The Silent Conversation: How Small RNAs Shape Plant–Microbe Relationships
Abstract
:1. Introduction
2. Exploring Pathogen–Plant Communication: The Mechanisms and Challenges of ckRNAi
2.1. Pathogen Strategies: Exploiting Cross-Kingdom RNA Interference to Modulate Plant Immunity
2.2. Plant-Offensive: Utilizing Cross-Kingdom RNA Interference to Target Pathogen Virulence
Host Species | Parasite/Mutualist Species | Type of Interaction | Target Gene(s) or Gene Ontology (GO) Terms | sRNA | Reference |
---|---|---|---|---|---|
Glycine max | Bradyrhizobium japonicum | Mutualistic | ROOTHAIRDEFECTIVE3 (RHD3a/RHD3b) HAIRYMERISTEM4 (HAM4a/HAM4b) LEUCINE-RICHREPEAT EXTENSION-LIKE5 (LRX5) | 21 nt tRNA fragments (tRFs) Bj-tRF001, Bj-tRF002, Bj-tRF003 | [7] |
Arabidopsis thaliana | Botrytis cinerea | Pathogenic | PRXIIF (peroxiredoxin) MPK1 MPK2 Wall-associated kinase | 21 nt sRNAs Bc-siR3.1, Bc-siR3.2, Bc-siR5 | [10] |
Solanum lycopersicum | Botrytis cinerea | Pathogenic | MAPKKK4 (Mitogen-activated protein kinase kinase kinase) | 21 nt sRNA Bc-siR5 | [10] |
Arabidopsis thaliana | Botrytis cinerea | Pathogenic | WRK7 WRKY57 FEI2 (LRR-RK) PMR6 (pectinlyase) ATG5 (defensin) | Bc-siR37 | [9] |
Triticum aestivum | Puccinia striiformis f. sp. tritici | Pathogenic | Pathogenesis-related2 (PR2) gene SM638 (b1,3glucanase) | miRNA-like (milR1) | [9] |
Arabidopsis thaliana | Cuscuta campestris | Pathogenic | TIR1 AFB2, AFB3, BIK1 SEOR1 (phloem protein) HSFB4 (transcriptional repressor) | 22 nt miRNAs e.g., miR393 | [27] |
Arabidopsis thaliana | Sclerotinia sclerotiorum | Pathogenic | SNAK2 (SNF1-related kinase) SERK2 (somaticembryogenesis receptor-like kinase2) | 22–23 nt TE-derived sRNAs | [28] |
Solanum lycopersicum | Fusarium oxysporum f. sp. lycopersici | Pathogenic | FRG4 (calcineurinB-like-interacting protein kinase) | 23 nt miRNA-like Fol-milR1 | [16] |
Triticum aestivum | Puccinia striiformis f. sp. tritici | Pathogenic | 19 target genes including: TraesCS2D02G510300.1 (NB LRR) TraesCS3A02G302100.1 (glutathione S-transferase) TraesCS7B02G299200.1, TraesCS4D02G316900.1 (bZIP transcription factors) | 1720–21 nt sRNAs | [29] |
Malus x domestica | Valsa mali | Pathogenic | RLKT1, RLKT2 (receptor-like protein kinases involved in defence signaling) | miRNA-like Vm-milR1 | [30] |
Solanum lycopersicum | Botrytis cinerea | Pathogenic | ATG2 (Autophagy-related2) MPKKK4 (Mitogen-activated protein kinase kinase kinase) PPR (Pentatrico peptide repeat protein) ACIF1 (Avr9/Cf-9–INDUCEDF BOX1) | 21 nt sRNAs Bc-siR3.1, Bc-siR3.2, Bc-siR5 | [19] |
Oryza sativa | Xanthomonas oryzae pv. oryzicola | Pathogenic | JMT1 (Jasmonate methyltransferase) | Xosr001 | [31] |
Gossypium hirsutum | Verticillium dahliae | Pathogenic | Ca2+ dependent cysteine protease (Clp-1), isotrichodermin C-15 hydroxylase (HiC-15) | miR166, miR159 | [32] |
Arabidopsis thaliana | Botrytis cinerea | Pathogenic | BC1G_10728–Vps51 (Vacuolar protein sorting 51) BC1G_10508–DCTN1 (dynactin subunit) BC1G_08464-Suppressor of Actin (SAC1)-like phosphoinositide phosphatase | TAS1c-siR483, TAS2-siR453 | [23] |
Triticum aestivum | Puccinia striiformis f. sp. tritici | Pathogenic | 9 target transcripts including: KNF02052, KNF02053 (glycosyl hydrolase family 26), KNE96707 (60S ribosomal protein L11) | 818–24 nt sRNAs | [29] |
