SurvDB: Systematic Identification of Potential Prognostic Biomarkers in 33 Cancer Types
Abstract
:1. Introduction
2. Results
2.1. Data Summary of SurvDB
2.2. Database Construction
2.3. Functions and Usage of SurvDB
3. Discussion
4. Materials and Methods
4.1. Molecular Data Collection and Processing
4.2. Clinical Data Collection and Processing
4.3. Identification of Prognostic Biomarkers
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Rizk, E.M.; Gartrell, R.D.; Barker, L.W.; Esancy, C.L.; Finkel, G.G.; Bordbar, D.D.; Saenger, Y.M. Prognostic and predictive immunohistochemistry-based biomarkers in cancer and immunotherapy. Hematol. Oncol. Clin. N. Am. 2019, 33, 291–299. [Google Scholar] [CrossRef]
- Busund, M.; Ursin, G.; Lund, E.; Chen, S.L.F.; Rylander, C. Menopausal hormone therapy and incidence, mortality, and survival of breast cancer subtypes: A prospective cohort study. Breast Cancer Res. 2024, 26, 151. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chen, Z.; Wang, H.; Wang, Y.; Zheng, J.; Guo, Y.; Jiang, Y.; Mo, Z. Screening and identification of a prognostic model of ovarian cancer by combination of transcriptomic and proteomic data. Biomolecules 2023, 13, 685. [Google Scholar] [CrossRef]
- Sakamaki, Y.; Ishida, D.; Tanaka, R. Prognosis of patients with recurrence after pulmonary metastasectomy for colorectal cancer. Gen. Thorac. Cardiovasc. Surg. 2020, 68, 1172–1178. [Google Scholar] [CrossRef]
- Morra, S.; Scheipner, L.; Baudo, A.; Jannello, L.M.I.; de Angelis, M.; Siech, C.; Goyal, J.A.; Touma, N.; Tian, Z.; Saad, F.; et al. Contemporary conditional cancer-specific survival rates in surgically treated nonmetastatic primary urethral carcinoma. J. Surg. Oncol. 2024, 129, 1348–1353. [Google Scholar] [CrossRef]
- Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 2018, 173, 400–416. [Google Scholar] [CrossRef]
- Zeng, H.; Zheng, R.; Sun, K.; Zhou, M.; Wang, S.; Li, L.; Chen, R.; Han, B.; Liu, M.; Zhou, J.; et al. Cancer survival statistics in China 2019–2021: A multicenter, population-based study. J. Natl. Cancer Cent. 2024, 4, 203–213. [Google Scholar] [CrossRef]
- Arnold, M.; Rutherford, M.J.; Bardot, A.; Ferlay, J.; Andersson, T.M.; Myklebust, T.A.; Tervonen, H.; Thursfield, V.; Ransom, D.; Shack, L.; et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995-2014 (ICBP SURVMARK-2): A population-based study. Lancet Oncol. 2019, 20, 1493–1505. [Google Scholar] [CrossRef]
- Harbeck, N.; Gnant, M. Breast cancer. Lancet 2017, 389, 1134–1150. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.H.; Li, H.C.; Chang, W.C.; Wu, C.C.; Lin, H.H.; Lo, C.H.; Chang, P.Y. Improving the prediction of patient survival with the aid of residual convolutional neural network (ResNet) in colorectal cancer with unresectable liver metastases treated with bevacizumab-based chemotherapy. Cancer Imaging 2024, 24, 165. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, H.; Kling, H.M.; Treece, T.; Audeh, W.; Srkalovic, G. Changing landscape of clinical-genomic oncology practice. Acta Med. Acad. 2019, 48, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Z.; Bonneville, R.; Roychowdhury, S. Implementing precision cancer medicine in the genomic era. Semin. Cancer Biol. 2019, 55, 16–27. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Z.; Yang, Y.F.; Liu, B.; Yu, F.; Ye, H.M.; Lei, M.; Wu, X. The functions and clinical implications of hsa_circ_0032462-miR-488-3p-SLC7A1 axis in human osteosarcoma. Bone 2025, 191, 117333. [Google Scholar] [CrossRef]
