Diverse Subsets of γδT Cells and Their Specific Functions Across Liver Diseases
Abstract
:1. Introduction
2. Background of γδT Cells
2.1. Development and Classification of γδT Cells
2.2. Classification of Human γδT Cells Based on δTCR Chains
2.2.1. Vδ1+ T Cells
2.2.2. Vδ2+ T Cells
2.3. Effector Subsets Defined by Cytokine Release
2.4. Molecular Mechanisms and Signaling Pathways
3. Subset Specific Functions of γδT Cells in Various Liver Diseases
3.1. Viral Hepatitis
3.2. Liver Bacterial and Parasitic Infections
3.3. NAFLD and ALD
3.4. Liver Fibrosis and Cirrhosis
3.5. Autoimmune Liver Disease
3.6. Liver Cancer
4. Crosstalk of γδT Cells with Immune and Non-Immune Cells in the Liver Microenvironment
5. Clinical Applications, Therapeutic Potential, and Future Directions
6. Conclusions
Funding
Conflicts of Interest
References
- Gao, B.; Jeong, W.-I.; Tian, Z. Liver: An Organ with Predominant Innate Immunity. Hepatology 2008, 47, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Vantourout, P.; Hayday, A. Six-of-the-Best: Unique Contributions of Γδ T Cells to Immunology. Nat. Rev. Immunol. 2013, 13, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, Z. Γδ T Cells in Liver Diseases. Front. Med. 2018, 12, 262–268. [Google Scholar] [CrossRef]
- Hammerich, L.; Tacke, F. Role of Gamma-Delta T Cells in Liver Inflammation and Fibrosis. World J. Gastrointest. Pathophysiol. 2014, 5, 107–113. [Google Scholar] [CrossRef]
- Ferreira, L.M.R. Gammadelta T Cells: Innately Adaptive Immune Cells? Int. Rev. Immunol. 2013, 32, 223–248. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Liu, Y.; Lau, Y.-L.; Tu, W. Γδ-T Cells: An Unpolished Sword in Human Anti-Infection Immunity. Cell Mol. Immunol. 2013, 10, 50–57. [Google Scholar] [CrossRef]
- Munoz, L.D.; Sweeney, M.J.; Jameson, J.M. Skin Resident Γδ T Cell Function and Regulation in Wound Repair. Int. J. Mol. Sci. 2020, 21, 9286. [Google Scholar] [CrossRef]
- Mensurado, S.; Blanco-Domínguez, R.; Silva-Santos, B. The Emerging Roles of Γδ T Cells in Cancer Immunotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 178–191. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Z.; Yan, R.; Liu, M.; Bai, Y.; Liang, G.; Zhang, X.; Hu, X.; Chen, J.; Huang, C.; et al. Vγ4 Γδ T Cells Provide an Early Source of IL-17A and Accelerate Skin Graft Rejection. J. Investig. Dermatol. 2017, 137, 2513–2522. [Google Scholar] [CrossRef]
- Sanz, M.; Mann, B.T.; Ryan, P.L.; Bosque, A.; Pennington, D.J.; Hackstein, H.; Soriano-Sarabia, N. Deep Characterization of Human Γδ T Cell Subsets Defines Shared and Lineage-Specific Traits. Front. Immunol. 2023, 14, 1148988. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Lu, Z.; Liu, X.; Chai, W.; Wang, W.; Feng, J.; Yang, S.; Yang, W.; Cheng, H.; et al. Spatial and Single-Cell Analyses Reveal Heterogeneity of DNAM-1 Receptor–Ligand Interactions That Instructs Intratumoral γδT-Cell Activity. Cancer Res. 2025, 85, 277–298. [Google Scholar] [CrossRef] [PubMed]
- Fichtner, A.S.; Ravens, S.; Prinz, I. Human Γδ TCR Repertoires in Health and Disease. Cells 2020, 9, 800. [Google Scholar] [CrossRef]
- McMurray, J.L.; Von Borstel, A.; Taher, T.E.; Syrimi, E.; Taylor, G.S.; Sharif, M.; Rossjohn, J.; Remmerswaal, E.B.M.; Bemelman, F.J.; Vieira Braga, F.A.; et al. Transcriptional Profiling of Human Vδ1 T Cells Reveals a Pathogen-Driven Adaptive Differentiation Program. Cell Rep. 2022, 39, 110858. [Google Scholar] [CrossRef] [PubMed]
- Kabelitz, D.; Kalyan, S.; Oberg, H.-H.; Wesch, D. Human Vδ2 versus Non-Vδ2 Γδ T Cells in Antitumor Immunity. Oncoimmunology 2013, 2, e23304. [Google Scholar] [CrossRef]
- Makkouk, A.; Yang, X.; Barca, T.; Lucas, A.; Turkoz, M.; Wong, J.T.S.; Nishimoto, K.P.; Brodey, M.M.; Tabrizizad, M.; Gundurao, S.R.Y.; et al. Off-the-Shelf Vδ1 Gamma Delta T Cells Engineered with Glypican-3 (GPC-3)-Specific Chimeric Antigen Receptor (CAR) and Soluble IL-15 Display Robust Antitumor Efficacy against Hepatocellular Carcinoma. J. Immunother. Cancer 2021, 9, e003441. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-M.; Traum, D.; Park, J.-J.; Ho, S.; Ojiro, K.; Wong, D.K.; Wahed, A.S.; Terrault, N.A.; Khalili, M.; Sterling, R.K.; et al. Distinct Phenotype and Function of Circulating Vδ1+ and Vδ2+ γδT-Cells in Acute and Chronic Hepatitis B. PLoS Pathog. 2019, 15, e1007715. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tian, Z. Innate Lymphocytes: Pathogenesis and Therapeutic Targets of Liver Diseases and Cancer. Cell Mol. Immunol. 2021, 18, 57–72. [Google Scholar] [CrossRef]
- Muro, R.; Takayanagi, H.; Nitta, T. T Cell Receptor Signaling for γδT Cell Development. Inflamm. Regen. 2019, 39, 6. [Google Scholar] [CrossRef]
- Kisielow, J.; Kopf, M. The Origin and Fate of γδT Cell Subsets. Curr. Opin. Immunol. 2013, 25, 181–188. [Google Scholar] [CrossRef]
- Muñoz-Ruiz, M.; Sumaria, N.; Pennington, D.J.; Silva-Santos, B. Thymic Determinants of Γδ T Cell Differentiation. Trends Immunol. 2017, 38, 336–344. [Google Scholar] [CrossRef]
- Deng, J.; Yin, H. Gamma Delta (Γδ) T Cells in Cancer Immunotherapy; Where It Comes from, Where It Will Go? Eur. J. Pharmacol. 2022, 919, 174803. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.; Konigshofer, Y. Antigen Recognition by Gammadelta T Cells. Immunol. Rev. 2007, 215, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Notarangelo, L.D.; Kim, M.-S.; Walter, J.E.; Lee, Y.N. Human RAG Mutations: Biochemistry and Clinical Implications. Nat. Rev. Immunol. 2016, 16, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Hata, S.; Satyanarayana, K.; Devlin, P.; Band, H.; McLean, J.; Strominger, J.L.; Brenner, M.B.; Krangel, M.S. Extensive Junctional Diversity of Rearranged Human T Cell Receptor Delta Genes. Science 1988, 240, 1541–1544. [Google Scholar] [CrossRef]
- Adams, E.J.; Gu, S.; Luoma, A.M. Human Gamma Delta T Cells: Evolution and Ligand Recognition. Cell. Immunol. 2015, 296, 31–40. [Google Scholar] [CrossRef]
- Willcox, C.R.; Davey, M.S.; Willcox, B.E. Development and Selection of the Human Vγ9Vδ2+ T-Cell Repertoire. Front. Immunol. 2018, 9, 1501. [Google Scholar] [CrossRef]
- Krangel, M.S.; Yssel, H.; Brocklehurst, C.; Spits, H. A Distinct Wave of Human T Cell Receptor Gamma/Delta Lymphocytes in the Early Fetal Thymus: Evidence for Controlled Gene Rearrangement and Cytokine Production. J. Exp. Med. 1990, 172, 847–859. [Google Scholar] [CrossRef]
- Ravens, S.; Schultze-Florey, C.; Raha, S.; Sandrock, I.; Drenker, M.; Oberdörfer, L.; Reinhardt, A.; Ravens, I.; Beck, M.; Geffers, R.; et al. Human Γδ T Cells Are Quickly Reconstituted after Stem-Cell Transplantation and Show Adaptive Clonal Expansion in Response to Viral Infection. Nat. Immunol. 2017, 18, 393–401. [Google Scholar] [CrossRef]
- Di Lorenzo, B.; Ravens, S.; Silva-Santos, B. High-Throughput Analysis of the Human Thymic Vδ1+ T Cell Receptor Repertoire. Sci. Data 2019, 6, 115. [Google Scholar] [CrossRef]
- Davey, M.S.; Willcox, C.R.; Joyce, S.P.; Ladell, K.; Kasatskaya, S.A.; McLaren, J.E.; Hunter, S.; Salim, M.; Mohammed, F.; Price, D.A.; et al. Clonal Selection in the Human Vδ1 T Cell Repertoire Indicates Γδ TCR-Dependent Adaptive Immune Surveillance. Nat. Commun. 2017, 8, 14760. [Google Scholar] [CrossRef]
- Hunter, S.; Willcox, C.R.; Davey, M.S.; Kasatskaya, S.A.; Jeffery, H.C.; Chudakov, D.M.; Oo, Y.H.; Willcox, B.E. Human Liver Infiltrating Γδ T Cells Are Composed of Clonally Expanded Circulating and Tissue-Resident Populations. J. Hepatol. 2018, 69, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Guo, Y.; Jiang, J.; Wu, P.; Zhang, T.; Wei, Q.; Huang, J.; Wu, D. Γδ T Cell Exhaustion: Opportunities for Intervention. J. Leukoc. Biol. 2022, 112, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Correia, D.V.; Fogli, M.; Hudspeth, K.; da Silva, M.G.; Mavilio, D.; Silva-Santos, B. Differentiation of Human Peripheral Blood Vδ1+ T Cells Expressing the Natural Cytotoxicity Receptor NKp30 for Recognition of Lymphoid Leukemia Cells. Blood 2011, 118, 992–1001. [Google Scholar] [CrossRef]
- Carbone, A.; Vaccher, E.; Gloghini, A. Hematologic Cancers in Individuals Infected by HIV. Blood 2022, 139, 995–1012. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Pauza, C.D. HIV Envelope-Mediated, CCR5/A4β7-Dependent Killing of CD4-Negative Γδ T Cells Which Are Lost during Progression to AIDS. Blood 2011, 118, 5824–5831. [Google Scholar] [CrossRef]
- Gioia, C.; Agrati, C.; Casetti, R.; Cairo, C.; Borsellino, G.; Battistini, L.; Mancino, G.; Goletti, D.; Colizzi, V.; Pucillo, L.P.; et al. Lack of CD27-CD45RA-V Gamma 9V Delta 2+ T Cell Effectors in Immunocompromised Hosts and during Active Pulmonary Tuberculosis. J. Immunol. 2002, 168, 1484–1489. [Google Scholar] [CrossRef]
- Ogongo, P.; Steyn, A.J.; Karim, F.; Dullabh, K.J.; Awala, I.; Madansein, R.; Leslie, A.; Behar, S.M. Differential Skewing of Donor-Unrestricted and Γδ T Cell Repertoires in Tuberculosis-Infected Human Lungs. J. Clin. Investig. 2020, 130, 214–230. [Google Scholar] [CrossRef]
- Poggi, A.; Carosio, R.; Fenoglio, D.; Brenci, S.; Murdaca, G.; Setti, M.; Indiveri, F.; Scabini, S.; Ferrero, E.; Zocchi, M.R. Migration of V Delta 1 and V Delta 2 T Cells in Response to CXCR3 and CXCR4 Ligands in Healthy Donors and HIV-1-Infected Patients: Competition by HIV-1 Tat. Blood 2004, 103, 2205–2213. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Q.; Li, Y.; Lu, L.; Xiang, Z.; Yin, Z.; Kabelitz, D.; Wu, Y. Γδ T Cells: Origin and Fate, Subsets, Diseases and Immunotherapy. Signal Transduct. Target. Ther. 2023, 8, 434. [Google Scholar] [CrossRef]
- Silva-Santos, B.; Serre, K.; Norell, H. Γδ T Cells in Cancer. Nat. Rev. Immunol. 2015, 15, 683–691. [Google Scholar] [CrossRef]
- Dimova, T.; Brouwer, M.; Gosselin, F.; Tassignon, J.; Leo, O.; Donner, C.; Marchant, A.; Vermijlen, D. Effector Vγ9Vδ2 T Cells Dominate the Human Fetal Γδ T-Cell Repertoire. Proc. Natl. Acad. Sci. USA 2015, 112, E556–E565. [Google Scholar] [CrossRef] [PubMed]