Arabidopsis thaliana | Verticillium dahliae | Pathogenic | Ca2+ dependent cysteine protease (Clp-1), isotrichodermin C-15 hydroxylase (HiC-15) | miR166, miR159 | [33] |
2.3. Extracellular Vesicles in Plant–Microbe Dialogues: Mechanisms and Controversies
3. The Role of sRNAs in Mutualistic Symbiosis
3.1. Microbe-to-Plant Communication in Mutualistic Interactions
3.2. Plant-to-Microbial Symbiont Communication
3.3. Evidence for RNA Transport in AM Symbiosis
4. Challenges and Limitations in Investigating ckRNAi Mechanisms in Plant–Microbe Interactions
5. Future Directions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Delaux, P.-M.; Schornack, S. Plant Evolution Driven by Interactions with Symbiotic and Pathogenic Microbes. Science 2021, 371, eaba6605. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.E.; Groten, K. The Costs and Benefits of Plant–Arbuscular Mycorrhizal Fungal Interactions. Annu. Rev. Plant Biol. 2022, 73, 649–672. [Google Scholar] [CrossRef] [PubMed]
- Luginbuehl, L.H.; Menard, G.N.; Kurup, S.; Van Erp, H.; Radhakrishnan, G.V.; Breakspear, A.; Oldroyd, G.E.D.; Eastmond, P.J. Fatty Acids in Arbuscular Mycorrhizal Fungi Are Synthesized by the Host Plant. Science 2017, 356, 1175–1178. [Google Scholar] [CrossRef]
- Rich, M.K.; Nouri, E.; Courty, P.-E.; Reinhardt, D. Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter? Trends Plant Sci. 2017, 22, 652–660. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Wang, H.; Hu, P.; Hamby, R.; Jin, H. Small RNAs—Big Players in Plant-Microbe Interactions. Cell Host Microbe 2019, 26, 173–182. [Google Scholar] [CrossRef]
- Zhan, J.; Meyers, B.C. Plant Small RNAs: Their Biogenesis, Regulatory Roles, and Functions. Annu. Rev. Plant Biol. 2023, 74, 21–51. [Google Scholar] [CrossRef]
- Ren, B.; Wang, X.; Duan, J.; Ma, J. Rhizobial tRNA-Derived Small RNAs Are Signal Molecules Regulating Plant Nodulation. Science 2019, 365, 919–922. [Google Scholar] [CrossRef]
- Sánchez-Correa, M.D.S.; Isidra-Arellano, M.C.; Pozas-Rodríguez, E.A.; Reyero-Saavedra, M.D.R.; Morales-Salazar, A.; Del Castillo, S.M.L.-C.; Sanchez-Flores, A.; Jiménez-Jacinto, V.; Reyes, J.L.; Formey, D.; et al. Argonaute5 and Its Associated Small RNAs Modulate the Transcriptional Response during the Rhizobia-Phaseolus Vulgaris Symbiosis. Front. Plant Sci. 2022, 13, 1034419. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Weiberg, A.; Dellota, E.; Yamane, D.; Jin, H. Botrytis Small RNA Bc -siR37 Suppresses Plant Defense Genes by Cross-Kingdom RNAi. RNA Biol. 2017, 14, 421–428. [Google Scholar] [CrossRef]
- Weiberg, A.; Wang, M.; Lin, F.-M.; Zhao, H.; Zhang, Z.; Kaloshian, I.; Huang, H.-D.; Jin, H. Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. Science 2013, 342, 118–123. [Google Scholar] [CrossRef]
- Meenu, S.-R.; Magali, C.; Odon, T.; Alvaro, L.M.; Thiebeauld, O.; Perez-Quintero, A.L.; Candat, A.; Lebeau, L.; Emidio Fortunato, A.; Mendu, V.; et al. Plant Small RNA Species Direct Gene Silencing in Pathogenic Bacteria as Well as Disease Protection. 2019. hal-02422538. Available online: https://hal.science/hal-02422538/file/Singla%20et%20al%20BioRxiv%202019.pdf (accessed on 1 February 2025).