- Liang, G.; He, J.; Chen, T.; Zhang, L.; Yu, K.; Shen, W. Identification of ALDH7A1 as a DNA-methylation-driven gene in lung squamous cell carcinoma. Ann. Med. 2025, 57, 2442529. [Google Scholar] [CrossRef]
- Chen, Y.; Mi, Y.; Tan, S.; Chen, Y.; Liu, S.; Lin, S.; Yang, C.; Hong, W.; Li, W. CEA-induced PI3K/AKT pathway activation through the binding of CEA to KRT1 contributes to oxaliplatin resistance in gastric cancer. Drug Resist. Updat. 2025, 78, 101179. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, Q.; Yang, L.; Li, H.; Mo, W.; Song, Z.; Huang, X.; Wen, S.; Cheng, X.; He, M. Increased hsa-miR-100-5p expression improves hepatocellular carcinoma prognosis in the asian population with PLK1 variant rs27770A>G. Cancers 2023, 16, 129. [Google Scholar] [CrossRef]
- Onishi, M.; Yamaguchi, S.; Wen, X.; Han, M.; Kido, H.; Aruga, T.; Horiguchi, S.I.; Kato, S. TP53 signature score predicts prognosis and immune response in triple-negative breast cancer. Anticancer Res. 2023, 43, 1731–1739. [Google Scholar] [CrossRef]
- Chi, Z.; Peng, L.; Karamchandani, D.M.; Xu, J. PD-L1 (22C3) expression and prognostic implications in esophageal squamous cell carcinoma. Ann. Diagn. Pathol. 2025, 74, 152394. [Google Scholar] [CrossRef]
- Debattista, J.; Grech, L.; Scerri, C.; Grech, G. Copy number variations as determinants of colorectal tumor progression in liquid biopsies. Int. J. Mol. Sci. 2023, 24, 1738. [Google Scholar] [CrossRef] [PubMed]
- Oketch, D.J.A.; Giulietti, M.; Piva, F. Copy number variations in pancreatic cancer: From biological significance to clinical utility. Int. J. Mol. Sci. 2023, 25, 391. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Bautista, R.; Ortega Gomez, A.; Hidalgo Miranda, A.; Zentella Dehesa, A.; Villarreal-Garza, C.; Avila-Moreno, F.; Arrieta, O. Long non-coding RNAs: Implications in targeted diagnoses, prognosis, and improved therapeutic strategies in human non- and triple-negative breast cancer. Clin. Epigenet. 2018, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, D.; Miao, Y.R.; Wu, X.; Luo, H.; Cao, W.; Yang, W.; Yang, J.; Guo, A.Y.; Gong, J. lncRNASNP v3: An updated database for functional variants in long non-coding RNAs. Nucleic Acids Res. 2023, 51, D192–D198. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Q.; Miao, Y.R.; Yang, J.; Yang, W.; Yu, F.; Wang, D.; Guo, A.Y.; Gong, J. SNP2APA: A database for evaluating effects of genetic variants on alternative polyadenylation in human cancers. Nucleic Acids Res. 2020, 48, D226–D232. [Google Scholar] [CrossRef]
- Tian, J.; Wang, Z.; Mei, S.; Yang, N.; Yang, Y.; Ke, J.; Zhu, Y.; Gong, Y.; Zou, D.; Peng, X.; et al. CancerSplicingQTL: A database for genome-wide identification of splicing QTLs in human cancer. Nucleic Acids Res. 2019, 47, D909–D916. [Google Scholar] [CrossRef]