- Dunne, M.R.; Elliott, L.; Hussey, S.; Mahmud, N.; Kelly, J.; Doherty, D.G.; Feighery, C.F. Persistent Changes in Circulating and Intestinal Γδ T Cell Subsets, Invariant Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Children and Adults with Coeliac Disease. PLoS ONE 2013, 8, e76008. [Google Scholar] [CrossRef]
- Kenna, T.; Golden-Mason, L.; Norris, S.; Hegarty, J.E.; O’Farrelly, C.; Doherty, D.G. Distinct Subpopulations of Γδ T Cells Are Present in Normal and Tumor-Bearing Human Liver. Clin. Immunol. 2004, 113, 56–63. [Google Scholar] [CrossRef]
- Rice, M.T.; Von Borstel, A.; Chevour, P.; Awad, W.; Howson, L.J.; Littler, D.R.; Gherardin, N.A.; Le Nours, J.; Giles, E.M.; Berry, R.; et al. Recognition of the Antigen-Presenting Molecule MR1 by a Vδ3+ Γδ T Cell Receptor. Proc. Natl. Acad. Sci. USA 2021, 118, e2110288118. [Google Scholar] [CrossRef] [PubMed]
- León-Lara, X.; Yang, T.; Fichtner, A.S.; Bruni, E.; Von Kaisenberg, C.; Eiz-Vesper, B.; Dodoo, D.; Adu, B.; Ravens, S. Evidence for an Adult-Like Type 1-Immunity Phenotype of Vδ1, Vδ2 and Vδ3 T Cells in Ghanaian Children With Repeated Exposure to Malaria. Front. Immunol. 2022, 13, 807765. [Google Scholar] [CrossRef]
- Ravens, S.; Hengst, J.; Schlapphoff, V.; Deterding, K.; Dhingra, A.; Schultze-Florey, C.; Koenecke, C.; Cornberg, M.; Wedemeyer, H.; Prinz, I. Human Γδ T Cell Receptor Repertoires in Peripheral Blood Remain Stable Despite Clearance of Persistent Hepatitis C Virus Infection by Direct-Acting Antiviral Drug Therapy. Front. Immunol. 2018, 9, 510. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, M.; Wang, C.; Zhu, L.; Hu, J.; Chen, S.; Wu, X.; Li, B.; Li, Y. The Feature of Distribution and Clonality of TCR γ/δ Subfamilies T Cells in Patients with B-Cell Non-Hodgkin Lymphoma. J. Immunol. Res. 2014, 2014, 241246. [Google Scholar] [CrossRef] [PubMed]
- de Vries, N.L.; van de Haar, J.; Veninga, V.; Chalabi, M.; Ijsselsteijn, M.E.; van der Ploeg, M.; van den Bulk, J.; Ruano, D.; van den Berg, J.G.; Haanen, J.B.; et al. Γδ T Cells Are Effectors of Immunotherapy in Cancers with HLA Class I Defects. Nature 2023, 613, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Melo, A.M.; Mylod, E.; Fitzgerald, V.; Donlon, N.E.; Murphy, D.M.; Foley, E.K.; Bhardwaj, A.; Reynolds, J.V.; Doherty, D.G.; Lysaght, J.; et al. Tissue Distribution of Γδ T Cell Subsets in Oesophageal Adenocarcinoma. Clin. Immunol. 2021, 229, 108797. [Google Scholar] [CrossRef]
- Gherardin, N.A.; Waldeck, K.; Caneborg, A.; Martelotto, L.G.; Balachander, S.; Zethoven, M.; Petrone, P.M.; Pattison, A.; Wilmott, J.S.; Quiñones-Parra, S.M.; et al. Γδ T Cells in Merkel Cell Carcinomas Have a Proinflammatory Profile Prognostic of Patient Survival. Cancer Immunol. Res. 2021, 9, 612–623. [Google Scholar] [CrossRef]
- Petrasca, A.; Melo, A.M.; Breen, E.P.; Doherty, D.G. Human Vδ3+ Γδ T Cells Induce Maturation and IgM Secretion by B Cells. Immunol. Lett. 2018, 196, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Spada, F.M.; Grant, E.P.; Peters, P.J.; Sugita, M.; Melián, A.; Leslie, D.S.; Lee, H.K.; van Donselaar, E.; Hanson, D.A.; Krensky, A.M.; et al. Self-Recognition of CD1 by Gamma/Delta T Cells: Implications for Innate Immunity. J. Exp. Med. 2000, 191, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Uldrich, A.P.; Le Nours, J.; Pellicci, D.G.; Gherardin, N.A.; McPherson, K.G.; Lim, R.T.; Patel, O.; Beddoe, T.; Gras, S.; Rossjohn, J.; et al. CD1d-Lipid Antigen Recognition by the Γδ TCR. Nat. Immunol. 2013, 14, 1137–1145. [Google Scholar] [CrossRef]
- Luoma, A.M.; Castro, C.D.; Mayassi, T.; Bembinster, L.A.; Bai, L.; Picard, D.; Anderson, B.; Scharf, L.; Kung, J.E.; Sibener, L.V.; et al. Crystal Structure of Vδ1 T Cell Receptor in Complex with CD1d-Sulfatide Shows MHC-like Recognition of a Self-Lipid by Human Γδ T Cells. Immunity 2013, 39, 1032–1042. [Google Scholar] [CrossRef]
- Luoma, A.M.; Castro, C.D.; Adams, E.J. Γδ T Cell Surveillance via CD1 Molecules. Trends Immunol. 2014, 35, 613–621. [Google Scholar] [CrossRef]
- Roy, S.; Ly, D.; Castro, C.D.; Li, N.-S.; Hawk, A.J.; Altman, J.D.; Meredith, S.C.; Piccirilli, J.A.; Moody, D.B.; Adams, E.J. Molecular Analysis of Lipid-Reactive Vδ1 Γδ T Cells Identified by CD1c Tetramers. J. Immunol. 2016, 196, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Hayday, A.; Vantourout, P. A Long-Playing CD about the Γδ TCR Repertoire. Immunity 2013, 39, 994–996. [Google Scholar] [CrossRef]
- Sensing of Cell Stress by Human Γδ TCR-Dependent Recognition of Annexin A2—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/28270598/ (accessed on 22 January 2025).
- Xu, B.; Pizarro, J.C.; Holmes, M.A.; McBeth, C.; Groh, V.; Spies, T.; Strong, R.K. Crystal Structure of a Gammadelta T-Cell Receptor Specific for the Human MHC Class I Homolog MICA. Proc. Natl. Acad. Sci. USA 2011, 108, 2414–2419. [Google Scholar] [CrossRef]
- Silva-Santos, B.; Mensurado, S.; Coffelt, S.B. Γδ T Cells: Pleiotropic Immune Effectors with Therapeutic Potential in Cancer. Nat. Rev. Cancer 2019, 19, 392–404. [Google Scholar] [CrossRef]
- Gober, H.-J.; Kistowska, M.; Angman, L.; Jenö, P.; Mori, L.; De Libero, G. Human T Cell Receptor Gammadelta Cells Recognize Endogenous Mevalonate Metabolites in Tumor Cells. J. Exp. Med. 2003, 197, 163–168. [Google Scholar] [CrossRef]
- Benzaïd, I.; Mönkkönen, H.; Stresing, V.; Bonnelye, E.; Green, J.; Mönkkönen, J.; Touraine, J.-L.; Clézardin, P. High Phosphoantigen Levels in Bisphosphonate-Treated Human Breast Tumors Promote Vgamma9Vdelta2 T-Cell Chemotaxis and Cytotoxicity in Vivo. Cancer Res. 2011, 71, 4562–4572. [Google Scholar] [CrossRef] [PubMed]
- Ashihara, E.; Munaka, T.; Kimura, S.; Nakagawa, S.; Nakagawa, Y.; Kanai, M.; Hirai, H.; Abe, H.; Miida, T.; Yamato, S.; et al. Isopentenyl Pyrophosphate Secreted from Zoledronate-Stimulated Myeloma Cells, Activates the Chemotaxis of γδT Cells. Biochem. Biophys. Res. Commun. 2015, 463, 650–655. [Google Scholar] [CrossRef]
- Tanaka, Y.; Morita, C.T.; Tanaka, Y.; Nieves, E.; Brenner, M.B.; Bloom, B.R. Natural and Synthetic Non-Peptide Antigens Recognized by Human Gamma Delta T Cells. Nature 1995, 375, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Harly, C.; Guillaume, Y.; Nedellec, S.; Peigné, C.-M.; Mönkkönen, H.; Mönkkönen, J.; Li, J.; Kuball, J.; Adams, E.J.; Netzer, S.; et al. Key Implication of CD277/Butyrophilin-3 (BTN3A) in Cellular Stress Sensing by a Major Human Γδ T-Cell Subset. Blood 2012, 120, 2269–2279. [Google Scholar] [CrossRef]
- Sandstrom, A.; Peigné, C.-M.; Léger, A.; Crooks, J.E.; Konczak, F.; Gesnel, M.-C.; Breathnach, R.; Bonneville, M.; Scotet, E.; Adams, E.J. The Intracellular B30.2 Domain of Butyrophilin 3A1 Binds Phosphoantigens to Mediate Activation of Human Vγ9Vδ2 T Cells. Immunity 2014, 40, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Rigau, M.; Ostrouska, S.; Fulford, T.S.; Johnson, D.N.; Woods, K.; Ruan, Z.; McWilliam, H.E.G.; Hudson, C.; Tutuka, C.; Wheatley, A.K.; et al. Butyrophilin 2A1 Is Essential for Phosphoantigen Reactivity by Γδ T Cells. Science 2020, 367, eaay5516. [Google Scholar] [CrossRef]
- Karunakaran, M.M.; Willcox, C.R.; Salim, M.; Paletta, D.; Fichtner, A.S.; Noll, A.; Starick, L.; Nöhren, A.; Begley, C.R.; Berwick, K.A.; et al. Butyrophilin-2A1 Directly Binds Germline-Encoded Regions of the Vγ9Vδ2 TCR and Is Essential for Phosphoantigen Sensing. Immunity 2020, 52, 487–498.e6. [Google Scholar] [CrossRef]
- Kabelitz, D.; Serrano, R.; Kouakanou, L.; Peters, C.; Kalyan, S. Cancer Immunotherapy with Γδ T Cells: Many Paths Ahead of Us. Cell Mol. Immunol. 2020, 17, 925–939. [Google Scholar] [CrossRef]
- Yang, Y.; Li, L.; Yuan, L.; Zhou, X.; Duan, J.; Xiao, H.; Cai, N.; Han, S.; Ma, X.; Liu, W.; et al. A Structural Change in Butyrophilin upon Phosphoantigen Binding Underlies Phosphoantigen-Mediated Vγ9Vδ2 T Cell Activation. Immunity 2019, 50, 1043–1053.e5. [Google Scholar] [CrossRef]
- Scotet, E.; Martinez, L.O.; Grant, E.; Barbaras, R.; Jenö, P.; Guiraud, M.; Monsarrat, B.; Saulquin, X.; Maillet, S.; Estève, J.-P.; et al. Tumor Recognition Following Vgamma9Vdelta2 T Cell Receptor Interactions with a Surface F1-ATPase-Related Structure and Apolipoprotein A-I. Immunity 2005, 22, 71–80. [Google Scholar] [CrossRef]
- Chen, H.; He, X.; Wang, Z.; Wu, D.; Zhang, H.; Xu, C.; He, H.; Cui, L.; Ba, D.; He, W. Identification of Human T Cell Receptor Gammadelta-Recognized Epitopes/Proteins via CDR3delta Peptide-Based Immunobiochemical Strategy. J. Biol. Chem. 2008, 283, 12528–12537. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Chen, H.; Mo, C.; Cui, L.; He, W. Ectopically Expressed Human Tumor Biomarker MutS Homologue 2 Is a Novel Endogenous Ligand That Is Recognized by Human Γδ T Cells to Induce Innate Anti-Tumor/Virus Immunity. J. Biol. Chem. 2012, 287, 16812–16819. [Google Scholar] [CrossRef]
- Fichtner, A.S.; Karunakaran, M.M.; Gu, S.; Boughter, C.T.; Borowska, M.T.; Starick, L.; Nöhren, A.; Göbel, T.W.; Adams, E.J.; Herrmann, T. Alpaca (Vicugna Pacos), the First Nonprimate Species with a Phosphoantigen-Reactive Vγ9Vδ2 T Cell Subset. Proc. Natl. Acad. Sci. USA 2020, 117, 6697–6707. [Google Scholar] [CrossRef]
- Rincon-Orozco, B.; Kunzmann, V.; Wrobel, P.; Kabelitz, D.; Steinle, A.; Herrmann, T. Activation of V Gamma 9V Delta 2 T Cells by NKG2D. J. Immunol. 2005, 175, 2144–2151. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, P.; Shojaei, H.; Schittek, B.; Gieseler, F.; Wollenberg, B.; Kalthoff, H.; Kabelitz, D.; Wesch, D. Lysis of a Broad Range of Epithelial Tumour Cells by Human Gamma Delta T Cells: Involvement of NKG2D Ligands and T-Cell Receptor- versus NKG2D-Dependent Recognition. Scand. J. Immunol. 2007, 66, 320–328. [Google Scholar] [CrossRef]
- The MHC Class Ib Protein ULBP1 Is a Nonredundant Determinant of Leukemia/Lymphoma Susceptibility to Gammadelta T-Cell Cytotoxicity—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/20101024/ (accessed on 22 January 2025).
