Interplay of Ferroptosis, Cuproptosis, Autophagy and Pyroptosis in Male Infertility: Molecular Crossroads and Therapeutic Opportunities
Abstract
1. Introduction
2. Ferroptosis
2.1. Male Infertility Is Closely Related to Ferroptosis
2.2. Mechanisms of Ferroptosis in Male Infertility
3. Cuproptosis
3.1. Cuproptosis in Male Infertility
3.2. Possible Mechanisms of Cuproptosis in Male Infertility
4. Autophagy
4.1. Autophagy Exists in Clinical Diseases Related to Male Infertility
4.2. Mechanism of Autophagy in Male Infertility
5. Pyroptosis
5.1. Pathological Roles of Pyroptosis in Diverse Etiologies of Male Infertility
5.2. Molecular Mechanisms of Pyroptosis and Its Role in Testicular Homeostasis
6. The Relationship Between Cell Death Forms in Male Infertility
6.1. The Dual Role of SLC7A11 in Ferroptosis and Disulfidptosis
6.2. The Facilitating Role of ROS in Ferroptosis and Cuproptosis
6.3. The Balance of Pyroptosis and Autophagy in Male Fertility
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO TEAM. Sexual and Reproductive Health and Research. Infertility Prevalence Estimates, 1990–2021; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Jolles, M.; Pinotti, R.; Swan, S.H. Temporal trends in sperm count: A systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum. Reprod. Update 2022, 29, 157–176. [Google Scholar]
- Hanson, B.; Eisenberg, M.; Hotaling, J. Male infertility: A biomarker of individual and familial cancer risk. Fertil. Steril. 2018, 109, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, F.; Kasman, A.M.; Li, S.; Belladelli, F.; Ferro, M.; de Cobelli, O.; De Berardinis, E.; Busetto, G.M.; Eisenberg, M.L. Increased Mortality Among Men Diagnosed With Impaired Fertility: Analysis of US Claims Data. Urology 2021, 147, 143–149. [Google Scholar] [CrossRef]
- Ferlin, A.; Garolla, A.; Ghezzi, M.; Selice, R.; Palego, P.; Caretta, N.; Di Mambro, A.; Valente, U.; De Rocco Ponce, M.; Dipresa, S.; et al. Sperm Count and Hypogonadism as Markers of General Male Health. Eur. Urol. Focus 2021, 7, 205–213. [Google Scholar] [CrossRef]
- Glazer, C.H.; Eisenberg, M.L.; Tottenborg, S.S.; Giwercman, A.; Flachs, E.M.; Brauner, E.V.; Vassard, D.; Pinborg, A.; Schmidt, L.; Bonde, J.P. Male factor infertility and risk of death: A nationwide record-linkage study. Hum. Reprod. 2019, 34, 2266–2273. [Google Scholar]
- Del Giudice, F.; Kasman, A.M.; Chen, T.; De Berardinis, E.; Busetto, G.M.; Sciarra, A.; Ferro, M.; Lucarelli, G.; Belladelli, F.; Salonia, A.; et al. The Association between Mortality and Male Infertility: Systematic Review and Meta-analysis. Urology 2021, 154, 148–157. [Google Scholar] [CrossRef]
- Skakkebaek, N.E.; Rajpert-De Meyts, E.; Louis, G.M.B.; Toppari, J.; Andersson, A.M.; Eisenberg, M.L.; Jensen, T.K.; Jorgensen, N.; Swan, S.H.; Sapra, K.J.; et al. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. Physiol. Rev. 2016, 96, 55–97. [Google Scholar]
- Delli Muti, N.; Finocchi, F.; Tossetta, G.; Salvio, G.; Cutini, M.; Marzioni, D.; Balercia, G. Could SARS-CoV-2 infection affect male fertility and sexuality? Apmis 2022, 130, 243–252. [Google Scholar]
- Eisenberg, M.L.; Esteves, S.C.; Lamb, D.J.; Hotaling, J.M.; Giwercman, A.; Hwang, K.; Cheng, Y.S. Male infertility. Nat. Rev. Dis. Primers 2023, 9, 49. [Google Scholar] [CrossRef]
- Sharma, A.; Minhas, S.; Dhillo, W.S.; Jayasena, C.N. Male infertility due to testicular disorders. J. Clin. Endocrinol. Metab. 2021, 106, e442–e459. [Google Scholar]
- Hoffmann, K.; Gopal, M. Paediatric acute epididymo-orchitis temporally related to SARS-CoV-2 infection: A case series and review of the literature. J. Pediatr. Urol. 2024, 20, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Krausz, C. Male infertility: Pathogenesis and clinical diagnosis. Best. Pr. Res. Clin. Endocrinol. Metab. 2011, 25, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.P.; Song, J.Y.; Zhou, X.; Liu, Y.H.; Chen, Y.J.; Cai, Y.L.; Zhang, Y.B.; Yu, Y.; Chen, X.Q. Exploring the mechanisms of ferroptosis in non-obstructive azoospermia based on bioinformatics and machine learning. Zhonghua Nan Ke Xue 2023, 29, 874–880. [Google Scholar]
- Hao, X.; Wang, H.; Cui, F.; Yang, Z.; Ye, L.; Huang, R.; Meng, J. Reduction of SLC7A11 and GPX4 Contributing to Ferroptosis in Sperm from Asthenozoospermia Individuals. Reprod. Sci. 2023, 30, 247–257. [Google Scholar] [CrossRef]
- Ammar, O.; Tekeya, O.; Hannachi, I.; Sallem, A.; Haouas, Z.; Mehdi, M. Increased Sperm DNA Fragmentation in Infertile Men with Varicocele: Relationship with Apoptosis, Seminal Oxidative Stress, and Spermatic Parameters. Reprod. Sci. 2021, 28, 909–919. [Google Scholar] [CrossRef]
- Sasson, D.C.; Kashanian, J.A. Varicoceles. JAMA 2020, 323, 2210. [Google Scholar] [CrossRef]
- Condorelli, R.A.; La Vignera, S.; Mongioi, L.M.; Alamo, A.; Calogero, A.E. Diabetes Mellitus and Infertility: Different Pathophysiological Effects in Type 1 and Type 2 on Sperm Function. Front. Endocrinol. 2018, 9, 268. [Google Scholar] [CrossRef]
- Pan, C.; Kong, X.; Wu, Z.; Fei, Q. The role of hepatitis B virus surface protein in inducing Sertoli cell ferroptosis. Andrology 2024, 12, 643–654. [Google Scholar] [CrossRef]
- Zhou, L.; Li, L.; Hao, G.; Li, B.; Yang, S.; Wang, N.; Liang, J.; Sun, H.; Ma, S.; Yan, L.; et al. Sperm mtDNA copy number, telomere length, and seminal spermatogenic cells in relation to ambient air pollution: Results of a cross-sectional study in Jing-Jin-Ji region of China. J. Hazard. Mater. 2021, 406, 124308. [Google Scholar] [CrossRef]
- Ou, Z.; Wen, Q.; Deng, Y.; Yu, Y.; Chen, Z.; Sun, L. Cigarette smoking is associated with high level of ferroptosis in seminal plasma and affects semen quality. Reprod. Biol. Endocrinol. 2020, 18, 55. [Google Scholar] [CrossRef]
- Li, L.; Pei, Z.; Wu, R.; Zhang, Y.; Pang, Y.; Hu, H.; Hu, W.; Geng, Z.; Feng, T.; Niu, Y.; et al. FDX1 regulates leydig cell ferroptosis mediates PM(2.5)-induced testicular dysfunction of mice. Ecotoxicol. Environ. Saf. 2023, 263, 115309. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, H.; Cui, J.G.; Wang, J.X.; Chen, M.S.; Wang, H.R.; Li, X.N.; Li, J.L. Ferroptosis is critical for phthalates driving the blood-testis barrier dysfunction via targeting transferrin receptor. Redox Biol. 2023, 59, 102584. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Yang, L.; Zhang, Z.; Xu, D.; Hua, R.; Chen, H.; Li, X.; Duan, J.; Li, Q. Diquat causes mouse testis injury through inducing heme oxygenase-1-mediated ferroptosis in spermatogonia. Ecotoxicol. Environ. Saf. 2024, 280, 116562. [Google Scholar] [CrossRef]
- Liu, X.; Ai, Y.; Xiao, M.; Wang, C.; Shu, Z.; Yin, J.; Chu, Y.; Xiao, Q.; Liu, B. PM 2.5 juvenile exposure-induced spermatogenesis dysfunction by triggering testes ferroptosis and antioxidative vitamins intervention in adult male rats. Environ. Sci. Pollut. Res. Int. 2023, 30, 111051–111061. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, X.; Shu, Z.; Yin, J.; Xiao, M.; Ai, Y.; Zhao, P.; Luo, Z.; Liu, B. Exposure to automobile exhaust-derived PM2.5 induces spermatogenesis dysfunction by damaging UPR(mt) of prepubertal rats. Ecotoxicol. Environ. Saf. 2022, 245, 114087. [Google Scholar] [CrossRef]
- Huang, X.; Fu, Y.; Wang, S.; Guo, Q.; Wu, Y.; Zheng, X.; Wang, J.; Wu, S.; Shen, L.; Wei, G. 2,2′,4,4′-Tetrabromodiphenyl ether exposure disrupts blood-testis barrier integrity through CMA-mediated ferroptosis. Sci. Total Environ. 2024, 948, 174738. [Google Scholar] [CrossRef]
- Ma, T.; Cheng, H.; Kong, L.; Shen, C.; Jin, H.; Li, H.; Pan, C.; Liang, J. Combined exposure of PS-MPs with NaF induces Sertoli cell death and dysfunction via ferroptosis and apoptosis. Toxicology 2024, 506, 153849. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Zhang, M.; OuYang, H.; Li, M.; Jia, D.; Wang, R.; Zhou, W.; Liu, H.; Hu, Y.; et al. Cadmium exposure during puberty damages testicular development and spermatogenesis via ferroptosis caused by intracellular iron overload and oxidative stress in mice. Environ. Pollut. 2023, 325, 121434. [Google Scholar] [CrossRef]
- Zeng, Q.; Yi, H.; Huang, L.; An, Q.; Wang, H. Long-term arsenite exposure induces testicular toxicity by redox imbalance, G2/M cell arrest and apoptosis in mice. Toxicology 2019, 411, 122–132. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Q.; Lin, J.; Cai, J. Association of Exposure to Particulate Matter Air Pollution With Semen Quality Among Men in China. JAMA Netw. Open 2022, 5, e2148684. [Google Scholar] [CrossRef]
- Hammoud, A.; Carrell, D.T.; Gibson, M.; Sanderson, M.; Parker-Jones, K.; Peterson, C.M. Decreased sperm motility is associated with air pollution in Salt Lake City. Fertil. Steril. 2010, 93, 1875–1879. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Ji, Q.; Chen, P.; Zhong, K.; Zeng, X. Hydrogen sulfide protects against toxicant acrolein-induced ferroptotic cell death in Sertoli cells. Front. Pharmacol. 2024, 15, 1440147. [Google Scholar] [CrossRef]
- Schiavoni, V.; Emanuelli, M.; Milanese, G.; Galosi, A.B.; Pompei, V.; Salvolini, E.; Campagna, R. Nrf2 Signaling in Renal Cell Carcinoma: A Potential Candidate for the Development of Novel Therapeutic Strategies. Int. J. Mol. Sci. 2024, 25, 13239. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, F.; Arato, I.; Bellucci, C.; Lilli, C.; Eugeni, E.; Aglietti, M.C.; Stabile, A.M.; Pistilli, A.; Brancorsini, S.; Gaggia, F.; et al. Zinc restores functionality in porcine prepubertal Sertoli cells exposed to subtoxic cadmium concentration via regulating the Nrf2 signaling pathway. Front. Endocrinol. 2023, 14, 962519. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Ji, Z.; Wang, Q.; Zhang, Z.; Wang, Z.; Li, C.; Lu, S.; Ge, P. Cuproptosis: Mechanisms, biological significance, and advances in disease treatment-A systematic review. CNS Neurosci. Ther. 2024, 30, e70039. [Google Scholar] [CrossRef]
- Parveen, S.; Rizvi, A.; Akhtar, K.; Khan, A.A.; Naseem, I. Nickel-induced oxidative stress causes cell death in testicles: Implications for male infertility. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 1659–1670. [Google Scholar] [CrossRef]
- de Ligny, W.; Smits, R.M.; Mackenzie-Proctor, R.; Jordan, V.; Fleischer, K.; de Bruin, J.P.; Showell, M.G. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2022, 5, CD007411. [Google Scholar]
- Du, Y.; Guo, Z. Recent progress in ferroptosis: Inducers and inhibitors. Cell Death Discov. 2022, 8, 501. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Z.; Gao, J.; Li, H.; Wang, X.; Li, Y.; Sun, F. Inhibition of ferroptosis attenuates busulfan-induced oligospermia in mice. Toxicology 2020, 440, 152489. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, L.; Si, Y.; Huang, W.; Liu, R.; Liu, Z.; Jiang, Z.; Xu, F. Ferritinophagy-mediated ferroptosis of spermatogonia is involved in busulfan-induced oligospermia in the mice. Chem. Biol. Interact. 2024, 390, 110870. [Google Scholar] [CrossRef]
- Dong, J.; Dong, Y.; Chen, H.; Ye, T.; Chen, G.; Fan, B.; Wang, X.; Shi, J.; Wang, C. Ursonic acid attenuates spermatogenesis in oligozoospermia mice through inhibiting ferroptosis. Bioorg Chem. 2024, 144, 107174. [Google Scholar]
- Ma, B.; Zhang, J.; Zhu, Z.; Bao, X.; Zhang, M.; Ren, C.; Zhang, Q. Aucubin, a natural iridoid glucoside, attenuates oxidative stress-induced testis injury by inhibiting JNK and CHOP activation via Nrf2 up-regulation. Phytomedicine 2019, 64, 153057. [Google Scholar] [PubMed]
- Kopalli, S.R.; Cha, K.M.; Cho, J.Y.; Kim, S.K.; Koppula, S. Cordycepin mitigates spermatogenic and redox related expression in H(2)O(2)-exposed Leydig cells and regulates testicular oxidative apoptotic signalling in aged rats. Pharm. Biol. 2022, 60, 404–416. [Google Scholar] [CrossRef]
- Khalil, A.S.M.; Giribabu, N.; Yelumalai, S.; Shahzad, H.; Kilari, E.K.; Salleh, N. Myristic acid defends against testicular oxidative stress, inflammation, apoptosis: Restoration of spermatogenesis, steroidogenesis in diabetic rats. Life Sci. 2021, 278, 119605. [Google Scholar]
- Liu, C.Y.; Chen, C.C.; Chiang, L.H.; Yang, B.H.; Chang, T.C.; Tsao, C.W. Hirsutella sinensis intensifies testicular function and spermatogenesis in male mice with high-fat diet-induced obesity. J. Chin. Med. Assoc. 2024, 87, 765–773. [Google Scholar]
- Awny, M.M.; Al-Mokaddem, A.K.; Ali, B.M. Mangiferin mitigates di-(2-ethylhexyl) phthalate-induced testicular injury in rats by modulating oxidative stress-mediated signals, inflammatory cascades, apoptotic pathways, and steroidogenesis. Arch. Biochem. Biophys. 2021, 711, 108982. [Google Scholar]
- Zhu, Y.; Zhang, J.; Liu, Q.; Xin, X.; Dong, L.; Wang, B.; Li, H.; Li, D.; Wang, J.; Guan, S.; et al. Semen Cuscutae-Fructus Lycii attenuates tripterygium glycosides-induced spermatogenesis dysfunction by inhibiting oxidative stress-mediated ferroptosis via the Nrf2/HO-1 pathway. Phytomedicine 2024, 135, 156221. [Google Scholar]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef]
- Bravo, A.; Sánchez, R.; Zambrano, F.; Uribe, P. Exogenous Oxidative Stress in Human Spermatozoa Induces Opening of the Mitochondrial Permeability Transition Pore: Effect on Mitochondrial Function, Sperm Motility and Induction of Cell Death. Antioxidants 2024, 13, 739. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, D.; Suo, J.; Li, J.; Zhang, Y.; Wang, Y.; Deng, Z.; Zhang, Q.; Ma, B. Triptolide induced spermatogenesis dysfunction via ferroptosis activation by promoting K63-linked GPX4 polyubiquitination in spermatocytes. Chem. Biol. Interact. 2024, 399, 111130. [Google Scholar]
- Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol. 2019, 12, 34. [Google Scholar] [PubMed]
- Liu, Y.; Wan, Y.; Jiang, Y.; Zhang, L.; Cheng, W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188890. [Google Scholar]
- Zhu, H.; Cheng, Y.; Wang, X.; Yang, X.; Liu, M.; Liu, J.; Liu, S.; Wang, H.; Zhang, A.; Li, R.; et al. Gss deficiency causes age-related fertility impairment via ROS-triggered ferroptosis in the testes of mice. Cell Death Dis. 2023, 14, 845. [Google Scholar] [PubMed]
- Nashed, M.S.; Hassanen, E.I.; Issa, M.Y.; Tohamy, A.F.; Prince, A.M.; Hussien, A.M.; Soliman, M.M. The mollifying effect of Sambucus nigra extract on StAR gene expression, oxidative stress, and apoptosis induced by fenpropathrin in male rats. Food Chem. Toxicol. 2024, 189, 114744. [Google Scholar]
- Xie, Y.; Kang, R.; Klionsky, D.J.; Tang, D. GPX4 in cell death, autophagy, and disease. Autophagy 2023, 19, 2621–2638. [Google Scholar] [CrossRef]
- Jin, Z.; Yang, Y.; Cao, Y.; Wen, Q.; Xi, Y.; Cheng, J.; Zhao, Q.; Weng, J.; Hong, K.; Jiang, H.; et al. The gut metabolite 3-hydroxyphenylacetic acid rejuvenates spermatogenic dysfunction in aged mice through GPX4-mediated ferroptosis. Microbiome 2023, 11, 212. [Google Scholar]
- Anandhan, A.; Dodson, M.; Shakya, A.; Chen, J.; Liu, P.; Wei, Y.; Tan, H.; Wang, Q.; Jiang, Z.; Yang, K.; et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci. Adv. 2023, 9, eade9585. [Google Scholar] [CrossRef]
- Han, P.; Wang, X.; Zhou, T.; Cheng, J.; Wang, C.; Sun, F.; Zhao, X. Inhibition of ferroptosis attenuates oligospermia in male Nrf2 knockout mice. Free Radic. Biol. Med. 2022, 193 Pt 1 Pt 1, 421–429. [Google Scholar] [CrossRef]
- Yu, B.; Lin, H.; Yang, L.; Chen, K.; Luo, H.; Liu, J.; Gao, X.; Xia, X.; Huang, Z. Genetic variation in the Nrf2 promoter associates with defective spermatogenesis in humans. J. Mol. Med. 2012, 90, 1333–1342. [Google Scholar] [CrossRef]
- Aydos, O.S.; Yukselten, Y.; Aydos, D.; Sunguroglu, A.; Aydos, K. Relationship between functional Nrf2 gene promoter polymorphism and sperm DNA damage in male infertility. Syst. Biol. Reprod. Med. 2021, 67, 399–412. [Google Scholar]
- Chen, K.; Mai, Z.; Zhou, Y.; Gao, X.; Yu, B. Low NRF2 mRNA expression in spermatozoa from men with low sperm motility. Tohoku J. Exp. Med. 2012, 228, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Z.; Liu, J.N.; Zhou, F.F.; Wang, Y.J.; Zhang, P.; Cheng, S.T. Decreased Nrf2 protein level and low sperm quality in intractable spermatocystitis. Asian J. Androl. 2024, 26, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, B.; Kiziler, A.R.; Onaran, I.; Alici, B.; Ozkara, H.; Akyolcu, M.C. Impact of Cu and Fe concentrations on oxidative damage in male infertility. Biol. Trace Elem. