Deciphering the Role of Rhodanine Flanked Non-Fullerene Acceptor Molecules for Efficient Organic Photovoltaics
Abstract
1. Introduction
2. Results and Discussion
2.1. Molecular Design and Chemistry of Molecules
2.2. Frontier Molecular Orbital Analysis
2.3. Density of States Analysis
2.4. Dihedral Angle Measurements
2.5. Optical Properties
2.6. Transition Density Matrix Analysis
2.7. Binding Energy Measurement
2.8. Molecular Electrostatic Potential Analysis
2.9. Quantum Chemical Parameters
2.10. Reorganizational Energy Measurements
2.11. Light Harvesting Efficiency Analysis
2.12. Photovoltaic Properties
2.13. Electron Density Difference Analysis
2.14. Natural Population Analysis
2.15. Quadrupole Moment (Q20)
2.16. Charge Transfer Analysis
2.17. Natural Bonding Orbital Analysis
3. Materials and Methods
Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Bai, Y.; Jiang, S.; Zhang, T.; Wang, X.; Li, Q.; Xue, L.; Yan, Q.; Zhou, E. Rhodanine Substitution of Asymmetric Nonfullerene Acceptors for High-Performance Organic Solar Cells. ACS Appl. Mater. Interfaces 2025, 17, 9315–9321. [Google Scholar] [CrossRef]
- Han, D.; Wen, S.; Song, K.; Lv, J.; Yang, C.; Zhuang, T.; Saparbaev, A.; Sun, M.; Bao, X. Benzobisthiazole and Rhodanine Based Low Energy Level Small Molecule Donors for Organic Solar Cells. Dye. Pigment. 2025, 234, 112564. [Google Scholar]
- Wang, G.; Huang, Y.; Tang, X.; Li, J.; Dai, J.; Liu, B.; Zhang, J.; Xiong, J. A Rhodanine Modified Poly-Triarylamine Dye Function as a Hole Transport Layer for Inverted Perovskite Solar Cells. Dye. Pigment. 2024, 222, 111843. [Google Scholar] [CrossRef]
- Sanna, A.L.; Acca, S.; Podda, E.; Mascia, A.; Pintus, A.; Aragoni, M.C.; Lippolis, V.; Ricci, C.; Cosseddu, P.; Arca, M.; et al. Unveiling the Significance of Adduct Formation between Thiocarbonyl Lewis Donors and Diiodine for the Structural Organization of Rhodanine-Based Small Molecule Semiconductors. J. Mater. Chem. C Mater. 2024, 12, 11352–11360. [Google Scholar] [CrossRef]
- Köttner, L.; Wolff, F.; Mayer, P.; Zanin, E.; Dube, H. Rhodanine-Based Chromophores: Fast Access to Capable Photoswitches and Application in Light-Induced Apoptosis. J. Am. Chem. Soc. 2024, 146, 1894–1903. [Google Scholar] [PubMed]
- Kovvuri, J.; Islavath, N. Molecular Modifications in Fluorene Core for Efficient Organic Photovoltaic Cells. J. Photochem. Photobiol. A Chem. 2024, 446, 115162. [Google Scholar]
- Kalay, E.; Özbek, O.; Elik, M.; Berkel, C.; Aslan, O.N. The Synthesis, Sensor and Biological Properties of Two Novel Rhodanine Derivative Molecules. J. Indian Chem. Soc. 2025, 102, 101591. [Google Scholar]
