Wang, X.; Zhang, H.; Zhu, F.; Zhou, D.; Zhu, W.; Tan, Y.; et al. Testicular biopsies microarray analysis reveals circRNAs are involved in the pathogenesis of non-obstructive azoospermia. Aging 2020, 12, 2610–2625. [Google Scholar] [CrossRef]
- Liu, L.; Li, F.; Wen, Z.; Li, T.; Lv, M.; Zhao, X.; Zhang, W.; Liu, J.; Wang, L.; Ma, X. Preliminary investigation of the function of hsa_circ_0049356 in nonobstructive azoospermia patients. Andrologia 2020, 52, e13814. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, A.; Ji, H.; Ji, J.; Sun, J.; Ling, Z.; Li, G.; Ling, X.; Xu, L.; Chen, X. Expression profiles of circular RNAs in spermatozoa from aging men. Mol. Biol. Rep. 2023, 50, 8081–8088. [Google Scholar] [CrossRef]
- Zhou, W.; Stanger, S.J.; Anderson, A.L.; Bernstein, I.R.; De Iuliis, G.N.; McCluskey, A.; McLaughlin, E.A.; Dun, M.D.; Nixon, B. Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions. BMC Biol. 2019, 17, 35. [Google Scholar] [CrossRef]
- Reilly, J.N.; McLaughlin, E.A.; Stanger, S.J.; Anderson, A.L.; Hutcheon, K.; Church, K.; Mihalas, B.P.; Tyagi, S.; Holt, J.E.; Eamens, A.L.; et al. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci. Rep. 2016, 6, 31794. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Conine, C.C.; Shea, J.M.; Boskovic, A.; Derr, A.G.; Bing, X.Y.; Belleannee, C.; Kucukural, A.; Serra, R.W.; Sun, F.; et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 2016, 351, 391–396. [Google Scholar] [CrossRef]
- Sharma, U.; Sun, F.; Conine, C.C.; Reichholf, B.; Kukreja, S.; Herzog, V.A.; Ameres, S.L.; Rando, O.J. Small RNAs Are Trafficked from the Epididymis to Developing Mammalian Sperm. Dev. Cell. 2018, 46, 481–494. [Google Scholar] [CrossRef]
- Conine, C.C.; Sun, F.; Song, L.; Rivera-Pérez, J.A.; Rando, O.J. Small RNAs Gained during Epididymal Transit of Sperm Are Essential for Embryonic Development in Mice. Dev. Cell. 2018, 46, 470–480. [Google Scholar] [CrossRef]
- Chen, Q.; Yan, M.; Cao, Z.; Li, X.; Zhang, Y.; Shi, J.; Feng, G.H.; Peng, H.; Zhang, X.; Zhang, Y.; et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2016, 351, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Boskovic, A.; Bing, X.Y.; Kaymak, E.; Rando, O.J. Control of noncoding RNA production and histone levels by a 5′ tRNA fragment. Genes Dev. 2020, 34, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yu, M.; Liu, C.; Wang, L.; Hu, Y.; Bai, Y.; Hua, J. MIR-34c regulates mouse embryonic stem cells differentiation into male germ-like cells through RARg. Cell. Biochem. Funct. 2012, 30, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Tang, C.; Zhang, Y.; Wu, J.; Bao, J.; Zheng, H.; Xu, C.; Yan, W. mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol. Open 2015, 4, 212–223. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Zhang, M.; Du, Y.; Zhang, Y.; Xing, X.; Zhang, L.; Su, J.; Zhang, Y.; Zheng, Y. MicroRNA-34c expression in donor cells influences the early development of somatic cell nuclear transfer bovine embryos. Cell Reprogram. 2014, 16, 418–427. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Shi, J.; Tuorto, F.; Li, X.; Liu, Y.; Liebers, R.; Zhang, L.; Qu, Y.; Qian, J.; et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat. Cell Biol. 2018, 20, 535–540. [Google Scholar] [CrossRef]
- Short, A.K.; Yeshurun, S.; Powell, R.; Perreau, V.M.; Fox, A.; Kim, J.H.; Pang, T.Y.; Hannan, A.J. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety. Transl. Psychiatry 2017, 7, e1114. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, V.; Fourré, S.; De Abreu, D.A.; Derieppe, M.A.; Remy, J.J.; Rassoulzadegan, M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 2015, 5, 18193. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.A.; Paulus, J.K.; Mensah, V.; Lem, J.; Saavedra-Rodriguez, L.; Gentry, A.; Pagidas, K.; Feig, L.A. Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress. Transl. Psychiatry 2018, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.; Morgan, C.P.; Adrian Leu, N.; Shetty, A.; Cisse, Y.M.; Nugent, B.M.; Morrison, K.E.; Jašarević, E.; Huang, W.; Kanyuch, N.; et al. Reproductive tract extracellular vesicles are sufficient to transmit intergenerational stress and program neurodevelopment. Nat. Commun. 2020, 11, 1499. [Google Scholar] [CrossRef] [PubMed]