- Gong, J.; Wan, H.; Mei, S.; Ruan, H.; Zhang, Z.; Liu, C.; Guo, A.Y.; Diao, L.; Miao, X.; Han, L. Pancan-meQTL: A database to systematically evaluate the effects of genetic variants on methylation in human cancer. Nucleic Acids Res. 2019, 47, D1066–D1072. [Google Scholar] [CrossRef]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019, 47, W556–W560. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Akbani, R.; Ju, Z.; Roebuck, P.L.; Liu, W.; Yang, J.Y.; Broom, B.M.; Verhaak, R.G.; Kane, D.W.; et al. TCPA: A resource for cancer functional proteomics data. Nat. Methods 2013, 10, 1046–1047. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, N.; Zhang, X.; Xiao, J.; Li, J.; Lv, D.; Zhou, W.; Li, Y.; Xu, J.; Li, X. SurvivalMeth: A web server to investigate the effect of DNA methylation-related functional elements on prognosis. Brief. Bioinf. 2021, 22, bbaa162. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Xu, Z.; Li, B.; Wu, X.; Fan, R.; Yao, X.; Wu, H.; Duan, C.; Gong, Y.; et al. OncoSplicing 3.0: An updated database for identifying RBPs regulating alternative splicing events in cancers. Nucleic Acids Res. 2025, 53, D1460–D1466. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Q.; Han, Y.; Huang, Y.; Chen, T.; Guo, X. OSppc: A web server for online survival analysis using proteome of pan-cancers. J. Proteom. 2023, 273, 104810. [Google Scholar] [CrossRef]
- Feng, X.; Li, L.; Wagner, E.J.; Li, W. TC3A: The cancer 3′ UTR atlas. Nucleic Acids Res. 2018, 46, D1027–D1030. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.; Wong, W.C.; Brown, R.; Akbani, R.; Su, X.; Broom, B.; Melott, J.; Weinstein, J. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic Acids Res. 2016, 44, D1018–D1022. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, P.; Basanta, C.C.; Acha-Sagredo, A.; Misetic, H.; Armero, M.; Mendez, A.; Zahra, A.; Devonshire, G.; Kelly, G.; Freeman, A.; et al. Context-dependent effects of CDKN2A and other 9p21 gene losses during the evolution of esophageal cancer. Nat. Cancer 2025, 6, 158–174. [Google Scholar] [CrossRef] [PubMed]
- Aragaki, M.; Takahashi, K.; Akiyama, H.; Tsuchiya, E.; Kondo, S.; Nakamura, Y.; Daigo, Y. Characterization of a cleavage stimulation factor, 3′ pre-RNA, subunit 2, 64 kDa (CSTF2) as a therapeutic target for lung cancer. Clin. Cancer Res. 2011, 17, 5889–5900. [Google Scholar] [CrossRef]
- Soccio, P.; Moriondo, G.; Scioscia, G.; Tondo, P.; Bruno, G.; Giordano, G.; Sabato, R.; Foschino Barbaro, M.P.; Landriscina, M.; Lacedonia, D. MiRNA expression affects survival in patients with obstructive sleep apnea and metastatic colorectal cancer. Noncoding RNA Res. 2025, 10, 91–97. [Google Scholar] [CrossRef]
- Ke, H.; Wu, Y.; Wang, R.; Wu, X. Creation of a prognostic risk prediction model for lung adenocarcinoma based on gene expression, methylation, and clinical characteristics. Med. Sci. Monit. 2020, 26, e925833. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, W.; Yang, J.; Wu, M.; Dai, Q.; Yin, H.; Xiao, Y.; Kong, L. Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer. Nat. Mach. Intell. 2023, 5, 408–420. [Google Scholar] [CrossRef]
- Wei, J.H.; Feng, Z.H.; Cao, Y.; Zhao, H.W.; Chen, Z.H.; Liao, B.; Wang, Q.; Han, H.; Zhang, J.; Xu, Y.Z.; et al. Predictive value of single-nucleotide polymorphism signature for recurrence in localised renal cell carcinoma: A retrospective analysis and multicentre validation study. Lancet Oncol. 2019, 20, 591–600. [Google Scholar] [CrossRef]