- Dai, J.; Zhang, P.; Ma, M.; Du, B.; Wu, S.; Tian, Y.; Li, J.; Bin, H.; Li, Y. Allyl-Terminated Small Molecule Donors Effectively Regulate Miscibility to Improve the Performance of Organic Solar Cells. J. Mater. Chem. C Mater. 2025, 12, 5935–6468. [Google Scholar]
- Hussain, R.; Adnan, M.; Atiq, K.; Khan, M.U.; Farooqi, Z.H.; Iqbal, J.; Begum, R. Designing of Silolothiophene-Linked Triphenylamine-Based Hole Transporting Materials for Perovskites and Donors for Organic Solar Cells-A DFT Study. Sol. Energy 2023, 253, 187–198. [Google Scholar] [CrossRef]
- Adnan, M.; Munir, I.; Hussain, R.; Irshad, Z.; Hussain, R.; Siddique, S.A.; Darwish, H.W. Role of Near-IR Sensitive Asymmetric A–DA’ D–π–A-Type Non-Fullerene Acceptors for Efficient Organic Solar Cells: A Theoretical Insight. J. Comput. Biophys. Chem. 2025, 24, 103–122. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, G.; Yu, H.; Yan, H. Advantages, Challenges and Molecular Design of Different Material Types Used in Organic Solar Cells. Nat. Rev. Mater. 2024, 9, 46–62. [Google Scholar] [CrossRef]
- Holliday, S.; Ashraf, R.S.; Nielsen, C.B.; Kirkus, M.; Röhr, J.A.; Tan, C.-H.; Collado-Fregoso, E.; Knall, A.-C.; Durrant, J.R.; Nelson, J.; et al. A Rhodanine Flanked Nonfullerene Acceptor for Solution-Processed Organic Photovoltaics. J. Am. Chem. Soc. 2015, 137, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Guo, L.; Anderson, D.G.; Langer, R. Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients. Science 2013, 339, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kong, X.; Sun, G.; Li, Y. Organic Small Molecule Acceptor Materials for Organic Solar Cells. eScience 2023, 3, 100171. [Google Scholar] [CrossRef]
- Atiq, K.; Adnan, M.; Muhammad, S.; Hussain, R.; Irshad, Z.; Khan, M.U. Fused Ring Pyrrolo [3, 2-b] Pyrrole-Based Tilde-Shaped Acceptor Molecules for Highly Efficient Organic Solar Cells. J. Phys. Chem. Solids 2023, 176, 111228. [Google Scholar] [CrossRef]
- Ans, M.; Paramasivam, M.; Ayub, K.; Ludwig, R.; Zahid, M.; Xiao, X.; Iqbal, J. Designing Alkoxy-Induced Based High Performance near Infrared Sensitive Small Molecule Acceptors for Organic Solar Cells. J. Mol. Liq. 2020, 305, 112829. [Google Scholar] [CrossRef]
- Rasool, A.; Zahid, S.; Ans, M.; Muhammad, S.; Ayub, K.; Iqbal, J. Bithieno Thiophene-Based Small Molecules for Application as Donor Materials for Organic Solar Cells and Hole Transport Materials for Perovskite Solar Cells. ACS Omega 2022, 7, 844–862. [Google Scholar] [CrossRef]
- Khan, M.U.; Hussain, R.; Yasir Mehboob, M.; Khalid, M.; Shafiq, Z.; Aslam, M.; Al-Saadi, A.A.; Jamil, S.; Janjua, M.R.S.A. In Silico Modeling of New “Y-Series”-Based near-Infrared Sensitive Non-Fullerene Acceptors for Efficient Organic Solar Cells. ACS Omega 2020, 5, 24125–24137. [Google Scholar] [CrossRef]