- Simões, A.E.; Di Lorenzo, B.; Silva-Santos, B. Molecular Determinants of Target Cell Recognition by Human Γδ T Cells. Front. Immunol. 2018, 9, 929. [Google Scholar] [CrossRef]
- Toutirais, O.; Cabillic, F.; Le Friec, G.; Salot, S.; Loyer, P.; Le Gallo, M.; Desille, M.; de La Pintière, C.T.; Daniel, P.; Bouet, F.; et al. DNAX Accessory Molecule-1 (CD226) Promotes Human Hepatocellular Carcinoma Cell Lysis by Vgamma9Vdelta2 T Cells. Eur. J. Immunol. 2009, 39, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Tokuyama, H.; Hagi, T.; Mattarollo, S.R.; Morley, J.; Wang, Q.; So, H.-F.; Moriyasu, F.; Nieda, M.; Nicol, A.J. V Gamma 9 V Delta 2 T Cell Cytotoxicity against Tumor Cells Is Enhanced by Monoclonal Antibody Drugs--Rituximab and Trastuzumab. Int. J. Cancer 2008, 122, 2526–2534. [Google Scholar] [CrossRef]
- Capietto, A.-H.; Martinet, L.; Fournié, J.-J. Stimulated Γδ T Cells Increase the in Vivo Efficacy of Trastuzumab in HER-2+ Breast Cancer. J. Immunol. 2011, 187, 1031–1038. [Google Scholar] [CrossRef]
- Gertner-Dardenne, J.; Bonnafous, C.; Bezombes, C.; Capietto, A.-H.; Scaglione, V.; Ingoure, S.; Cendron, D.; Gross, E.; Lepage, J.-F.; Quillet-Mary, A.; et al. Bromohydrin Pyrophosphate Enhances Antibody-Dependent Cell-Mediated Cytotoxicity Induced by Therapeutic Antibodies. Blood 2009, 113, 4875–4884. [Google Scholar] [CrossRef]
- Fisher, J.P.H.; Yan, M.; Heuijerjans, J.; Carter, L.; Abolhassani, A.; Frosch, J.; Wallace, R.; Flutter, B.; Capsomidis, A.; Hubank, M.; et al. Neuroblastoma Killing Properties of Vδ2 and Vδ2-Negative γδT Cells Following Expansion by Artificial Antigen-Presenting Cells. Clin. Cancer Res. 2014, 20, 5720–5732. [Google Scholar] [CrossRef] [PubMed]
- Tuengel, J.; Ranchal, S.; Maslova, A.; Aulakh, G.; Papadopoulou, M.; Drissler, S.; Cai, B.; Mohsenzadeh-Green, C.; Soudeyns, H.; Mostafavi, S.; et al. Characterization of Adaptive-like Γδ T Cells in Ugandan Infants during Primary Cytomegalovirus Infection. Viruses 2021, 13, 1987. [Google Scholar] [CrossRef] [PubMed]
- Street, S.E.A.; Hayakawa, Y.; Zhan, Y.; Lew, A.M.; MacGregor, D.; Jamieson, A.M.; Diefenbach, A.; Yagita, H.; Godfrey, D.I.; Smyth, M.J. Innate Immune Surveillance of Spontaneous B Cell Lymphomas by Natural Killer Cells and Gammadelta T Cells. J. Exp. Med. 2004, 199, 879–884. [Google Scholar] [CrossRef]
- Liu, Z.; Eltoum, I.-E.A.; Guo, B.; Beck, B.H.; Cloud, G.A.; Lopez, R.D. Protective Immunosurveillance and Therapeutic Antitumor Activity of Gammadelta T Cells Demonstrated in a Mouse Model of Prostate Cancer. J. Immunol. 2008, 180, 6044–6053. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, W.; Pan, M.; Scully, E.; Girardi, M.; Augenlicht, L.H.; Craft, J.; Yin, Z. Γδ T Cells Provide an Early Source of Interferon γ in Tumor Immunity. J. Exp. Med. 2003, 198, 433–442. [Google Scholar] [CrossRef]
- Jarry, U.; Chauvin, C.; Joalland, N.; Léger, A.; Minault, S.; Robard, M.; Bonneville, M.; Oliver, L.; Vallette, F.M.; Vié, H.; et al. Stereotaxic Administrations of Allogeneic Human Vγ9Vδ2 T Cells Efficiently Control the Development of Human Glioblastoma Brain Tumors. Oncoimmunology 2016, 5, e1168554. [Google Scholar] [CrossRef] [PubMed]
- Pereboeva, L.; Harkins, L.; Wong, S.; Lamb, L.S. The Safety of Allogeneic Innate Lymphocyte Therapy for Glioma Patients with Prior Cranial Irradiation. Cancer Immunol. Immunother. 2015, 64, 551–562. [Google Scholar] [CrossRef]
- Rei, M.; Gonçalves-Sousa, N.; Lança, T.; Thompson, R.G.; Mensurado, S.; Balkwill, F.R.; Kulbe, H.; Pennington, D.J.; Silva-Santos, B. Murine CD27(−) Vγ6(+) Γδ T Cells Producing IL-17A Promote Ovarian Cancer Growth via Mobilization of Protumor Small Peritoneal Macrophages. Proc. Natl. Acad. Sci. USA 2014, 111, E3562–E3570. [Google Scholar] [CrossRef]
- Ma, S.; Cheng, Q.; Cai, Y.; Gong, H.; Wu, Y.; Yu, X.; Shi, L.; Wu, D.; Dong, C.; Liu, H. IL-17A Produced by Γδ T Cells Promotes Tumor Growth in Hepatocellular Carcinoma. Cancer Res. 2014, 74, 1969–1982. [Google Scholar] [CrossRef]
- Patin, E.C.; Soulard, D.; Fleury, S.; Hassane, M.; Dombrowicz, D.; Faveeuw, C.; Trottein, F.; Paget, C. Type I IFN Receptor Signaling Controls IL7-Dependent Accumulation and Activity of Protumoral IL17A-Producing γδT Cells in Breast Cancer. Cancer Res. 2018, 78, 195–204. [Google Scholar] [CrossRef]
- Kimura, Y.; Nagai, N.; Tsunekawa, N.; Sato-Matsushita, M.; Yoshimoto, T.; Cua, D.J.; Iwakura, Y.; Yagita, H.; Okada, F.; Tahara, H.; et al. IL-17A-Producing CD30(+) Vδ1 T Cells Drive Inflammation-Induced Cancer Progression. Cancer Sci. 2016, 107, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Coffelt, S.B.; Kersten, K.; Doornebal, C.W.; Weiden, J.; Vrijland, K.; Hau, C.-S.; Verstegen, N.J.M.; Ciampricotti, M.; Hawinkels, L.J.A.C.; Jonkers, J.; et al. IL-17-Producing Γδ T Cells and Neutrophils Conspire to Promote Breast Cancer Metastasis. Nature 2015, 522, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Kulig, P.; Burkhard, S.; Mikita-Geoffroy, J.; Croxford, A.L.; Hövelmeyer, N.; Gyülvészi, G.; Gorzelanny, C.; Waisman, A.; Borsig, L.; Becher, B. IL17A-Mediated Endothelial Breach Promotes Metastasis Formation. Cancer Immunol. Res. 2016, 4, 26–32. [Google Scholar] [CrossRef]
- Xu, Y.; Xiang, Z.; Alnaggar, M.; Kouakanou, L.; Li, J.; He, J.; Yang, J.; Hu, Y.; Chen, Y.; Lin, L.; et al. Allogeneic Vγ9Vδ2 T-Cell Immunotherapy Exhibits Promising Clinical Safety and Prolongs the Survival of Patients with Late-Stage Lung or Liver Cancer. Cell Mol. Immunol. 2021, 18, 427–439. [Google Scholar] [CrossRef]
- Parker, M.E.; Ciofani, M. Regulation of Γδ T Cell Effector Diversification in the Thymus. Front. Immunol. 2020, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Pellicci, D.G.; Koay, H.-F.; Berzins, S.P. Thymic Development of Unconventional T Cells: How NKT Cells, MAIT Cells and Γδ T Cells Emerge. Nat. Rev. Immunol. 2020, 20, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Buus, T.B.; Ødum, N.; Geisler, C.; Lauritsen, J.P.H. Three Distinct Developmental Pathways for Adaptive and Two IFN-γ-Producing Γδ T Subsets in Adult Thymus. Nat. Commun. 2017, 8, 1911. [Google Scholar] [CrossRef]
- Ribot, J.C.; deBarros, A.; Pang, D.J.; Neves, J.F.; Peperzak, V.; Roberts, S.J.; Girardi, M.; Borst, J.; Hayday, A.C.; Pennington, D.J.; et al. CD27 Is a Thymic Determinant of the Balance between Interferon-Gamma- and Interleukin 17-Producing Gammadelta T Cell Subsets. Nat. Immunol. 2009, 10, 427–436. [Google Scholar] [CrossRef]
- Muñoz-Ruiz, M.; Ribot, J.C.; Grosso, A.R.; Gonçalves-Sousa, N.; Pamplona, A.; Pennington, D.J.; Regueiro, J.R.; Fernández-Malavé, E.; Silva-Santos, B. TCR Signal Strength Controls Thymic Differentiation of Discrete Proinflammatory Γδ T Cell Subsets. Nat. Immunol. 2016, 17, 721–727. [Google Scholar] [CrossRef]
- Jensen, K.D.C.; Su, X.; Shin, S.; Li, L.; Youssef, S.; Yamasaki, S.; Steinman, L.; Saito, T.; Locksley, R.M.; Davis, M.M.; et al. Thymic Selection Determines Gammadelta T Cell Effector Fate: Antigen-Naive Cells Make Interleukin-17 and Antigen-Experienced Cells Make Interferon Gamma. Immunity 2008, 29, 90–100. [Google Scholar] [CrossRef]
- Fleming, C.; Morrissey, S.; Cai, Y.; Yan, J. Γδ T Cells: Unexpected Regulators of Cancer Development and Progression. Trends Cancer 2017, 3, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, E.; Dieli, F.; Meraviglia, S. Tumor-Infiltrating Γδ T Lymphocytes: Pathogenic Role, Clinical Significance, and Differential Programing in the Tumor Microenvironment. Front. Immunol. 2014, 5, 607. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Ma, C.; Wang, F.; Hsueh, E.C.; Toth, K.; Huang, Y.; Mo, W.; Liu, S.; Han, B.; Varvares, M.A.; et al. Specific Recruitment of Γδ Regulatory T Cells in Human Breast Cancer. Cancer Res. 2013, 73, 6137–6148. [Google Scholar] [CrossRef]
- Xuan, L.; Wu, X.; Qiu, D.; Gao, L.; Liu, H.; Fan, Z.; Huang, F.; Jin, Z.; Sun, J.; Li, Y.; et al. Regulatory Γδ T Cells Induced by G-CSF Participate in Acute Graft-versus-Host Disease Regulation in G-CSF-Mobilized Allogeneic Peripheral Blood Stem Cell Transplantation. J. Transl. Med. 2018, 16, 144. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhan, N.; Jin, Y.; Ling, H.; Xiao, C.; Xie, Z.; Zhong, H.; Yu, X.; Tang, R.; Ma, J.; et al. Tofacitinib Restores the Balance of γδTreg/γδT17 Cells in Rheumatoid Arthritis by Inhibiting the NLRP3 Inflammasome. Theranostics 2021, 11, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Yin, S.; Zhang, J.; Hu, Y.; Huang, B.; Cui, L.; Kang, N.; He, W. A New Effect of IL-4 on Human Γδ T Cells: Promoting Regulatory Vδ1 T Cells via IL-10 Production and Inhibiting Function of Vδ2 T Cells. Cell Mol. Immunol. 2016, 13, 217–228. [Google Scholar] [CrossRef]
- Ni, C.; Fang, Q.-Q.; Chen, W.-Z.; Jiang, J.-X.; Jiang, Z.; Ye, J.; Zhang, T.; Yang, L.; Meng, F.-B.; Xia, W.-J.; et al. Breast Cancer-Derived Exosomes Transmit lncRNA SNHG16 to Induce CD73+γδ1 Treg Cells. Signal Transduct. Target. Ther. 2020, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Wu, P.; Cheng, P.; Zhang, Z.; Wang, Z.; Yu, X.; Shao, X.; Wu, D.; Ye, J.; Zhang, T.; et al. Tumor-Infiltrating CD39+γδTregs Are Novel Immunosuppressive T Cells in Human Colorectal Cancer. Oncoimmunology 2017, 6, e1277305. [Google Scholar] [CrossRef]
- Chabab, G.; Barjon, C.; Abdellaoui, N.; Salvador-Prince, L.; Dejou, C.; Michaud, H.-A.; Boissière-Michot, F.; Lopez-Crapez, E.; Jacot, W.; Pourquier, D.; et al. Identification of a Regulatory Vδ1 Gamma Delta T Cell Subpopulation Expressing CD73 in Human Breast Cancer. J. Leukoc. Biol. 2020, 107, 1057–1067. [Google Scholar] [CrossRef]
- Ferrick, D.A.; Schrenzel, M.D.; Mulvania, T.; Hsieh, B.; Ferlin, W.G.; Lepper, H. Differential Production of Interferon-Gamma and Interleukin-4 in Response to Th1- and Th2-Stimulating Pathogens by Gamma Delta T Cells in Vivo. Nature 1995, 373, 255–257. [Google Scholar] [CrossRef]
- Seo, N.; Tokura, Y.; Furukawa, F.; Takigawa, M. Down-Regulation of Tumoricidal NK and NK T Cell Activities by MHC Kb Molecules Expressed on Th2-Type Gammadelta T and Alphabeta T Cells Coinfiltrating in Early B16 Melanoma Lesions. J. Immunol. 1998, 161, 4138–4145. [Google Scholar] [CrossRef] [PubMed]
- Schmolka, N.; Serre, K.; Grosso, A.R.; Rei, M.; Pennington, D.J.; Gomes, A.Q.; Silva-Santos, B. Epigenetic and Transcriptional Signatures of Stable versus Plastic Differentiation of Proinflammatory Γδ T Cell Subsets. Nat. Immunol. 2013, 14, 1093–1100. [Google Scholar] [CrossRef]
- Chitadze, G.; Oberg, H.-H.; Wesch, D.; Kabelitz, D. The Ambiguous Role of Γδ T Lymphocytes in Antitumor Immunity. Trends Immunol. 2017, 38, 668–678. [Google Scholar] [CrossRef]
- Cao, Y. Cancer-Triggered Systemic Disease and Therapeutic Targets. Holist. Integr. Oncol. 2024, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Casetti, R.; Agrati, C.; Wallace, M.; Sacchi, A.; Martini, F.; Martino, A.; Rinaldi, A.; Malkovsky, M. Cutting Edge: TGF-Beta1 and IL-15 Induce FOXP3+ Gammadelta Regulatory T Cells in the Presence of Antigen Stimulation. J. Immunol. 2009, 183, 3574–3577. [Google Scholar] [CrossRef]
- Kouakanou, L.; Peters, C.; Sun, Q.; Floess, S.; Bhat, J.; Huehn, J.; Kabelitz, D. Vitamin C Supports Conversion of Human Γδ T Cells into FOXP3-Expressing Regulatory Cells by Epigenetic Regulation. Sci. Rep. 2020, 10, 6550. [Google Scholar] [CrossRef]
- Lo Presti, E.; Toia, F.; Oieni, S.; Buccheri, S.; Turdo, A.; Mangiapane, L.R.; Campisi, G.; Caputo, V.; Todaro, M.; Stassi, G.; et al. Squamous Cell Tumors Recruit Γδ T Cells Producing Either IL17 or IFNγ Depending on the Tumor Stage. Cancer Immunol. Res. 2017, 5, 397–407. [Google Scholar] [CrossRef]
- Sureshbabu, S.K.; Chaukar, D.; Chiplunkar, S.V. Hypoxia Regulates the Differentiation and Anti-Tumor Effector Functions of γδT Cells in Oral Cancer. Clin. Exp. Immunol. 2020, 201, 40–57. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Biswas, D.; Usaite, I.; Angelova, M.; Boeing, S.; Karasaki, T.; Veeriah, S.; Czyzewska-Khan, J.; Morton, C.; Joseph, M.; et al. A Local Human Vδ1 T Cell Population Is Associated with Survival in Nonsmall-Cell Lung Cancer. Nat. Cancer 2022, 3, 696–709. [Google Scholar] [CrossRef]
- Pizzolato, G.; Kaminski, H.; Tosolini, M.; Franchini, D.-M.; Pont, F.; Martins, F.; Valle, C.; Labourdette, D.; Cadot, S.; Quillet-Mary, A.; et al. Single-Cell RNA Sequencing Unveils the Shared and the Distinct Cytotoxic Hallmarks of Human TCRVδ1 and TCRVδ2 Γδ T Lymphocytes. Proc. Natl. Acad. Sci. USA 2019, 116, 11906–11915. [Google Scholar] [CrossRef]
- Conti, H.R.; Peterson, A.C.; Brane, L.; Huppler, A.R.; Hernández-Santos, N.; Whibley, N.; Garg, A.V.; Simpson-Abelson, M.R.; Gibson, G.A.; Mamo, A.J.; et al. Oral-Resident Natural Th17 Cells and Γδ T Cells Control Opportunistic Candida Albicans Infections. J. Exp. Med. 2014, 211, 2075–2084. [Google Scholar] [CrossRef]
- Peng, M.Y.; Wang, Z.H.; Yao, C.Y.; Jiang, L.N.; Jin, Q.L.; Wang, J.; Li, B.Q. Interleukin 17-Producing Gamma Delta T Cells Increased in Patients with Active Pulmonary Tuberculosis. Cell Mol. Immunol. 2008, 5, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.G.; O’Keeffe, K.M.; Lalor, S.J.; Maher, B.M.; Mills, K.H.G.; McLoughlin, R.M. Staphylococcus Aureus Infection of Mice Expands a Population of Memory Γδ T Cells That Are Protective against Subsequent Infection. J. Immunol. 2014, 192, 3697–3708. [Google Scholar] [CrossRef]
- Ponomarev, E.D.; Novikova, M.; Yassai, M.; Szczepanik, M.; Gorski, J.; Dittel, B.N. Gamma Delta T Cell Regulation of IFN-Gamma Production by Central Nervous System-Infiltrating Encephalitogenic T Cells: Correlation with Recovery from Experimental Autoimmune Encephalomyelitis. J. Immunol. 2004, 173, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-G.; Mathur, R.; Long, M.; Hosh, N.; Hao, L.; Hayden, M.S.; Ghosh, S. T Regulatory Cells Maintain Intestinal Homeostasis by Suppressing Γδ T Cells. Immunity 2010, 33, 791–803. [Google Scholar] [CrossRef]
- Cui, Y.; Shao, H.; Lan, C.; Nian, H.; O’Brien, R.L.; Born, W.K.; Kaplan, H.J.; Sun, D. Major Role of Gamma Delta T Cells in the Generation of IL-17+ Uveitogenic T Cells. J. Immunol. 2009, 183, 560–567. [Google Scholar] [CrossRef]
- Shibata, S.; Tada, Y.; Hau, C.S.; Mitsui, A.; Kamata, M.; Asano, Y.; Sugaya, M.; Kadono, T.; Masamoto, Y.; Kurokawa, M.; et al. Adiponectin Regulates Psoriasiform Skin Inflammation by Suppressing IL-17 Production from Γδ-T Cells. Nat. Commun. 2015, 6, 7687. [Google Scholar] [CrossRef] [PubMed]
- Groh, V.; Steinle, A.; Bauer, S.; Spies, T. Recognition of Stress-Induced MHC Molecules by Intestinal Epithelial Gammadelta T Cells. Science 1998, 279, 1737–1740. [Google Scholar] [CrossRef]
- Groh, V.; Rhinehart, R.; Secrist, H.; Bauer, S.; Grabstein, K.H.; Spies, T. Broad Tumor-Associated Expression and Recognition by Tumor-Derived Gamma Delta T Cells of MICA and MICB. Proc. Natl. Acad. Sci. USA 1999, 96, 6879–6884. [Google Scholar] [CrossRef]
- Lai, A.Y.; Patel, A.; Brewer, F.; Evans, K.; Johannes, K.; González, L.E.; Yoo, K.J.; Fromm, G.; Wilson, K.; Schreiber, T.H.; et al. Cutting Edge: Bispecific Γδ T Cell Engager Containing Heterodimeric BTN2A1 and BTN3A1 Promotes Targeted Activation of Vγ9Vδ2+ T Cells in the Presence of Costimulation by CD28 or NKG2D. J. Immunol. 2022, 209, 1475–1480. [Google Scholar] [CrossRef]
- Maniar, A.; Zhang, X.; Lin, W.; Gastman, B.R.; Pauza, C.D.; Strome, S.E.; Chapoval, A.I. Human Gammadelta T Lymphocytes Induce Robust NK Cell-Mediated Antitumor Cytotoxicity through CD137 Engagement. Blood 2010, 116, 1726–1733. [Google Scholar] [CrossRef]
- Gao, Z.; Bai, Y.; Lin, A.; Jiang, A.; Zhou, C.; Cheng, Q.; Liu, Z.; Chen, X.; Zhang, J.; Luo, P. Gamma Delta T-Cell-Based Immune Checkpoint Therapy: Attractive Candidate for Antitumor Treatment. Mol. Cancer 2023, 22, 31. [Google Scholar] [CrossRef]
- Chow, A.; Perica, K.; Klebanoff, C.A.; Wolchok, J.D. Clinical Implications of T Cell Exhaustion for Cancer Immunotherapy. Nat. Rev. Clin. Oncol. 2022, 19, 775–790. [Google Scholar] [CrossRef]
- Demaria, O.; Cornen, S.; Daëron, M.; Morel, Y.; Medzhitov, R.; Vivier, E. Harnessing Innate Immunity in Cancer Therapy. Nature 2019, 574, 45–56. [Google Scholar] [CrossRef]
- Suzuki, K.; Suzuki, K.; Yabe, Y.; Iida, K.; Ishikawa, J.; Makita, S.; Kageyama, T.; Iwamoto, T.; Tanaka, S.; Yokota, M.; et al. NF-κB1 Contributes to Imiquimod-Induced Psoriasis-Like Skin Inflammation by Inducing Vγ4+Vδ4+γδT17 Cells. J. Investig. Dermatol. 2022, 142, 1639–1649.e5. [Google Scholar] [CrossRef]
- Bain, G.; Cravatt, C.B.; Loomans, C.; Alberola-Ila, J.; Hedrick, S.M.; Murre, C. Regulation of the Helix-Loop-Helix Proteins, E2A and Id3, by the Ras-ERK MAPK Cascade. Nat. Immunol. 2001, 2, 165–171. [Google Scholar] [CrossRef]
- Haks, M.C.; Lefebvre, J.M.; Lauritsen, J.P.H.; Carleton, M.; Rhodes, M.; Miyazaki, T.; Kappes, D.J.; Wiest, D.L. Attenuation of gammadeltaTCR Signaling Efficiently Diverts Thymocytes to the Alphabeta Lineage. Immunity 2005, 22, 595–606. [Google Scholar] [CrossRef]
- Chen, S.; Paveley, R.; Kraal, L.; Sritharan, L.; Stevens, E.; Dedi, N.; Shock, A.; Shaw, S.; Juarez, M.; Yeremenko, N.; et al. Selective Targeting of PI3Kδ Suppresses Human IL-17-Producing T Cells and Innate-like Lymphocytes and May Be Therapeutic for IL-17-Mediated Diseases. J. Autoimmun. 2020, 111, 102435. [Google Scholar] [CrossRef]
- Tumor Hypoxia Represses Γδ T Cell-Mediated Antitumor Immunity Against Brain Tumors—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/33574616/ (accessed on 3 February 2025).
- Hosokawa, H.; Rothenberg, E.V. How Transcription Factors Drive Choice of the T Cell Fate. Nat. Rev. Immunol. 2021, 21, 162–176. [Google Scholar] [CrossRef]
- Boehme, L.; Roels, J.; Taghon, T. Development of Γδ T Cells in the Thymus—A Human Perspective. Semin. Immunol. 2022, 61–64, 101662. [Google Scholar] [CrossRef]
- Roels, J.; Van Hulle, J.; Lavaert, M.; Kuchmiy, A.; Strubbe, S.; Putteman, T.; Vandekerckhove, B.; Leclercq, G.; Van Nieuwerburgh, F.; Boehme, L.; et al. Transcriptional Dynamics and Epigenetic Regulation of E and ID Protein Encoding Genes during Human T Cell Development. Front. Immunol. 2022, 13, 960918. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Hu, Y. Metabolites in the Tumor Microenvironment Reprogram Functions of Immune Effector Cells Through Epigenetic Modifications. Front. Immunol. 2021, 12, 641883. [Google Scholar] [CrossRef]
- Franchina, D.G.; Dostert, C.; Brenner, D. Reactive Oxygen Species: Involvement in T Cell Signaling and Metabolism. Trends Immunol. 2018, 39, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Mensurado, S.; Rei, M.; Lança, T.; Ioannou, M.; Gonçalves-Sousa, N.; Kubo, H.; Malissen, M.; Papayannopoulos, V.; Serre, K.; Silva-Santos, B. Tumor-Associated Neutrophils Suppress pro-Tumoral IL-17+ Γδ T Cells through Induction of Oxidative Stress. PLoS Biol. 2018, 16, e2004990. [Google Scholar] [CrossRef]
- The Role of ROS in Tumour Development and Progression—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35102280/ (accessed on 3 February 2025).
- Microenvironmental Oxygen Pressure Orchestrates an Anti- and Pro-Tumoral Γδ T Cell Equilibrium via Tumor-Derived Exosomes—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/30546089/ (accessed on 3 February 2025).
- Wu, P.; Wu, D.; Ni, C.; Ye, J.; Chen, W.; Hu, G.; Wang, Z.; Wang, C.; Zhang, Z.; Xia, W.; et al. γδT17 Cells Promote the Accumulation and Expansion of Myeloid-Derived Suppressor Cells in Human Colorectal Cancer. Immunity 2014, 40, 785–800. [Google Scholar] [CrossRef]
- Exosomes Derived from Vδ2-T Cells Control Epstein-Barr Virus-Associated Tumors and Induce T Cell Antitumor Immunity—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32998970/ (accessed on 3 February 2025).
- Updates on Chronic HBV: Current Challenges and Future Goals—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/31077059/ (accessed on 25 January 2025).
- Leslie, J.; Geh, D.; Elsharkawy, A.M.; Mann, D.A.; Vacca, M. Metabolic Dysfunction and Cancer in HCV: Shared Pathways and Mutual Interactions. J. Hepatol. 2022, 77, 219–236. [Google Scholar] [CrossRef]
- Chen, M.; Hu, P.; Peng, H.; Zeng, W.; Shi, X.; Lei, Y.; Hu, H.; Zhang, D.; Ren, H. Enhanced Peripheral γδT Cells Cytotoxicity Potential in Patients with HBV-Associated Acute-On-Chronic Liver Failure Might Contribute to the Disease Progression. J. Clin. Immunol. 2012, 32, 877–885. [Google Scholar] [CrossRef]
- Lin, H.; Dai, Z.; Huang, L.; Zhou, X. Hepatitis B Virus Reactivation Associated with CAR T-Cell Therapy. Holist. Integr. Oncol. 2024, 3, 16. [Google Scholar] [CrossRef]
- Rajoriya, N.; Fergusson, J.R.; Leithead, J.A.; Klenerman, P. Gamma Delta T-Lymphocytes in Hepatitis C and Chronic Liver Disease. Front. Immunol. 2014, 5, 400. [Google Scholar] [CrossRef]
- Jia, Z.-H.; Li, Y.-Y.; Wang, J.-Y.; Zhang, J.-Y.; Huang, A.; Guo, X.-D.; Zhu, Z.-Y.; Wang, F.-S.; Wu, X.-L. Activated Γδ T Cells Exhibit Cytotoxicity and the Capacity for Viral Clearance in Patients with Acute Hepatitis B. Clin. Immunol. 2019, 202, 40–48. [Google Scholar] [CrossRef]
- Conroy, M.J.; Mac Nicholas, R.; Taylor, M.; O’Dea, S.; Mulcahy, F.; Norris, S.; Doherty, D.G. Increased Frequencies of Circulating IFN-γ-Producing Vδ1+ and Vδ2+ Γδ T Cells in Patients with Asymptomatic Persistent Hepatitis B Virus Infection. Viral Immunol. 2015, 28, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Wu, X. Diverse Functions of Γδ T Cells in the Progression of Hepatitis B Virus and Hepatitis C Virus Infection. Front. Immunol. 2021, 11, 619872. [Google Scholar] [CrossRef] [PubMed]
- Jiayu, Z.; Zhang, Q. Hepatitis B Virus–Associated Diffuse Large B Cell Lymphoma: Epidemiology, Biology, Clinical Features and HBV Reactivation. Holist. Integr. Oncol. 2023, 2, 38. [Google Scholar] [CrossRef]
- Decreased Vδ2 Γδ T Cells Associated with Liver Damage by Regulation of Th17 Response in Patients with Chronic Hepatitis B—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/23847059/ (accessed on 27 January 2025).
- Chen, M.; Hu, P.; Ling, N.; Peng, H.; Lei, Y.; Hu, H.; Zhang, D.; Ren, H. Enhanced Functions of Peripheral Γδ T Cells in Chronic Hepatitis B Infection during Interferon α Treatment in Vivo and in Vitro. PLoS ONE 2015, 10, e0120086. [Google Scholar] [CrossRef]
- Nwabo Kamdje, A.H.; Tagne Simo, R.; Fogang Dongmo, H.P.; Bidias, A.R.; Masumbe Netongo, P. Role of Signaling Pathways in the Interaction between Microbial, Inflammation and Cancer. Holist. Integr. Oncol. 2023, 2, 42. [Google Scholar] [CrossRef]
- Cairo, C.; Armstrong, C.L.; Cummings, J.S.; Deetz, C.O.; Tan, M.; Lu, C.; Davis, C.E.; Pauza, C.D. Impact of Age, Gender, and Race on Circulating Γδ T Cells. Hum. Immunol. 2010, 71, 968–975. [Google Scholar] [CrossRef]
- TCRγδ(+)CD4(−)CD8(−) T Cells Suppress the CD8(+) T-Cell Response to Hepatitis B Virus Peptides, and Are Associated with Viral Control in Chronic Hepatitis B—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/24551107/ (accessed on 28 January 2025).