- Terao, C.; Suzuki, A.; Momozawa, Y.; Akiyama, M.; Ishigaki, K.; Yamamoto, K.; Matsuda, K.; Murakami, Y.; McCarroll, S.A.; Kubo, M.; et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 2020, 584, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Howie, B.; Fuchsberger, C.; Stephens, M.; Marchini, J.; Abecasis, G.R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 2012, 44, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011, 12, R41. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repecka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
Cancer | APA Event | AS Event | CNV | SNP | Total RNA | miRNA | Methylation | Protein |
---|---|---|---|---|---|---|---|---|
Adrenocortical carcinoma (ACC) | 79 | 79 | 90 | 77 | 79 | 79 | 80 | 46 |
Bladder urothelial carcinoma (BLCA) | 408 | 425 | 408 | 408 | 406 | 409 | 412 | 344 |
Breast invasive carcinoma (BRCA) | 1095 | 1207 | 1080 | 1092 | 1095 | 750 | 792 | 887 |
Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) | 304 | 256 | 295 | 300 | 304 | 306 | 307 | 173 |
Cholangiocarcinoma (CHOL) | 36 | 45 | 36 | 36 | 36 | 36 | 36 | 30 |
Colon adenocarcinoma (COAD) | 624 | 499 | 451 | 286 | 456 | 259 | 297 | 360 |
Lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) | 48 | 48 | 48 | 48 | 48 | 47 | 48 | 33 |
Esophageal carcinoma (ESCA) | 184 | 193 | 184 | 184 | 165 | 182 | 185 | 126 |
Glioblastoma Multiforme (GBM) | 161 | 160 | 577 | 150 | 166 | - | 142 | 238 |
Head and neck squamous cell carcinoma (HNSC) | 520 | 544 | 522 | 518 | 503 | 484 | 528 | 357 |
Kidney chromophobe (KICH) | 66 | 91 | 66 | 66 | 66 | 65 | 66 | 63 |
Kidney renal clear cell carcinoma (KIRC) | 531 | 605 | 528 | 527 | 532 | 243 | 319 | 478 |
Kidney renal papillary cell carcinoma (KIRP) | 290 | 322 | 288 | 290 | 290 | 286 | 275 | 215 |
Acute myeloid leukemia (LAML) | 172 | 178 | 191 | 123 | 150 | 188 | 194 | - |
Lower grade glioma (LGG) | 516 | 515 | 513 | 515 | 514 | 510 | 516 | 430 |
Liver hepatocellular carcinoma (LIHC) | 371 | 421 | 370 | 369 | 371 | 370 | 377 | 184 |
Lung adenocarcinoma (LUAD) | 512 | 573 | 516 | 514 | 517 | 454 | 461 | 365 |
Lung squamous cell carcinoma (LUSC) | 501 | 550 | 501 | 500 | 501 | 336 | 374 | 328 |
Mesothelioma (MESO) | 87 | 87 | 87 | 87 | 87 | 87 | 87 | 63 |
Ovarian serous cystadenocarcinoma (OV) | 412 | 420 | 579 | 301 | 378 | 477 | 10 | 426 |
Pancreatic adenocarcinoma (PAAD) | 178 | 182 | 184 | 178 | 178 | 177 | 184 | 123 |
Pheochromocytoma and paraganglioma (PCPG) | 179 | 181 | 162 | 178 | 179 | 178 | 179 | 80 |
Prostate adenocarcinoma (PRAD) | 497 | 549 | 492 | 494 | 497 | 491 | 498 | 352 |
Rectum adenocarcinoma (READ) | - | 176 | 165 | 94 | 167 | 92 | 98 | 131 |
Sarcoma (SARC) | 259 | 261 | 257 | 258 | 259 | 256 | 261 | 223 |
Skin cutaneous melanoma (SKCM) | 469 | 104 | 367 | 103 | 469 | 448 | 471 | 352 |
Stomach adenocarcinoma (STAD) | 415 | 452 | 441 | 415 | 380 | 387 | 396 | 357 |
Testicular germ cell tumors (TGCT) | 150 | 149 | 150 | 150 | 150 | 149 | 150 | 118 |
Thyroid carcinoma (THCA) | 505 | 564 | 499 | 503 | 504 | 502 | 507 | 372 |
Thymoma (THYM) | 120 | 122 | 123 | 120 | 120 | 124 | 124 | 90 |
Uterine corpus endometrial carcinoma (UCEC) | 545 | 580 | 539 | 176 | 557 | 411 | 444 | 440 |