- Fonseca Guerra, C.; Handgraaf, J.; Baerends, E.J.; Bickelhaupt, F.M. Voronoi Deformation Density (VDD) Charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD Methods for Charge Analysis. J. Comput. Chem. 2004, 25, 189–210. [Google Scholar] [CrossRef]
- Khan, M.U.; Ibrahim, M.; Khalid, M.; Qureshi, M.S.; Gulzar, T.; Zia, K.M.; Al-Saadi, A.A.; Janjua, M.R.S.A. First Theoretical Probe for Efficient Enhancement of Nonlinear Optical Properties of Quinacridone Based Compounds through Various Modifications. Chem. Phys. Lett. 2019, 715, 222–230. [Google Scholar] [CrossRef]
- Habibpour, R.; Vaziri, R. Investigation of Structural and Electronic Properties of Small Au n Cu m (N + M ≤ 5) Nano-Clusters for Oxygen Adsorption. Int. J. Nano Dimens. 2016, 7, 208–224. [Google Scholar]
- Wang, Z.; Jia, B.; Cai, G.; Wang, J.; Li, Y.; Xue, P.; Lu, X.; Lin, Y.; Wang, G.; Zhan, X. Pyrrolo [3, 2-b] Pyrrole-Based Fused-Ring Electron Acceptors with Strong near-Infrared Absorption beyond 1000 Nm. Dye. Pigment. 2021, 195, 109705. [Google Scholar]
- Pal, S.; Roy, R.; Chandra, A.K. Change of Hardness and Chemical Potential in Chemical Binding: A Quantitative Model. J. Phys. Chem. 1994, 98, 2314. [Google Scholar]
- Rad, A.S.; Ayub, K. Nonlinear Optical and Electronic Properties of Cr-, Ni-, and Ti-Substituted C20 Fullerenes: A Quantum-Chemical Study. Mater. Res. Bull. 2018, 97, 399–404. [Google Scholar]
- Musawwir, A.; Farhat, A.; Khera, R.A.; Ayub, A.R.; Iqbal, J. Theoretical and Computational Study on Electronic Effect Caused by Electron Withdrawing/Electron-Donating Groups upon the Coumarin Thiourea Derivatives. Comput. Theor. Chem. 2021, 1201, 113271. [Google Scholar]
- Padmanabhan, J.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P.K. Electrophilicity-Based Charge Transfer Descriptor. J. Phys. Chem. A 2007, 111, 1358–1361. [Google Scholar]
- Clark, A.E.; Sonnenberg, J.L.; Hay, P.J.; Martin, R.L. Density and Wave Function Analysis of Actinide Complexes: What Can Fuzzy Atom, Atoms-in-Molecules, Mulliken, Löwdin, and Natural Population Analysis Tell Us? J. Chem. Phys. 2004, 121, 2563–2570. [Google Scholar]
- Irshad, Z.; Adnan, M.; Lee, J.K. Sequentially Dip-Coated Processed MAyFA1−yPbI3−x Brx Perovskite Layers from an Aqueous Halide-Free Lead Precursor for Efficient Perovskite Solar Cells. J. Mater. Sci. Mater. Electron. 2022, 33, 15132–15142. [Google Scholar] [CrossRef]
- Irshad, Z.; Adnan, M.; Lee, J.K. Efficient Planar Heterojunction Inverted Perovskite Solar Cells with Perovskite Materials Deposited Using an Aqueous Non-halide Lead Precursor. Bull. Korean Chem. Soc. 2020, 41, 937–942. [Google Scholar] [CrossRef]