- Kong, X.; Sun, R.; Chen, Y.; Wei, H.; Tian, Z. γδT Cells Drive Myeloid-Derived Suppressor Cell-Mediated CD8+ T Cell Exhaustion in Hepatitis B Virus-Induced Immunotolerance. J. Immunol. 2014, 193, 1645–1653. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, Y.; Hu, Y.; Li, Y.; Lu, N.; Zhang, C. Murine CXCR3+CXCR6+γδT Cells Reside in the Liver and Provide Protection Against HBV Infection. Front. Immunol. 2022, 12, 757379. [Google Scholar] [CrossRef]
- Tseng, C.T.; Miskovsky, E.; Houghton, M.; Klimpel, G.R. Characterization of Liver T-Cell Receptor Gammadelta T Cells Obtained from Individuals Chronically Infected with Hepatitis C Virus (HCV): Evidence for These T Cells Playing a Role in the Liver Pathology Associated with HCV Infections. Hepatology 2001, 33, 1312–1320. [Google Scholar] [CrossRef]
- Agrati, C.; D’Offizi, G.; Narciso, P.; Abrignani, S.; Ippolito, G.; Colizzi, V.; Poccia, F. Vdelta1 T Lymphocytes Expressing a Th1 Phenotype Are the Major Gammadelta T Cell Subset Infiltrating the Liver of HCV-Infected Persons. Mol. Med. 2001, 7, 11–19. [Google Scholar] [CrossRef]
- Pár, G.; Rukavina, D.; Podack, E.R.; Horányi, M.; Szekeres-Barthó, J.; Hegedüs, G.; Paál, M.; Szereday, L.; Mózsik, G.; Pár, A. Decrease in CD3-Negative-CD8dim(+) and Vdelta2/Vgamma9 TcR+ Peripheral Blood Lymphocyte Counts, Low Perforin Expression and the Impairment of Natural Killer Cell Activity Is Associated with Chronic Hepatitis C Virus Infection. J. Hepatol. 2002, 37, 514–522. [Google Scholar] [CrossRef]
- Alonzi, T.; Agrati, C.; Costabile, B.; Cicchini, C.; Amicone, L.; Cavallari, C.; Rocca, C.D.; Folgori, A.; Fipaldini, C.; Poccia, F.; et al. Steatosis and Intrahepatic Lymphocyte Recruitment in Hepatitis C Virus Transgenic Mice. J. Gen. Virol. 2004, 85, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Kim, W.; Kwon, E.-K.; Kim, Y.; Shin, H.M.; Kim, D.-H.; Min, C.-K.; Choi, J.-Y.; Lee, W.-W.; Choi, M.-S.; et al. Immunological Dynamics Associated with Rapid Virological Response during the Early Phase of Type I Interferon Therapy in Patients with Chronic Hepatitis C. PLoS ONE 2017, 12, e0179094. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Tong, S.; Zhang, Q.; Shao, J.; Liu, Q.; Peng, H.; Hu, H.; Peng, M.; Hu, P.; Ren, H.; et al. Functional Dichotomy of Vδ2 Γδ T Cells in Chronic Hepatitis C Virus Infections: Role in Cytotoxicity but Not for IFN-γ Production. Sci. Rep. 2016, 6, 26296. [Google Scholar] [CrossRef]
- Bono, V.; Tincati, C.; Van Den Bogaart, L.; Cannizzo, E.S.; Rovito, R.; Augello, M.; De Bona, A.; D’Arminio Monforte, A.; Milazzo, L.; Marchetti, G. Gamma-Delta T-Cell Phenotype and Function in DAA-Treated HIV-HCV Co-Infected and HCV-Mono-Infected Subjects. Viruses 2022, 14, 1594. [Google Scholar] [CrossRef]
- Ghosh, A.; Mondal, R.K.; Romani, S.; Bagchi, S.; Cairo, C.; Pauza, C.D.; Kottilil, S.; Poonia, B. Persistent Gamma Delta T-Cell Dysfunction in Chronic HCV Infection despite Direct-Acting Antiviral Therapy Induced Cure. J. Viral Hepat. 2019, 26, 1105–1116. [Google Scholar] [CrossRef]
- Chen, D.; Luo, X.; Xie, H.; Gao, Z.; Fang, H.; Huang, J. Characteristics of IL-17 Induction by Schistosoma Japonicum Infection in C57BL/6 Mouse Liver. Immunology 2013, 139, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, K.A.; Andrew, E.M.; Newton, D.J.; Tramonti, D.; Carding, S.R. A Subset of IL-10-Producing Gammadelta T Cells Protect the Liver from Listeria-Elicited, CD8(+) T Cell-Mediated Injury. Eur. J. Immunol. 2008, 38, 2274–2283. [Google Scholar] [CrossRef]
- Paul, B.; Lewinska, M.; Andersen, J.B. Lipid Alterations in Chronic Liver Disease and Liver Cancer. JHEP Rep. 2022, 4, 100479. [Google Scholar] [CrossRef]
- Cichoż-Lach, H.; Michalak, A. Oxidative Stress as a Crucial Factor in Liver Diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef]
- Hammerich, L.; Tacke, F. Hepatic Inflammatory Responses in Liver Fibrosis. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 633–646. [Google Scholar] [CrossRef]
- Israelsen, M.; Francque, S.; Tsochatzis, E.A.; Krag, A. Steatotic Liver Disease. Lancet 2024, 404, 1761–1778. [Google Scholar] [CrossRef]
- Li, F.; Hao, X.; Chen, Y.; Bai, L.; Gao, X.; Lian, Z.; Wei, H.; Sun, R.; Tian, Z. The Microbiota Maintain Homeostasis of Liver-Resident γδT-17 Cells in a Lipid Antigen/CD1d-Dependent Manner. Nat. Commun. 2017, 8, 13839. [Google Scholar] [CrossRef]
- Tarantino, G.; Citro, V.; Balsano, C. Liver-Spleen Axis in Nonalcoholic Fatty Liver Disease. Expert. Rev. Gastroenterol. Hepatol. 2021, 15, 759–769. [Google Scholar] [CrossRef]
- Wallace, S.J.; Tacke, F.; Schwabe, R.F.; Henderson, N.C. Understanding the Cellular Interactome of Non-Alcoholic Fatty Liver Disease. JHEP Rep. 2022, 4, 100524. [Google Scholar] [CrossRef]
- Xu, R.; Tao, A.; Zhang, S.; Zhang, M. Neutralization of Interleukin-17 Attenuates High Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice. Acta Biochim. Biophys. Sin. 2013, 45, 726–733. [Google Scholar] [CrossRef]
- Jin, M.; Lai, Y.; Zhao, P.; Shen, Q.; Su, W.; Yin, Y.; Zhang, W. Effects of Peptidoglycan on the Development of Steatohepatitis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158595. [Google Scholar] [CrossRef]
- Gao, C.; Wang, S.; Xie, X.; Ramadori, P.; Li, X.; Liu, X.; Ding, X.; Liang, J.; Xu, B.; Feng, Y.; et al. Single-Cell Profiling of Intrahepatic Immune Cells Reveals an Expansion of Tissue-Resident Cytotoxic CD4+ T Lymphocyte Subset Associated With Pathogenesis of Alcoholic-Associated Liver Diseases. Cell Mol. Gastroenterol. Hepatol. 2025, 19, 101411. [Google Scholar] [CrossRef]
- Torres-Hernandez, A.; Wang, W.; Nikiforov, Y.; Tejada, K.; Torres, L.; Kalabin, A.; Adam, S.; Wu, J.; Lu, L.; Chen, R.; et al. Γδ T Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming. Hepatology 2020, 71, 477–494. [Google Scholar] [CrossRef]
- Lei, Z.; Yu, J.; Wu, Y.; Shen, J.; Lin, S.; Xue, W.; Mao, C.; Tang, R.; Sun, H.; Qi, X.; et al. CD1d Protects against Hepatocyte Apoptosis in Non-Alcoholic Steatohepatitis. J. Hepatol. 2024, 80, 194–208. [Google Scholar] [CrossRef]
- Han, Y.; Ling, Q.; Wu, L.; Wang, X.; Wang, Z.; Chen, J.; Zheng, Z.; Zhou, Z.; Jia, L.; Li, L.; et al. Akkermansia Muciniphila Inhibits Nonalcoholic Steatohepatitis by Orchestrating TLR2-Activated γδT17 Cell and Macrophage Polarization. Gut Microbes 2023, 15, 2221485. [Google Scholar] [CrossRef]
- Tsochatzis, E.A.; Bosch, J.; Burroughs, A.K. Liver Cirrhosis. Lancet 2014, 383, 1749–1761. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Wang, K.; Aoyama, T.; Grivennikov, S.I.; Paik, Y.; Scholten, D.; Cong, M.; Iwaisako, K.; Liu, X.; Zhang, M.; et al. Interleukin-17 Signaling in Inflammatory, Kupffer Cells, and Hepatic Stellate Cells Exacerbates Liver Fibrosis in Mice. Gastroenterology 2012, 143, 765–776.e3. [Google Scholar] [CrossRef]
- Zheng, L.; Hu, Y.; Wang, Y.; Huang, X.; Xu, Y.; Shen, Y.; Cao, J. Recruitment of Neutrophils Mediated by Vγ2 Γδ T Cells Deteriorates Liver Fibrosis Induced by Schistosoma Japonicum Infection in C57BL/6 Mice. Infect. Immun. 2017, 85, e01020-16. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, K.; Morise, K.; Nagura, H. Immunohistochemical Study of T Cell Receptor Gamma Delta Cells in Chronic Liver Disease. Am. J. Gastroenterol. 1992, 87, 1018–1022. [Google Scholar] [PubMed]
- Tan, Z.; Qian, X.; Jiang, R.; Liu, Q.; Wang, Y.; Chen, C.; Wang, X.; Ryffel, B.; Sun, B. IL-17A Plays a Critical Role in the Pathogenesis of Liver Fibrosis through Hepatic Stellate Cell Activation. J. Immunol. 2013, 191, 1835–1844. [Google Scholar] [CrossRef]
- Wang, X.; Sun, R.; Wei, H.; Tian, Z. High-Mobility Group Box 1 (HMGB1)-Toll-like Receptor (TLR)4-Interleukin (IL)-23-IL-17A Axis in Drug-Induced Damage-Associated Lethal Hepatitis: Interaction of Γδ T Cells with Macrophages. Hepatology 2013, 57, 373–384. [Google Scholar] [CrossRef]
- Seo, W.; Eun, H.S.; Kim, S.Y.; Yi, H.; Lee, Y.; Park, S.; Jang, M.; Jo, E.; Kim, S.C.; Han, Y.; et al. Exosome-mediated Activation of Toll-like Receptor 3 in Stellate Cells Stimulates Interleukin-17 Production by Γδ T Cells in Liver Fibrosis. Hepatology 2016, 64, 616–631. [Google Scholar] [CrossRef]
- Hammerich, L.; Bangen, J.M.; Govaere, O.; Zimmermann, H.W.; Gassler, N.; Huss, S.; Liedtke, C.; Prinz, I.; Lira, S.A.; Luedde, T.; et al. Chemokine Receptor CCR6-Dependent Accumulation of Γδ T Cells in Injured Liver Restricts Hepatic Inflammation and Fibrosis: Hepatology, Vol. 00, No. 0, 2013 Hammerich et Al. Hepatology 2014, 59, 630–642. [Google Scholar] [CrossRef]
- Liu, M.; Hu, Y.; Yuan, Y.; Tian, Z.; Zhang, C. γδT Cells Suppress Liver Fibrosis via Strong Cytolysis and Enhanced NK Cell-Mediated Cytotoxicity Against Hepatic Stellate Cells. Front. Immunol. 2019, 10, 477. [Google Scholar] [CrossRef]
- Mieli-Vergani, G.; Vergani, D. Autoimmune Hepatitis. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, Y.; Hokari, A. Autoimmune Hepatitis: Current Challenges and Future Prospects. Clin. Exp. Gastroenterol. 2017, 10, 9–18. [Google Scholar] [CrossRef]
- Carey, E.J.; Ali, A.H.; Lindor, K.D. Primary Biliary Cirrhosis. Lancet 2015, 386, 1565–1575. [Google Scholar] [CrossRef]
- Singh, S.; Talwalkar, J.A. Primary Sclerosing Cholangitis: Diagnosis, Prognosis, and Management. Clin. Gastroenterol. Hepatol. 2013, 11, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Martins, E.B.; Graham, A.K.; Chapman, R.W.; Fleming, K.A. Elevation of Γδ T Lymphocytes in Peripheral Blood and Livers of Patients with Primary Sclerosing Cholangitis and Other Autoimmune Liver Diseases. Hepatology 1996, 23, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Hua, F.; Wang, L.; Rong, X.; Hu, Y.; Zhang, J.M.; He, W.; Zhang, F.C. Elevation of Vδ1 T Cells in Peripheral Blood and Livers of Patients with Primary Biliary Cholangitis. Clin. Exp. Immunol. 2016, 186, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Haas, W.; Pereira, P.; Tonegawa, S. Gamma/Delta Cells. Annu. Rev. Immunol. 1993, 11, 637–685. [Google Scholar] [CrossRef]
- Zhou, Q.-H.; Wu, F.-T.; Pang, L.-T.; Zhang, T.-B.; Chen, Z. Role of γδT Cells in Liver Diseases and Its Relationship with Intestinal Microbiota. World J. Gastroenterol. 2020, 26, 2559–2569. [Google Scholar] [CrossRef]
- He, Q.; Lu, Y.; Tian, W.; Jiang, R.; Yu, W.; Liu, Y.; Sun, M.; Wang, F.; Zhang, H.; Wu, N.; et al. TOX Deficiency Facilitates the Differentiation of IL-17A-Producing Γδ T Cells to Drive Autoimmune Hepatitis. Cell Mol. Immunol. 2022, 19, 1102–1116. [Google Scholar] [CrossRef]
- Klemann, C.; Schröder, A.; Dreier, A.; Möhn, N.; Dippel, S.; Winterberg, T.; Wilde, A.; Yu, Y.; Thorenz, A.; Gueler, F.; et al. Interleukin 17, Produced by Γδ T Cells, Contributes to Hepatic Inflammation in a Mouse Model of Biliary Atresia and Is Increased in Livers of Patients. Gastroenterology 2016, 150, 229–241.e5. [Google Scholar] [CrossRef]
- Cui, T.X.; Brady, A.E.; Zhang, Y.-J.; Anderson, C.; Popova, A.P. IL-17a-Producing γδT Cells and NKG2D Signaling Mediate Bacterial Endotoxin-Induced Neonatal Lung Injury: Implications for Bronchopulmonary Dysplasia. Front. Immunol. 2023, 14, 1156842. [Google Scholar] [CrossRef] [PubMed]
- Ujiie, H.; Shevach, E.M. Γδ T Cells Protect the Liver and Lungs of Mice from Autoimmunity Induced by Scurfy Lymphocytes. J. Immunol. 2016, 196, 1517–1528. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, N.; Hall, A.; Swadling, L.; Pallett, L.J.; Schmidt, N.M.; Diniz, M.O.; Kucykowicz, S.; Amin, O.E.; Gander, A.; Pinzani, M.; et al. Characterisation and Induction of Tissue-Resident Gamma Delta T-Cells to Target Hepatocellular Carcinoma. Nat. Commun. 2022, 13, 1372. [Google Scholar] [CrossRef] [PubMed]
- Ontogeny of Innate T Lymphocytes—Some Innate Lymphocytes Are More Innate than Others—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/25346734/ (accessed on 1 February 2025).