Uterine carcinosarcoma (UCS) | 57 | 57 | 56 | 56 | 57 | 56 | 57 | 48 |
Uveal melanoma (UVM) | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 12 |
Cancer | APA Event | AS Event | CNV | SNP | mRNA | lncRNA | miRNA | Methylation | Protein |
---|---|---|---|---|---|---|---|---|---|
ACC | 3008 | 20,087 | 21,518 | 2,400,199 | 16,347 | 6418 | 486 | 367,935 | 220 |
BLCA | 3522 | 24,413 | 24,728 | 3,802,497 | 16,794 | 7235 | 471 | 367,266 | 216 |
BRCA | 4974 | 29,617 | 24,777 | 2,690,254 | 16,991 | 7847 | 441 | 366,485 | 217 |
CESC | 2999 | 25,883 | 24,541 | 3,666,670 | 16,781 | 7228 | 484 | 365,963 | 219 |
CHOL | 3421 | 22,868 | 8357 | 1,704,318 | 16,705 | 7127 | 474 | 358,897 | 218 |
COAD | 3193 | 20,305 | 24,520 | 3,878,474 | 16,655 | 6383 | 473 | 366,918 | 223 |
DLBC | 3274 | 19,761 | 5254 | 2,592,106 | 16,380 | 6663 | 469 | 366,641 | 218 |
ESCA | 4133 | 35,860 | 24,520 | 3,571,957 | 17,571 | 9753 | 460 | 365,560 | 219 |
GBM | 5144 | 30,304 | 24,015 | 3,168,354 | 17,293 | 8565 | - | 367,156 | 223 |
HNSC | 4399 | 27,375 | 24,756 | 3,993,242 | 16,838 | 6864 | 500 | 367,308 | 217 |
KICH | 4250 | 29,112 | 9708 | 2,164,115 | 16,602 | 7394 | 447 | 367,363 | 219 |
KIRC | 4614 | 30,673 | 24,360 | 4,216,575 | 17,019 | 8565 | 401 | 367,435 | 233 |
KIRP | 3806 | 25,207 | 18,452 | 4,021,930 | 16,763 | 7542 | 432 | 367,054 | 220 |
LAML | 2983 | 21,157 | 4230 | 3,253,971 | 16,852 | 8881 | 330 | 367,832 | - |
LGG | 4868 | 32,685 | 24,085 | 4,233,472 | 17,154 | 8971 | 514 | 367,493 | 217 |
LIHC | 2852 | 19,398 | 24,287 | 3,601,198 | 16,115 | 5877 | 472 | 366,485 | 219 |
LUAD | 4285 | 28,262 | 24,777 | 4,003,422 | 17,103 | 8002 | 476 | 367,041 | 216 |
LUSC | 4910 | 30,908 | 24,436 | 3,470,575 | 17,288 | 8330 | 501 | 367,396 | 216 |
MESO | 3735 | 27,337 | 14,401 | 3,054,234 | 16,834 | 7453 | 496 | 367,664 | 219 |
OV | 5834 | 31,830 | 24,776 | 2,670,787 | 17,331 | 8838 | 440 | - | 224 |
PAAD | 4142 | 29,057 | 24,279 | 3,980,971 | 17,286 | 8190 | 506 | 364,850 | 218 |
PCPG | 3434 | 23,801 | 13,476 | 3,362,598 | 16,679 | 7405 | 534 | 367,579 | 219 |
PRAD | 4271 | 27,776 | 23,413 | 4,225,082 | 17,055 | 7737 | 416 | 367,372 | 217 |
READ | - | 20,544 | 22,639 | 2,844,658 | 16,705 | 6451 | 500 | 366,534 | 223 |
SARC | 3528 | 24,440 | 24,748 | 3,499,520 | 16,622 | 7051 | 388 | 364,539 | 219 |
SKCM | 4231 | 25,492 | 24,504 | 3,122,533 | 16,536 | 6901 | 491 | 366,340 | 216 |
STAD | 6138 | 32,343 | 24,538 | 3,878,917 | 17,520 | 9402 | 443 | 365,707 | 217 |
TGCT | 4321 | 26,158 | 19,896 | 3,405,712 | 17,739 | 8759 | 679 | 367,904 | 216 |
THCA | 477 | 28,762 | 10,043 | 4,262,697 | 16,716 | 7595 | 489 | 367,735 | 217 |
THYM | 3344 | 22,009 | 4674 | 3,229,257 | 17,010 | 7983 | 617 | 367,897 | 218 |
UCEC | 2480 | 15,266 | 24,453 | 3,679,658 | 17,035 | 6906 | 504 | 367,681 | 223 |
UCS | 3491 | 24,182 | 20,361 | 2,075,347 | 17,376 | 8137 | 528 | 364,672 | 219 |
UVM | 3007 | 23,033 | 10,223 | 2,891,714 | 15,819 | 5477 | 494 | 367,920 | - |
Cancer | APA Event | AS Event | CNV | SNP | mRNA | lncRNA | miRNA | Methylation | Protein |
---|---|---|---|---|---|---|---|---|---|
ACC | 250 | 2945 | 6197 | 132,023 | 4522 | 899 | 156 | 82,413 | 26 |
BLCA | 989 | 4276 | 3025 | 313,569 | 3154 | 1339 | 81 | 56,240 | 44 |
BRCA | 1051 | 5089 | 3026 | 255,566 | 3578 | 1155 | 174 | 85,085 | 77 |