- Dennler, G.; Scharber, M.C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf, C.; Brabec, C.J. Design Rules for Donors in Bulk-Heterojunction Tandem Solar Cells Towards 15% Energy-Conversion Efficiency. Adv. Mater. 2008, 20, 579–583. [Google Scholar]
- Wang, J.; Zhan, X. Fused-Ring Electron Acceptors for Photovoltaics and Beyond. Acc. Chem. Res. 2021, 54, 132. [Google Scholar] [CrossRef] [PubMed]
- Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design Rules for Donors in Bulk-heterojunction Solar Cells—Towards 10% Energy-conversion Efficiency. Adv. Mater. 2006, 18, 789–794. [Google Scholar] [CrossRef]
- Pivrikas, A.; Juška, G.; Mozer, A.J.; Scharber, M.; Arlauskas, K.; Sariciftci, N.S.; Stubb, H.; Österbacka, R. Bimolecular Recombination Coefficient as a Sensitive Testing Parameter for Low-Mobility Solar-Cell Materials. Phys. Rev. Lett. 2005, 94, 176806. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shen, W.; He, R.; Liu, X.; Tang, X.; Yang, Y.; Li, M. Fine Structural Tuning of Diketopyrrolopyrrole-Cored Donor Materials for Small Molecule-Fullerene Organic Solar Cells: A Theoretical Study. Org. Electron. 2016, 32, 134–144. [Google Scholar]
- Zahid, W.A.; Akram, W.; Ahmad, M.F.; Ayub, K.; Iqbal, J. Designing of Dimethylfluorene-Based Hole Transport Materials for High-Performance Organic/Perovskite Solar Cells. Sol. Energy 2023, 262, 111888. [Google Scholar] [CrossRef]
- Li, J.; Ji, Q.; Wang, R.; Zhang, Z.-G.; Wang, X.; Xiao, M.; Lu, Y.; Zhang, C. Charge Generation Dynamics in Organic Photovoltaic Blends under One-Sun-Equivalent Illumination Detected by Highly Sensitive Terahertz Spectroscopy. J. Am. Chem. Soc. 2024, 146, 20312–20322. [Google Scholar] [CrossRef] [PubMed]
- Andrienko, I.M.; Laquai, F.; Khan, J.I.; Alamoudi, M.A.; Chaturvedi, N.; Ashraf, R.S.; Nabi, M.N.; Peña, T.A.D.; Zhang, W.; Harrison, G.T.; et al. Impact of Acceptor Quadrupole Moment on Charge Generation and Recombination in Blends of IDT-Based Non-Fullerene Acceptors with PCE10 as Donor Polymer. Adv. Energy Mater. 2021, 11, 2100839. [Google Scholar]
- Das, B.; Mondal, A. Predictive Modeling and Design of Organic Solar Cells: A Data-Driven Approach for Material Innovation. ACS Appl. Energy Mater. 2024, 7, 9349–9363. [Google Scholar]
- Kuzmich, A.; Padula, D.; Ma, H.; Troisi, A. Trends in the Electronic and Geometric Structure of Non-Fullerene Based Acceptors for Organic Solar Cells. Energy Environ. Sci. 2017, 10, 395–401. [Google Scholar]
- Liu, T.; Troisi, A. Absolute Rate of Charge Separation and Recombination in a Molecular Model of the P3HT/PCBM Interface. J. Phys. Chem. C 2011, 115, 2406–2415. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 Revis. B01; Gaussian. Inc: Wallingford, CT, USA, 2009. [Google Scholar]