- Xia, J.; Wang, C.; Li, B. Hepatocellular Carcinoma Cells Induce Γδ T Cells through Metabolic Reprogramming into Tumor-Progressive Subpopulation. Front. Oncol. 2024, 14, 1451650. [Google Scholar] [CrossRef]
- Serrano, R.; Wesch, D.; Kabelitz, D. Activation of Human Γδ T Cells: Modulation by Toll-Like Receptor 8 Ligands and Role of Monocytes. Cells 2020, 9, 713. [Google Scholar] [CrossRef]
- Bonneville, M.; Fournié, J.-J. Sensing Cell Stress and Transformation through Vgamma9Vdelta2 T Cell-Mediated Recognition of the Isoprenoid Pathway Metabolites. Microbes Infect. 2005, 7, 503–509. [Google Scholar] [CrossRef]
- Deniger, D.C.; Maiti, S.N.; Mi, T.; Switzer, K.C.; Ramachandran, V.; Hurton, L.V.; Ang, S.; Olivares, S.; Rabinovich, B.A.; Huls, M.H.; et al. Activating and Propagating Polyclonal Gamma Delta T Cells with Broad Specificity for Malignancies. Clin. Cancer Res. 2014, 20, 5708–5719. [Google Scholar] [CrossRef]
- Pauza, C.D.; Liou, M.-L.; Lahusen, T.; Xiao, L.; Lapidus, R.G.; Cairo, C.; Li, H. Gamma Delta T Cell Therapy for Cancer: It Is Good to Be Local. Front. Immunol. 2018, 9, 1305. [Google Scholar] [CrossRef]
- Fan, X. Recent Highlights of Cancer Immunotherapy. Holist. Integr. Oncol. 2023, 2, 37. [Google Scholar] [CrossRef]
- He, W.; Hu, Y.; Chen, D.; Li, Y.; Ye, D.; Zhao, Q.; Lin, L.; Shi, X.; Lu, L.; Yin, Z.; et al. Hepatocellular Carcinoma-infiltrating Γδ T Cells Are Functionally Defected and Allogenic Vδ2 + Γδ T Cell Can Be a Promising Complement. Clin. Transl. Med. 2022, 12, e800. [Google Scholar] [CrossRef]
- Leone, R.D.; Powell, J.D. Metabolism of Immune Cells in Cancer. Nat. Rev. Cancer 2020, 20, 516–531. [Google Scholar] [CrossRef]
- Tajan, M.; Hock, A.K.; Blagih, J.; Robertson, N.A.; Labuschagne, C.F.; Kruiswijk, F.; Humpton, T.J.; Adams, P.D.; Vousden, K.H. A Role for P53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metab. 2018, 28, 721–736.e6. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; He, H.-W.; Wang, J.-X.; Cai, X.-Y.; Li, Y.-W.; Zhou, J.; Cheng, Y.-F.; Jin, J.-J.; Fan, J.; Qiu, S.-J. The Functional Impairment of HCC-Infiltrating Γδ T Cells, Partially Mediated by Regulatory T Cells in a TGFβ- and IL-10-Dependent Manner. J. Hepatol. 2013, 58, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, P.; Qiu, F.; Wei, Q.; Huang, J. Human γδT-Cell Subsets and Their Involvement in Tumor Immunity. Cell Mol. Immunol. 2017, 14, 245–253. [Google Scholar] [CrossRef]
- Poggi, A.; Zocchi, M.R.; Costa, P.; Ferrero, E.; Borsellino, G.; Placido, R.; Galgani, S.; Salvetti, M.; Gasperini, C.; Ristori, G.; et al. IL-12-Mediated NKRP1A up-Regulation and Consequent Enhancement of Endothelial Transmigration of V Delta 2+ TCR Gamma Delta+ T Lymphocytes from Healthy Donors and Multiple Sclerosis Patients. J. Immunol. 1999, 162, 4349–4354. [Google Scholar] [CrossRef] [PubMed]
- Bouet-Toussaint, F.; Cabillic, F.; Toutirais, O.; Le Gallo, M.; Thomas De La Pintière, C.; Daniel, P.; Genetet, N.; Meunier, B.; Dupont-Bierre, E.; Boudjema, K.; et al. Vγ9Vδ2 T Cell-Mediated Recognition of Human Solid Tumors. Potential for Immunotherapy of Hepatocellular and Colorectal Carcinomas. Cancer Immunol. Immunother. 2008, 57, 531–539. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, D.; Hong, M.; Liu, J.; Li, Y.; Hao, J.; Lu, L.; Yin, Z.; Wu, Y. Apoptosis, Pyroptosis, and Ferroptosis Conspiringly Induce Immunosuppressive Hepatocellular Carcinoma Microenvironment and Γδ T-Cell Imbalance. Front. Immunol. 2022, 13, 845974. [Google Scholar] [CrossRef]
- Alnaggar, M.; Xu, Y.; Li, J.; He, J.; Chen, J.; Li, M.; Wu, Q.; Lin, L.; Liang, Y.; Wang, X.; et al. Allogenic Vγ9Vδ2 T Cell as New Potential Immunotherapy Drug for Solid Tumor: A Case Study for Cholangiocarcinoma. J. Immunother. Cancer 2019, 7, 36. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, Z.; Song, Z.; Green, M.; Song, H.; Shao, Q. Γδ T Cells in Hepatocellular Carcinoma Patients Present Cytotoxic Activity but Are Reduced in Potency Due to IL-2 and IL-21 Pathways. Int. Immunopharmacol. 2019, 70, 167–173. [Google Scholar] [CrossRef]
- Rao, R.; Graffeo, C.S.; Gulati, R.; Jamal, M.; Narayan, S.; Zambirinis, C.P.; Barilla, R.; Deutsch, M.; Greco, S.H.; Ochi, A.; et al. Interleukin 17–Producing γδT Cells Promote Hepatic Regeneration in Mice. Gastroenterology 2014, 147, 473–484.e2. [Google Scholar] [CrossRef]
- Wu, L.; Deng, H.; Feng, X.; Xie, D.; Li, Z.; Chen, J.; Mo, Z.; Zhao, Q.; Hu, Z.; Yi, S.; et al. Interferon-Γ+ Th1 Activates Intrahepatic Resident Memory T Cells to Promote HBsAg Loss by Inducing M1 Macrophage Polarization. J. Med. Virol. 2024, 96, e29627. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Gao, J.; Yu, Y.; Liao, B.; Zhou, Y.; Zhang, J.; Ma, X.; Hou, W.; Zhou, T.; Xu, Q. MMP10 Alleviates Non-Alcoholic Steatohepatitis by Regulating Macrophage M2 Polarization. Int. Immunopharmacol. 2023, 124, 111045. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, C. The Roles of Liver-Resident Lymphocytes in Liver Diseases. Front. Immunol. 2019, 10, 1582. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.W.A.; Curbishley, S.M.; Chen, H.-C.; Thomas, A.D.; Pircher, H.; Mavilio, D.; Steven, N.M.; Eberl, M.; Moser, B. Expanded Human Blood-Derived γδT Cells Display Potent Antigen-Presentation Functions. Front. Immunol. 2014, 5, 344. [Google Scholar] [CrossRef]
- Dakhel, S.; Galbiati, A.; Migliorini, F.; Comacchio, C.; Oehler, S.; Prati, L.; Scheuermann, J.; Cazzamalli, S.; Neri, D.; Bassi, G.; et al. Isolation of a Natural Killer Group 2D Small-Molecule Ligand from DNA-Encoded Chemical Libraries. ChemMedChem 2022, 17, e202200350. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Suzuki, Y.; Katakura, R.; Ebina, T.; Yokoyama, J.; Fujimiya, Y. Interleukin-15 Effectively Potentiates the in Vitro Tumor-Specific Activity and Proliferation of Peripheral Blood gammadeltaT Cells Isolated from Glioblastoma Patients. Cancer Immunol. Immunother. 1998, 47, 97–103. [Google Scholar] [CrossRef]
- Vacca, P.; Pietra, G.; Tumino, N.; Munari, E.; Mingari, M.C.; Moretta, L. Exploiting Human NK Cells in Tumor Therapy. Front. Immunol. 2019, 10, 3013. [Google Scholar] [CrossRef]
- Cairo, C.; Surendran, N.; Harris, K.M.; Mazan-Mamczarz, K.; Sakoda, Y.; Diaz-Mendez, F.; Tamada, K.; Gartenhaus, R.B.; Mann, D.L.; Pauza, C.D. Vγ2Vδ2 T Cell Costimulation Increases NK Cell Killing of Monocyte-Derived Dendritic Cells. Immunology 2014, 144, 422–430. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, H.K. Function of Γδ T Cells in Tumor Immunology and Their Application to Cancer Therapy. Exp. Mol. Med. 2021, 53, 318–327. [Google Scholar] [CrossRef]
- Glatzel, A.; Wesch, D.; Schiemann, F.; Brandt, E.; Janssen, O.; Kabelitz, D. Patterns of Chemokine Receptor Expression on Peripheral Blood Gamma Delta T Lymphocytes: Strong Expression of CCR5 Is a Selective Feature of V Delta 2/V Gamma 9 Gamma Delta T Cells. J. Immunol. 2002, 168, 4920–4929. [Google Scholar] [CrossRef]
- Kabelitz, D.; Wesch, D. Features and Functions of Gamma Delta T Lymphocytes: Focus on Chemokines and Their Receptors. Crit. Rev. Immunol. 2003, 23, 339–370. [Google Scholar] [CrossRef]
- Wawrzyniecka, P.A.; Ibrahim, L.; Gritti, G.; Pule, M.A.; Maciocia, P.M. Chimeric Antigen Receptor T Cells for Gamma–Delta T Cell Malignancies. Leukemia 2022, 36, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, H.R.; Mirzaei, H.; Lee, S.Y.; Hadjati, J.; Till, B.G. Prospects for Chimeric Antigen Receptor (CAR) Γδ T Cells: A Potential Game Changer for Adoptive T Cell Cancer Immunotherapy. Cancer Lett. 2016, 380, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, T.; Radhakrishnan, R.; Sakshi, S.; Martin, S. CAR Γδ T Cells for Cancer Immunotherapy. Is the Field More Yellow than Green? Cancer Immunol. Immunother. 2023, 72, 277–286. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Seo, N.; Okumura, S.; Hayashi, T.; Akahori, Y.; Fujiwara, H.; Amaishi, Y.; Okamoto, S.; Mineno, J.; et al. CAR-Modified Vγ9Vδ2 T Cells Propagated Using a Novel Bisphosphonate Prodrug for Allogeneic Adoptive Immunotherapy. Int. J. Mol. Sci. 2023, 24, 10873. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T Cells Expressing CD19 Chimeric Antigen Receptors for Acute Lymphoblastic Leukaemia in Children and Young Adults: A Phase 1 Dose-Escalation Trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef]
- Brudno, J.N.; Kochenderfer, J.N. Toxicities of Chimeric Antigen Receptor T Cells: Recognition and Management. Blood 2016, 127, 3321–3330. [Google Scholar] [CrossRef]
- Oberg, H.-H.; Peipp, M.; Kellner, C.; Sebens, S.; Krause, S.; Petrick, D.; Adam-Klages, S.; Röcken, C.; Becker, T.; Vogel, I.; et al. Novel Bispecific Antibodies Increase Γδ T-Cell Cytotoxicity against Pancreatic Cancer Cells. Cancer Res. 2014, 74, 1349–1360. [Google Scholar] [CrossRef]
- Ganesan, R.; Chennupati, V.; Ramachandran, B.; Hansen, M.R.; Singh, S.; Grewal, I.S. Selective Recruitment of Γδ T Cells by a Bispecific Antibody for the Treatment of Acute Myeloid Leukemia. Leukemia 2021, 35, 2274–2284. [Google Scholar] [CrossRef]
- de Weerdt, I.; Lameris, R.; Scheffer, G.L.; Vree, J.; de Boer, R.; Stam, A.G.; van de Ven, R.; Levin, M.-D.; Pals, S.T.; Roovers, R.C.; et al. A Bispecific Antibody Antagonizes Prosurvival CD40 Signaling and Promotes Vγ9Vδ2 T Cell-Mediated Antitumor Responses in Human B-Cell Malignancies. Cancer Immunol. Res. 2021, 9, 50–61. [Google Scholar] [CrossRef]
- Lameris, R.; Ruben, J.M.; Iglesias-Guimarais, V.; de Jong, M.; Veth, M.; van de Bovenkamp, F.S.; de Weerdt, I.; Kater, A.P.; Zweegman, S.; Horbach, S.; et al. A Bispecific T Cell Engager Recruits Both Type 1 NKT and Vγ9Vδ2-T Cells for the Treatment of CD1d-Expressing Hematological Malignancies. Cell Rep. Med. 2023, 4, 100961. [Google Scholar] [CrossRef] [PubMed]
- Saura-Esteller, J.; de Jong, M.; King, L.A.; Ensing, E.; Winograd, B.; de Gruijl, T.D.; Parren, P.W.H.I.; van der Vliet, H.J. Gamma Delta T-Cell Based Cancer Immunotherapy: Past-Present-Future. Front. Immunol. 2022, 13, 915837. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhao, P.; Zhang, Z.; Zhang, J.; Zhang, Z.; Hua, Y.; Han, B.; Li, N.; Zhao, X.; Hou, L. TIM-3 Blockade Combined with Bispecific Antibody MT110 Enhances the Anti-Tumor Effect of Γδ T Cells. Cancer Immunol. Immunother. 2020, 69, 2571–2587. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Xiang, Z.; Xu, Y.; He, J.; Lu, J.; Chen, Y.; Wang, X.; Tu, C.R.; Zhang, Y.; Zhang, W.; et al. Glucose Metabolism Controls Human Γδ T-Cell-Mediated Tumor Immunosurveillance in Diabetes. Cell Mol. Immunol. 2022, 19, 944–956. [Google Scholar] [CrossRef]
- Mattarollo, S.R.; Kenna, T.; Nieda, M.; Nicol, A.J. Chemotherapy and Zoledronate Sensitize Solid Tumour Cells to Vgamma9Vdelta2 T Cell Cytotoxicity. Cancer Immunol. Immunother. 2007, 56, 1285–1297. [Google Scholar] [CrossRef]
- Todaro, M.; Meraviglia, S.; Caccamo, N.; Stassi, G.; Dieli, F. Combining Conventional Chemotherapy and Γδ T Cell-Based Immunotherapy to Target Cancer-Initiating Cells. Oncoimmunology 2013, 2, e25821. [Google Scholar] [CrossRef]
- Benyamine, A.; Loncle, C.; Foucher, E.; Blazquez, J.-L.; Castanier, C.; Chrétien, A.-S.; Modesti, M.; Secq, V.; Chouaib, S.; Gironella, M.; et al. BTN3A Is a Prognosis Marker and a Promising Target for Vγ9Vδ2 T Cells Based-Immunotherapy in Pancreatic Ductal Adenocarcinoma (PDAC). Oncoimmunology 2017, 7, e1372080. [Google Scholar] [CrossRef]
- Bold, A.; Gross, H.; Holzmann, E.; Knop, S.; Hoeres, T.; Wilhelm, M. An Optimized Cultivation Method for Future in Vivo Application of Γδ T Cells. Front. Immunol. 2023, 14, 1185564. [Google Scholar] [CrossRef]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH Limits Anti-Tumour Surveillance in Immunotherapy-Treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef]
- Rodríguez-Caparrós, A.; García, V.; Casal, Á.; López-Ros, J.; García-Mariscal, A.; Tani-Ichi, S.; Ikuta, K.; Hernández-Munain, C. Notch Signaling Controls Transcription via the Recruitment of RUNX1 and MYB to Enhancers during T Cell Development. J. Immunol. 2019, 202, 2460–2472. [Google Scholar] [CrossRef]
- Zhu, X.; Sakamoto, S.; Ishii, C.; Smith, M.D.; Ito, K.; Obayashi, M.; Unger, L.; Hasegawa, Y.; Kurokawa, S.; Kishimoto, T.; et al. Dectin-1 Signaling on Colonic Γδ T Cells Promotes Psychosocial Stress Responses. Nat. Immunol. 2023, 24, 625–636. [Google Scholar] [CrossRef] [PubMed]
Vδ Chains | Paired Vγ Gene Usage | Distribution | Development in Thymus | Recognition/Antigen | Notes |
---|---|---|---|---|---|
Vδ1 | Vγ2/3/4/5/8/9 | Peripheral blood, skin, gut, spleen, liver | Mid-gestation onwards | MICA/B, ULBPs, B7-H6, CD1c, CD1d, SEB | Paired with diverse Vγ chains. |
Vδ2 | Vγ9 | Peripheral blood | Detectable 5 to 6 weeks in fetal liver | Phosphoantigens, F1-ATPase, BTN3A1, hMSH2, MICA/B, SEs, TSST-1, Nectin-like 5 | Vδ2/Vγ9 exclusively pairs. |
Vδ3 | Vγ2/3 | Peripheral blood, liver | Predominant in late-fetal and neonatal blood | CD1d | Represent approximately 0.2% of the total circulating T cells and react to CD1d. |
Vδ5 | Vγ4 | Peripheral blood | - | Endothelial protein C receptor (EPCR) | Identifying transformed cells by interacting with the endothelial protein C receptor. |
Vδ6 | / | Peripheral blood of lymphoma patients | - | - | - |
Therapeutic Approach | Specific Strategy | Target Indications (Cancer Types) | NCT Number | Location |
---|---|---|---|---|
ACT (Adoptive Cell Transfer) | Donor/Allogeneic γδT Cell Infusion | Relapsed/Refractory Leukemia (e.g., AML) | NCT04439721 | Suzhou, China |
Hepatocellular Carcinoma (HCC) | NCT04518774 | Beijing, China | ||
Relapsed/Refractory NHL or PTCL | NCT04696705 | Tianjin, China | ||
Relapsed Hematologic Malignancies | NCT05755854 | Hefei, China | ||
Acute Myeloid Leukemia (AML) | NCT03790072 | Praha, Czechia | ||
Autologous γδT Cell Infusion | Advanced HBV-Related Hepatocellular Carcinoma (HCC) | NCT04032392 | Beijing, China | |
Relapsed/Refractory B-NHL, CLL, PTCL | NCT04028440 | Tianjin, China | ||
γδT Cells + Tumor Reduction Surgery (Cryoablation/IRE) | Hepatocellular Carcinoma (HCC) | NCT02425735, | Guangzhou, China | |
Liver cancer | ||||
NCT03183219 | ||||
Breast Cancer (Her-, Er-, Pr-) | NCT02418481, NCT03183206 | Guangzhou, China | ||
Breast Cancer | ||||
Non-Small Cell Lung Cancer (No EGFR Mutation) | NCT02425748, | Guangzhou, China | ||
Lung cancer | ||||
NCT03183232 | ||||
Locally Advanced Pancreatic Cancer | NCT03180437 | Guangzhou, China | ||
γδT Cells + CIK | Gastric Cancer | NCT02585908 | Beijing, China | |
CAR-γδT Cell Therapy | CD19-CAR-γδT Cells | B-Cell Lymphoma, ALL, CLL | NCT02656147 | Beijing, China |
Relapsed/Refractory B-Cell NHL | NCT05554939, NCT06838832, NCT06503211 | Beijing, China | ||
Nanjing, China | ||||
Relapsed/Refractory B-Cell ALL | NCT06696833, NCT06056752 | Suzhou, China Hefei, China | ||
Relapsed/Refractory B-Cell Hematologic Malignancies | NCT06092047 | Suzhou, China | ||
B-Cell Malignancies (Follicular, Mantle Cell, Marginal Zone, Mediastinal) | NCT04735471 | Stanford, CA, USA | ||
B7H3-CAR-γδT Cells | Advanced Solid Tumors | NCT06825455 | Beijing, China | |
Relapsed/Refractory B7H3+ Malignant Glioma | NCT06018363 | Suzhou, China | ||
B7H3+ Solid Tumor Leptomeningeal Metastases | NCT06592092 | Beijing, China | ||
GPC3/Mesothelin-CAR-γδT Cells | Solid Cancers (Expressing GPC3 or Mesothelin, e.g., HCC) | NCT06196294 | Guangzhou, China | |
Universal CAR-γδT Cells | Post-Transplant Relapsed AML | NCT04796441, | Yanda, China | |
Refractory/Relapsed AML | ||||
NCT05388305 | Wuhan, China | |||
CD7-CAR-γδT Cells | Relapsed/Refractory CD7+ T-Cell Malignancies | NCT04702841 | Hefei, China | |
UTAA17 (CAR-γδT Cells) | Relapsed/Refractory Multiple Myeloma (MM) | NCT06279026 | Suzhou, China | |
NKG2DL-CAR-γδT Cells | Relapsed/Refractory Solid Tumors (Colorectal, TNBC, Sarcoma, Nasopharyngeal) | NCT04107142 | Johor, Malaysia | |
Advanced Solid or Hematologic Malignancies | NCT05302037 | Singapore | ||
CD70-CAR-γδT Cells | Relapsed/Refractory Clear Cell Renal Cell Carcinoma (ccRCC) | NCT06480565 | Nashville, TN, USA | |
Drug-Resistant γδT Cells (DRI) | Newly Diagnosed Glioblastoma (GBM) | NCT04165941 | Birmingham, AL, USA | |
Combination Therapy | γδT Cells + Immunomodulators (Interferon/PD-1) | Stage III–IV Resectable Melanoma | NCT06212388 | Xi’an, China |
TKC (NK + γδT Cells) + Chemotherapy | Advanced Non-Small Cell Lung Cancer (NSCLC) | NCT04990063 | Xi’an, China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, C.; Peng, C.; Wei, H.; Wei, K.; Ou, Y.; Zhang, Z. Diverse Subsets of γδT Cells and Their Specific Functions Across Liver Diseases. Int. J. Mol. Sci. 2025, 26, 2778. https://doi.org/10.3390/ijms26062778
Zhan C, Peng C, Wei H, Wei K, Ou Y, Zhang Z. Diverse Subsets of γδT Cells and Their Specific Functions Across Liver Diseases. International Journal of Molecular Sciences. 2025; 26(6):2778. https://doi.org/10.3390/ijms26062778
Chicago/Turabian StyleZhan, Chenjie, Chunxiu Peng, Huaxiu Wei, Ke Wei, Yangzhi Ou, and Zhiyong Zhang. 2025. "Diverse Subsets of γδT Cells and Their Specific Functions Across Liver Diseases" International Journal of Molecular Sciences 26, no. 6: 2778. https://doi.org/10.3390/ijms26062778
APA StyleZhan, C., Peng, C., Wei, H., Wei, K., Ou, Y., & Zhang, Z. (2025). Diverse Subsets of γδT Cells and Their Specific Functions Across Liver Diseases. International Journal of Molecular Sciences, 26(6), 2778. https://doi.org/10.3390/ijms26062778