CESC | 685 | 4197 | 2293 | 343,955 | 3619 | 916 | 159 | 80,185 | 47 |
CHOL | 288 | 1759 | 339 | 131,598 | 1430 | 397 | 47 | 60,880 | 15 |
COAD | 609 | 4426 | 3418 | 313,505 | 3260 | 837 | 132 | 64,888 | 37 |
DLBC | 204 | 1737 | 111 | 312,971 | 1237 | 456 | 23 | 24,229 | 14 |
ESCA | 229 | 3219 | 1279 | 425,518 | 1488 | 506 | 82 | 39,625 | 35 |
GBM | 284 | 2408 | 2014 | 233,660 | 2475 | 652 | - | 56,218 | 38 |
HNSC | 1245 | 4793 | 2041 | 315,837 | 3613 | 811 | 177 | 68,380 | 30 |
KICH | 792 | 381 | 2338 | 69,018 | 1887 | 373 | 45 | 21,682 | 9 |
KIRC | 1448 | 12,270 | 5669 | 352,018 | 7357 | 4313 | 124 | 101,036 | 108 |
KIRP | 308 | 2967 | 4035 | 322,517 | 3384 | 695 | 96 | 94,855 | 47 |
LAML | 485 | 1485 | 388 | 81,027 | 2093 | 865 | 64 | 11,144 | - |
LGG | 2236 | 13,263 | 5853 | 330,179 | 9464 | 3320 | 289 | 216,273 | 129 |
LIHC | 381 | 3245 | 3124 | 310,434 | 4339 | 931 | 145 | 76,330 | 25 |
LUAD | 423 | 4193 | 2865 | 279,921 | 2954 | 1064 | 118 | 43,241 | 31 |
LUSC | 1258 | 5732 | 2323 | 262,803 | 3007 | 955 | 67 | 69,637 | 35 |
MESO | 405 | 4764 | 2815 | 223,561 | 4818 | 1395 | 163 | 65,016 | 36 |
OV | 2390 | 4962 | 2605 | 229,452 | 3521 | 1202 | 144 | - | 55 |
PAAD | 652 | 5649 | 4551 | 253,392 | 3948 | 1716 | 122 | 49,248 | 55 |
PCPG | 444 | 3350 | 498 | 167,727 | 2661 | 1001 | 80 | 68,031 | 21 |
PRAD | 799 | 7474 | 7803 | 414,995 | 5706 | 1958 | 132 | 112,158 | 42 |
READ | - | 3690 | 1750 | 136,352 | 3054 | 1401 | 42 | 24,539 | 15 |
SARC | 436 | 3934 | 8563 | 295,650 | 3525 | 909 | 181 | 84,955 | 85 |
SKCM | 1089 | 2721 | 1412 | 147,333 | 5691 | 1244 | 168 | 102,533 | 76 |
STAD | 939 | 4856 | 1374 | 326,289 | 3218 | 1145 | 100 | 78,419 | 50 |
TGCT | 139 | 1677 | 1138 | 91,526 | 801 | 200 | 34 | 5478 | 7 |
THCA | 39 | 6168 | 645 | 289,537 | 4914 | 2387 | 234 | 105,462 | 49 |
THYM | 114 | 1429 | 1133 | 194,424 | 1208 | 503 | 78 | 35,266 | 15 |
UCEC | 775 | 5633 | 20,415 | 311,908 | 6093 | 1665 | 149 | 128,332 | 80 |
UCS | 148 | 1955 | 1067 | 131,542 | 1415 | 808 | 68 | 30,502 | 19 |
UVM | 437 | 5602 | 2003 | 138,783 | 5202 | 1324 | 211 | 104,545 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Min, C.; Cao, W.; Xue, F.; Wu, X.; Yang, Y.; Yang, J.; Niu, X.; Gong, J. SurvDB: Systematic Identification of Potential Prognostic Biomarkers in 33 Cancer Types. Int. J. Mol. Sci. 2025, 26, 2806. https://doi.org/10.3390/ijms26062806
Wu Z, Min C, Cao W, Xue F, Wu X, Yang Y, Yang J, Niu X, Gong J. SurvDB: Systematic Identification of Potential Prognostic Biomarkers in 33 Cancer Types. International Journal of Molecular Sciences. 2025; 26(6):2806. https://doi.org/10.3390/ijms26062806
Chicago/Turabian StyleWu, Zejun, Congcong Min, Wen Cao, Feiyang Xue, Xiaohong Wu, Yanbo Yang, Jianye Yang, Xiaohui Niu, and Jing Gong. 2025. "SurvDB: Systematic Identification of Potential Prognostic Biomarkers in 33 Cancer Types" International Journal of Molecular Sciences 26, no. 6: 2806. https://doi.org/10.3390/ijms26062806
APA StyleWu, Z., Min, C., Cao, W., Xue, F., Wu, X., Yang, Y., Yang, J., Niu, X., & Gong, J. (2025). SurvDB: Systematic Identification of Potential Prognostic Biomarkers in 33 Cancer Types. International Journal of Molecular Sciences, 26(6), 2806. https://doi.org/10.3390/ijms26062806