- Dennington, R.D.; Keith, T.A.; Millam, J.M. GaussView, 5.0.8; Gaussian. Inc: Wallingford, CT, USA, 2008. [Google Scholar]
- Civalleri, B.; Zicovich-Wilson, C.M.; Valenzano, L.; Ugliengo, P. B3LYP Augmented with an Empirical Dispersion Term (B3LYP-D*) as Applied to Molecular Crystals. Cryst. Eng. Comm. 2008, 10, 405–410. [Google Scholar]
- Chen, Z.; Li, Y.; He, Z.; Xu, Y.; Yu, W. Theoretical Investigations on Charge Transport Properties of Tetrabenzo [a,d,j,m] Coronene Derivatives Using Different Density Functional Theory Functionals (B3LYP, M06-2X, and WB97XD). J. Chem. Res. 2019, 43, 293–303. [Google Scholar]
- Yanai, T.; Tew, D.P.; Handy, N.C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar]
- Walker, M.; Harvey, A.J.A.; Sen, A.; Dessent, C.E.H. Performance of M06, M06-2X, and M06-HF Density Functionals for Conformationally Flexible Anionic Clusters: M06 Functionals Perform Better than B3LYP for a Model System with Dispersion and Ionic Hydrogen-Bonding Interactions. J. Phys. Chem. A 2013, 117, 12590–12600. [Google Scholar]
- Kurita, N.; Ivanov, P.M. Correlated Ab Initio Molecular Orbital (MP3, MP4) and Density Functional (PW91, MPW91) Studies on the Conformations of 1,2-Diphenylethane. J. Mol. Struct. 2000, 554, 183–190. [Google Scholar] [CrossRef]
- Ghaffar, A.; Adnan, M.; Irshad, Z.; Hussain, R.; Ghaffar, A.; Darwish, H.W.; Hussain, F.; Ahmed, M.; Lim, J. Advancing Heteroatom-Enhanced A-DA’DA Pentacyclic Small Molecule-Based Acceptors to Improve the Optoelectronic Characteristics for Organic Photovoltaics. J. Phys. Chem. Solids 2025, 200, 112610. [Google Scholar]
- Mitchell, K.E. Origin Update. Science 2000, 288, 1982. [Google Scholar]
- Hameed, S.; Gul, S.; Ans, M.; Bhatti, I.A.; Khera, R.A.; Iqbal, J. Designing Y-Shaped Two-Dimensional (2D) Polymer-Based Donor Materials with Addition of End Group Acceptors for Organic and Perovskite Solar Cells. J. Mol. Model. 2023, 29, 152. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580. [Google Scholar]
- Sharma, G.D.; Angaridis, P.A.; Pipou, S.; Zervaki, G.E.; Nikolaou, V.; Misra, R.; Coutsolelos, A.G. Efficient Co-Sensitization of Dye-Sensitized Solar Cells by Novel Porphyrin/Triazine Dye and Tertiary Aryl-Amine Organic Dye. Org. Electron. 2015, 25, 295–307. [Google Scholar]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [PubMed]
Molecules | HOMO (EHOMO) (eV) | LUMO (ELUMO) (eV) | Eg = ELUMO − EHOMO (eV) |
---|---|---|---|
R | −5.73 | −3.24 | 2.49 |
SBA-1 | −6.38 | −4.26 | 2.11 |
SBA-2 | −6.02 | −3.68 | 2.34 |
SBA-3 | −6.22 | −4.03 | 2.19 |
SBA-4 | −6.36 | −4.18 | 2.18 |
SBA-5 | −6.06 | −3.76 | 2.30 |
SBA-6 | −6.16 | −3.87 | 2.29 |
SBA-7 | −6.26 | −4.01 | 2.26 |
Molecules | Orbitals | Donor (%) | Acceptor (%) |
---|---|---|---|
R | HOMO | 8.7 | 91.3 |
LUMO | 46 | 54 | |
SBA1 | HOMO | 5.2 | 94.8 |
LUMO | 57.9 | 42.1 | |
SBA2 | HOMO | 6.2 | 93.8 |
LUMO | 56.7 | 43.3 | |
SBA3 | HOMO | 5.9 | 94.1 |
LUMO | 53.4 | 46.6 | |
SBA4 | HOMO | 6.0 | 94.0 |
LUMO | 55.8 | 44.2 | |
SBA5 | HOMO | 7.1 | 92.9 |
LUMO | 54.2 | 45.8 | |
SBA6 | HOMO | 7.2 | 92.8 |
LUMO | 56 | 44.0 | |
SBA7 | HOMO | 6.3 | 93.7 |
LUMO | 55.3 | 44.7 | |
SBA8 | HOMO | 5.3 | 94.7 |
LUMO | 55.8 | 44.2 |
Molecules | (C24C25C3C2) | (C11C12C32C33) |
---|---|---|
R | −34.98° | 33.48° |
SBA-1 | 35.24° | −32.11° |
SBA-2 | 34.80° | −32.64° |
SBA-3 | −32.68° | −34.18° |
SBA-4 | −33.85° | 32.03° |
SBA-5 | 34.36° | −32.50° |
SBA-6 | −32.49° | 34.28° |
SBA-7 | −32.09 | 34.57 |
SBA-8 | 33.86 | −32.14 |
Molecules | DFT Calculated λmax (nm) | Experimental λmax (nm) | Ex (eV) | fos | Major MO Assignment |
---|---|---|---|---|---|
R | 588.30 | 580 | 2.11 | 1.83 | HOMO > LUMO (97%) |
SBA-1 | 719.88 | 1.72 | 1.70 | HOMO > LUMO (94%) | |
SBA-2 | 643.14 | 1.93 | 1.58 | HOMO > LUMO (93%) | |
SBA-3 | 693.93 | 1.79 | 2.02 | HOMO > LUMO (94%) | |
SBA-4 | 694.12 | 1.79 | 1.91 | HOMO > LUMO (96%) | |
SBA-5 | 654.75 | 1.89 | 2.08 | HOMO > LUMO (97%) | |
SBA-6 | 653.44 | 1.90 | 2.06 | HOMO > LUMO (97%) | |
SBA-7 | 663.69 | 1.87 | 1.70 | HOMO > LUMO (94%) | |
SBA-8 | 722.43 | 1.72 | 1.85 | HOMO > LUMO (96%) |
Molecules | E(H-L) (eV) | Eopt (eV) | Eb = Eg − Eopt (eV) |
---|---|---|---|
R | 2.49 | 2.18 | 0.31 |
SBA-1 | 2.11 | 1.85 | 0.26 |
SBA-2 | 2.34 | 2.03 | 0.31 |
SBA-3 | 2.19 | 1.89 | 0.30 |
SBA-4 | 2.18 | 1.90 | 0.28 |
SBA-5 | 2.30 | 1.99 | 0.31 |
SBA-6 | 2.29 | 1.98 | 0.31 |
SBA-7 | 2.26 | 1.97 | 0.29 |
SBA-8 | 2.13 | 1.84 | 0.29 |
Molecules | μ (eV) | η (eV) | S (eV) | χ (eV) | ω (eV) | ΔNmax (e) |
---|---|---|---|---|---|---|
R | −4.49 | 1.25 | 0.40 | 4.49 | 8.08 | 3.60 |
SBA-1 | −5.32 | 1.06 | 0.47 | 5.32 | 13.38 | 5.03 |
SBA-2 | −4.85 | 1.17 | 0.43 | 4.85 | 10.06 | 4.15 |
SBA-3 | −5.13 | 1.10 | 0.46 | 5.13 | 11.98 | 4.68 |
SBA-4 | −5.27 | 1.09 | 0.46 | 5.27 | 12.72 | 4.83 |
SBA-5 | −4.91 | 1.15 | 0.43 | 4.91 | 10.47 | 4.27 |
SBA-6 | −5.01 | 1.15 | 0.44 | 5.01 | 10.97 | 4.38 |
SBA-7 | −5.13 | 1.13 | 0.44 | 5.13 | 11.68 | 4.55 |
SBA-8 | −5.32 | 1.06 | 0.47 | 5.32 | 13.33 | 5.01 |
Molecules | Voc | FF% | PCE |
---|---|---|---|
R | 2.26 | 93.84% | 4.4% |
SBA-1 | 1.24 | 90.07% | 9.7% |
SBA-2 | 1.82 | 91.32% | 14.7% |
SBA-3 | 1.47 | 90.57% | 11.7% |
SBA-4 | 1.32 | 92.41% | 10.5% |
SBA-5 | 1.74 | 92.00% | 14.1% |
SBA-6 | 1.63 | 91.42% | 13.1% |
SBA-7 | 1.49 | 90.07% | 11.9% |
SBA-8 | 1.24 | 93.84% | 9.8% |