- de Castro Barbosa, T.; Ingerslev, L.R.; Alm, P.S.; Versteyhe, S.; Massart, J.; Rasmussen, M.; Donkin, I.; Sjögren, R.; Mudry, J.M.; Vetterli, L.; et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol. Metab. 2015, 5, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yan, Y.; Pan, C.; Adjei, M.; Shahzad, K.; Wang, P.; Pan, M.; Li, K.; Wang, Y.; Zhao, W. Identification and analysis of differentially expressed (DE) circRNA in epididymis of yak and cattleyak. Front. Vet. Sci. 2023, 10, 1040419. [Google Scholar] [CrossRef]
- Breton, S.; Ruan, Y.C.; Park, Y.J.; Kim, B. Regulation of epithelial function, differentiation, and remodeling in the epididymis. Asian J. Androl. 2016, 18, 3–9. [Google Scholar] [CrossRef]
- Endo, T.; Kobayashi, K.; Matsumura, T.; Emori, C.; Ozawa, M.; Kawamoto, S.; Okuzaki, D.; Shimada, K.; Miyata, H.; Shimada, K.; et al. Multiple ageing effects on testicular/epididymal germ cells lead to decreased male fertility in mice. Commun. Biol. 2024, 7, 16. [Google Scholar] [CrossRef]
- Manfrevola, F.; Chioccarelli, T.; Cobellis, G.; Chianese, R. (University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy). Unpublished work, 2025.
Biological Target | Functional Implications | References |
---|---|---|
Germ cells | CircRNAs implicated in control of male germ cell lineage | [60] |
Spermatogenesis | CircRNAs implicated in spermatogenesis and testis development | [61,62,63,64] |
Sperm morpho-functional skills | CircRNAs implicated in sperm morphology and motility | [11,65,66] |
Zygote | CircRNAs implicated in embryo development | [67,68,69,70,71] |
Pathological Condition | Functional Implications | References |
---|---|---|
Asthenozoospermia | CircRNAs implicated in sperm motility pathways | [12,13,65,66,77] |
Non-obstructive azoospermia (NOA) | CircRNAs implicated in axoneme assembly and microtubule-based pathways | [55,78,79,80] |
Sertoli cell-only syndrome (SCOS) | CircRNAs implicated in Sertoli cell and microenvironmental dysfunctions | [52] |
Obesity | CircRNAs implicated in sperm oxidative stress pathways | [14,15] |
Advanced paternal age (APA) | CircRNAs implicated in DNA repair and meiotic recombination pathways | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manfrevola, F.; Mosca, N.; Mele, V.G.; Chioccarelli, T.; Migliaccio, A.; Mattia, M.; Pezzullo, M.; Cobellis, G.; Potenza, N.; Chianese, R. Epididymal-Born circRNA Cargo and Its Implications in Male Fertility. Int. J. Mol. Sci. 2025, 26, 2614. https://doi.org/10.3390/ijms26062614
Manfrevola F, Mosca N, Mele VG, Chioccarelli T, Migliaccio A, Mattia M, Pezzullo M, Cobellis G, Potenza N, Chianese R. Epididymal-Born circRNA Cargo and Its Implications in Male Fertility. International Journal of Molecular Sciences. 2025; 26(6):2614. https://doi.org/10.3390/ijms26062614
Chicago/Turabian StyleManfrevola, Francesco, Nicola Mosca, Vincenza Grazia Mele, Teresa Chioccarelli, Antonella Migliaccio, Monica Mattia, Mariaceleste Pezzullo, Gilda Cobellis, Nicoletta Potenza, and Rosanna Chianese. 2025. "Epididymal-Born circRNA Cargo and Its Implications in Male Fertility" International Journal of Molecular Sciences 26, no. 6: 2614. https://doi.org/10.3390/ijms26062614
APA StyleManfrevola, F., Mosca, N., Mele, V. G., Chioccarelli, T., Migliaccio, A., Mattia, M., Pezzullo, M., Cobellis, G., Potenza, N., & Chianese, R. (2025). Epididymal-Born circRNA Cargo and Its Implications in Male Fertility. International Journal of Molecular Sciences, 26(6), 2614. https://doi.org/10.3390/ijms26062614