- Silvestri, A.; Turina, M.; Fiorilli, V.; Miozzi, L.; Venice, F.; Bonfante, P.; Lanfranco, L. Different Genetic Sources Contribute to the Small RNA Population in the Arbuscular Mycorrhizal Fungus Gigaspora Margarita. Front. Microbiol. 2020, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Mewalal, R.; Yin, H.; Hu, R.; Jawdy, S.; Vion, P.; Tuskan, G.A.; Le Tacon, F.; Labbé, J.L.; Yang, X. Identification of Populus Small RNAs Responsive to Mutualistic Interactions with Mycorrhizal Fungi, Laccaria Bicolor and Rhizophagus Irregularis. Front. Microbiol. 2019, 10, 515. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Bidirectional Cross-Kingdom RNAi and Fungal Uptake of External RNAs Confer Plant Protection. Nat. Plants 2016, 2, 16151. [Google Scholar] [CrossRef]
- Mi, S.; Cai, T.; Hu, Y.; Chen, Y.; Hodges, E.; Ni, F.; Wu, L.; Li, S.; Zhou, H.; Long, C.; et al. Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell 2008, 133, 116–127. [Google Scholar] [CrossRef]
- Ji, H.-M.; Mao, H.-Y.; Li, S.-J.; Feng, T.; Zhang, Z.-Y.; Cheng, L.; Luo, S.-J.; Borkovich, K.A.; Ouyang, S.-Q. Fol-milR1, a Pathogenicity Factor of Fusarium oxysporum, Confers Tomato Wilt Disease Resistance by Impairing Host Immune Responses. New Phytol. 2021, 232, 705–718. [Google Scholar] [CrossRef]
- Qin, S.; Veloso, J.; Puccetti, G.; Van Kan, J.A.L. Molecular Characterization of Cross-Kingdom RNA Interference in Botrytis Cinerea by Tomato Small RNAs. Front. Plant Sci. 2023, 14, 1107888. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Wang, H.; Liu, G.; Chen, A.; Calvo, A.; Cai, Q.; Jin, H. Fungal Small RNAs Ride in Extracellular Vesicles to Enter Plant Cells through Clathrin-Mediated Endocytosis. Nat. Commun. 2023, 14, 4383. [Google Scholar] [CrossRef]
- He, B.; Cai, Q.; Weiberg, A.; Cheng, A.-P.; Ouyang, S.; Stajich, J.; Abreu-Goodger, C.; Jin, H. Botrytis cinerea Small RNAs Are Associated with Tomato AGO1 and Silence Tomato Target Genes Supporting Cross-Kingdom RNAi between the Fungal Pathogen B. Cinerea and Its Tomato Host. Biorxiv 2023. [Google Scholar] [CrossRef]
- Kwon, S.; Rupp, O.; Brachmann, A.; Blum, C.F.; Kraege, A.; Goesmann, A.; Feldbrügge, M. mRNA Inventory of Extracellular Vesicles from Ustilago Maydis. JoF 2021, 7, 562. [Google Scholar] [CrossRef]
- Doehlemann, G.; Wahl, R.; Horst, R.J.; Voll, L.M.; Usadel, B.; Poree, F.; Stitt, M.; Pons-Kühnemann, J.; Sonnewald, U.; Kahmann, R.; et al. Reprogramming a Maize Plant: Transcriptional and Metabolic Changes Induced by the Fungal Biotroph Ustilago Maydis. Plant J. 2008, 56, 181–195. [Google Scholar] [CrossRef]
- Laurie, J.D.; Linning, R.; Bakkeren, G. Hallmarks of RNA Silencing Are Found in the Smut Fungus Ustilago Hordei but Not in Its Close Relative Ustilago Maydis. Curr. Genet. 2008, 53, 49–58. [Google Scholar] [CrossRef]
- Cai, Q.; Qiao, L.; Wang, M.; He, B.; Lin, F.-M.; Palmquist, J.; Huang, S.-D.; Jin, H. Plants Send Small RNAs in Extracellular Vesicles to Fungal Pathogen to Silence Virulence Genes. Science 2018, 360, 1126–1129. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhai, Y.; Feng, L.; Karimi, H.Z.; Rutter, B.D.; Zeng, L.; Choi, D.S.; Zhang, B.; Gu, W.; Chen, X.; et al. A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility. Cell Host Microbe 2019, 25, 153–165.e5. [Google Scholar] [CrossRef]
- Yang, F.; Ding, L.; Zhao, D.; Fan, H.; Zhu, X.; Wang, Y.; Liu, X.; Duan, Y.; Chen, L. Identification and Functional Analysis of Tomato MicroRNAs in the Biocontrol Bacterium Pseudomonas putida Induced Plant Resistance to Meloidogyne incognita. Phytopathology 2022, 112, 2372–2382. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Cai, Q.; Qiao, L.; Huang, C.-Y.; Wang, S.; Miao, W.; Ha, T.; Wang, Y.; Jin, H. RNA-Binding Proteins Contribute to Small RNA Loading in Plant Extracellular Vesicles. Nat. Plants 2021, 7, 342–352. [Google Scholar] [CrossRef]
- Shahid, S.; Kim, G.; Johnson, N.R.; Wafula, E.; Wang, F.; Coruh, C.; Bernal-Galeano, V.; Phifer, T.; de Pamphilis, C.W.; Westwood, J.H.; et al. MicroRNAs from the Parasitic Plant Cuscuta Campestris Target Host Messenger RNAs. Nature 2018, 553, 82–85. [Google Scholar] [CrossRef]
- Derbyshire, M.; Mbengue, M.; Barascud, M.; Navaud, O.; Raffaele, S. Small RNAs from the Plant Pathogenic Fungus Sclerotinia Sclerotiorum Highlight Host Candidate Genes Associated with Quantitative Disease Resistance. Mol. Plant Pathol. 2019, 20, 1279–1297. [Google Scholar] [CrossRef] [PubMed]
- Mueth, N.A.; Hulbert, S.H. Small RNAs Target Native and Cross-Kingdom Transcripts on Both Sides of the Wheat Stripe Rust Interaction. Genomics 2022, 114, 110526. [Google Scholar] [CrossRef]
- Xu, M.; Li, G.; Guo, Y.; Gao, Y.; Zhu, L.; Liu, Z.; Tian, R.; Gao, C.; Han, P.; Wang, N.; et al. A Fungal microRNA-like RNA Subverts Host Immunity and Facilitates Pathogen Infection by Silencing Two Host Receptor-like Kinase Genes. New Phytol. 2022, 233, 2503–2519. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Wang, P.; Nie, W.; Ahmad, I.; Chen, G.; Zhu, B. Potentiation of Host Defense through sRNA Packaged in OMVs of Xanthomonas oryzae Pv. oryzicola. bioRxiv 2023. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, Y.-L.; Zhao, J.-H.; Wang, S.; Jin, Y.; Chen, Z.-Q.; Fang, Y.-Y.; Hua, C.-L.; Ding, S.-W.; Guo, H.-S. Cotton Plants Export microRNAs to Inhibit Virulence Gene Expression in a Fungal Pathogen. Nat. Plants 2016, 2, 16153. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Liu, J.-H.; Zhao, J.-H.; Liu, T.; Chen, Y.-Y.; Wang, C.-H.; Zhang, Z.-H.; Guo, H.-S.; Duan, C.-G. A Fungal Effector Suppresses the Nuclear Export of AGO1–miRNA Complex to Promote Infection in Plants. Proc. Natl. Acad. Sci. USA 2022, 119, e2114583119. [Google Scholar] [CrossRef]
- Rizzo, J.; Chaze, T.; Miranda, K.; Roberson, R.W.; Gorgette, O.; Nimrichter, L.; Matondo, M.; Latgé, J.-P.; Beauvais, A.; Rodrigues, M.L. Characterization of Extracellular Vesicles Produced by Aspergillus Fumigatus Protoplasts. mSphere 2020, 5, 10–1128. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Wu, J.; Tang, Z.; Xie, F.; Chen, D.; Lin, H.; Li, Y. Analysis of Outer Membrane Vesicles Indicates That Glycerophospholipid Metabolism Contributes to Early Symbiosis Between Sinorhizobium Fredii HH103 and Soybean. MPMI 2022, 35, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Zand Karimi, H.; Baldrich, P.; Rutter, B.D.; Borniego, L.; Zajt, K.K.; Meyers, B.C.; Innes, R.W. Arabidopsis Apoplastic Fluid Contains sRNA- and Circular RNA–Protein Complexes That Are Located Outside Extracellular Vesicles. Plant Cell 2022, 34, 1863–1881. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef] [PubMed]
- Chow, F.W.-N.; Koutsovoulos, G.; Neophytou, K.; Robertson, E.; Kumar, S.; Claycomb, J.M.; Blaxter, M.; Abreu-Goodger, C.; Buck, A.H. Secretion of an Argonaute Protein by a Parasitic Nematode and the Evolution of Its siRNA Guides. Nucleic Acids Res. 2019, 47, 3594–3606. [Google Scholar] [CrossRef]
- Ivanov, S.; Austin, J.; Berg, R.H.; Harrison, M.J. Extensive Membrane Systems at the Host–Arbuscular Mycorrhizal Fungus Interface. Nat. Plants 2019, 5, 194–203. [Google Scholar] [CrossRef]
- Van Niel, G.; Carter, D.R.F.; Clayton, A.; Lambert, D.W.; Raposo, G.; Vader, P. Challenges and Directions in Studying Cell–Cell Communication by Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2022, 23, 369–382. [Google Scholar] [CrossRef]
- Wong-Bajracharya, J.; Singan, V.R.; Monti, R.; Plett, K.L.; Ng, V.; Grigoriev, I.V.; Martin, F.M.; Anderson, I.C.; Plett, J.M. The Ectomycorrhizal Fungus Pisolithus microcarpus Encodes a microRNA Involved in Cross-Kingdom Gene Silencing during Symbiosis. Plant Biol. 2022, 119, e2103527119. [Google Scholar] [CrossRef]
- Dallaire, A.; Manley, B.F.; Wilkens, M.; Bista, I.; Quan, C.; Evangelisti, E.; Bradshaw, C.R.; Ramakrishna, N.B.; Schornack, S.; Butter, F.; et al. Transcriptional Activity and Epigenetic Regulation of Transposable Elements in the Symbiotic Fungus Rhizophagus Irregularis. Genome Res. 2021, 31, 2290–2302. [Google Scholar] [CrossRef] [PubMed]
- Lanfranco, L.; Rubio-Somoza, I. A Journey into the World of Small RNAs in the Arbuscular Mycorrhizal Symbiosis. New Phytol. 2023, 242, 1534–1544. [Google Scholar]
- Helber, N.; Wippel, K.; Sauer, N.; Schaarschmidt, S.; Hause, B.; Requena, N. A Versatile Monosaccharide Transporter That Operates in the Arbuscular Mycorrhizal Fungus Glomus Sp Is Crucial for the Symbiotic Relationship with Plants. Plant Cell 2011, 23, 3812–3823. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Hijikata, N.; Ohtomo, R.; Handa, Y.; Kawaguchi, M.; Saito, K.; Masuta, C.; Ezawa, T. Aquaporin-mediated Long-distance Polyphosphate Translocation Directed towards the Host in Arbuscular Mycorrhizal Symbiosis: Application of Virus-induced Gene Silencing. New Phytol. 2016, 211, 1202–1208. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, S.; Handa, Y.; Takeda, N.; Kawaguchi, M. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus Irregularis. MPMI 2016, 29, 277–286. [Google Scholar] [CrossRef]
- Halder, L.D.; Babych, S.; Palme, D.I.; Mansouri-Ghahnavieh, E.; Ivanov, L.; Ashonibare, V.; Langenhorst, D.; Prusty, B.; Rambach, G.; Wich, M.; et al. Candida Albicans Induces Cross-Kingdom miRNA Trafficking in Human Monocytes To Promote Fungal Growth. mBio 2022, 13, e03563-21. [Google Scholar] [CrossRef]
- Roth, R.; Hillmer, S.; Funaya, C.; Chiapello, M.; Schumacher, K.; Lo Presti, L.; Kahmann, R.; Paszkowski, U. Arbuscular Cell Invasion Coincides with Extracellular Vesicles and Membrane Tubules. Nat. Plants 2019, 5, 204–211. [Google Scholar] [CrossRef]
- Pandey, P.; Wang, M.; Baldwin, I.T.; Pandey, S.P.; Groten, K. Complex Regulation of microRNAs in Roots of Competitively-Grown Isogenic Nicotiana Attenuata Plants with Different Capacities to Interact with Arbuscular Mycorrhizal Fungi. BMC Genom. 2018, 19, 937. [Google Scholar] [CrossRef]
- Vigneaud, J.; Kohler, A.; Sow, M.D.; Delaunay, A.; Fauchery, L.; Guinet, F.; Daviaud, C.; Barry, K.W.; Keymanesh, K.; Johnson, J.; et al. DNA Hypomethylation of the Host Tree Impairs Interaction with Mutualistic Ectomycorrhizal Fungus. New Phytol. 2023, 238, 2561–2577. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Lu, Y.; Chen, X.; Liu, X.; Gu, Y.; Li, F. The Silent Conversation: How Small RNAs Shape Plant–Microbe Relationships. Int. J. Mol. Sci. 2025, 26, 2631. https://doi.org/10.3390/ijms26062631
Liu J, Lu Y, Chen X, Liu X, Gu Y, Li F. The Silent Conversation: How Small RNAs Shape Plant–Microbe Relationships. International Journal of Molecular Sciences. 2025; 26(6):2631. https://doi.org/10.3390/ijms26062631
Chicago/Turabian StyleLiu, Jie, Yuntong Lu, Xiaoyan Chen, Xing Liu, Yunying Gu, and Fei Li. 2025. "The Silent Conversation: How Small RNAs Shape Plant–Microbe Relationships" International Journal of Molecular Sciences 26, no. 6: 2631. https://doi.org/10.3390/ijms26062631
APA StyleLiu, J., Lu, Y., Chen, X., Liu, X., Gu, Y., & Li, F. (2025). The Silent Conversation: How Small RNAs Shape Plant–Microbe Relationships. International Journal of Molecular Sciences, 26(6), 2631. https://doi.org/10.3390/ijms26062631