Molecules | HDI (eV) | EDI (eV) | Integral Hole (amu) | Integral Electron (amu) | Integral TD (amu) | t Index (eV) | H Index (eV) | D Index (eV) | HCT (eV) |
---|---|---|---|---|---|---|---|---|---|
R | 3.79 | 4.52 | 0.9696 | 0.9696 | 0.00016 | −1.84 | 8.67 | 0.40 | 2.24 |
SBA-1 | 4.32 | 11.2 | 0.9084 | 0.9079 | −0.00015 | 0.93 | 6.49 | 6.97 | 6.03 |
SBA-2 | 4.51 | 3.37 | 0.8309 | 0.8311 | −0.00008 | −5.93 | 9.11 | 2.72 | 8.66 |
SBA-3 | 5.72 | 4.76 | 0.8809 | 0.8813 | 0.00001 | 10.64 | 7.51 | 17.7 | 7.08 |
SBA-4 | 3.45 | 4.28 | 0.8113 | 0.8116 | 0.00007 | 0.17 | 7.31 | 6.98 | 6.81 |
SBA-5 | 3.53 | 4.03 | 0.8892 | 0.8894 | −0.00009 | −4.35 | 8.28 | 3.35 | 7.70 |
SBA-6 | 4.36 | 5.66 | 0.9260 | 0.9257 | −0.00002 | −0.63 | 6.72 | 5.66 | 6.29 |
SBA-7 | 7.27 | 3.94 | 0.7801 | 0.7797 | 0.00008 | −1.60 | 6.76 | 4.59 | 6.19 |
SBA-8 | 5.87 | 4.00 | 0.9347 | 0.9349 | 0.00002 | −1.86 | 6.96 | 1.43 | 3.29 |
Molecules | Q20 (Quadrupole) Values |
---|---|
R | 358.8364 |
SBA-1 | 452.9155 |
SBA-2 | 494.1883 |
SBA-3 | 490.0759 |
SBA-4 | 442.6615 |
SBA-5 | 449.5120 |
SBA-6 | 451.0538 |
SBA-7 | 451.0321 |
SBA-8 | 431.4807 |
Donor (PTB7-Th) NBO | Acceptor (SBA1) NBO | E2 kcal/mol |
---|---|---|
BD (2) C100–C105 | BD*(1) C24–H27 | 0.11 |
BD (2) C109–C110 | BD*(2) C22–C23 | 0.21 |
BD (2) C196–O197 | BD*(1) S39–N41 | 0.20 |
BD (1) C146–H148 | BD*(2) N93–O94 | 0.16 |
LP (2) S108 | BD*(1) C24–H27 | 0.61 |
LP (2) S111 | BD*(1) C44–H46 | 1.40 |
LP (1) S114 | BD*(1) C1–H7 | 0.70 |
LP (2) S135 | BD*(2) C72–O75 | 0.29 |
LP (2) S195 | BD*(2) C32–N40 | 0.27 |
LP (1) O197 | BD*(1) S39–N41 | 1.88 |
LP (2) O197 | BD*(1) S39–N41 | 1.77 |
LP (1) S111 | BD*(1) C44–H46 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irshad, Z.; Hussain, M.; Hussain, R.; Adnan, M. Deciphering the Role of Rhodanine Flanked Non-Fullerene Acceptor Molecules for Efficient Organic Photovoltaics. Int. J. Mol. Sci. 2025, 26, 3314. https://doi.org/10.3390/ijms26073314
Irshad Z, Hussain M, Hussain R, Adnan M. Deciphering the Role of Rhodanine Flanked Non-Fullerene Acceptor Molecules for Efficient Organic Photovoltaics. International Journal of Molecular Sciences. 2025; 26(7):3314. https://doi.org/10.3390/ijms26073314
Chicago/Turabian StyleIrshad, Zobia, Muzammil Hussain, Riaz Hussain, and Muhammad Adnan. 2025. "Deciphering the Role of Rhodanine Flanked Non-Fullerene Acceptor Molecules for Efficient Organic Photovoltaics" International Journal of Molecular Sciences 26, no. 7: 3314. https://doi.org/10.3390/ijms26073314
APA StyleIrshad, Z., Hussain, M., Hussain, R., & Adnan, M. (2025). Deciphering the Role of Rhodanine Flanked Non-Fullerene Acceptor Molecules for Efficient Organic Photovoltaics. International Journal of Molecular Sciences, 26(7), 3314. https://doi.org/10.3390/ijms26073314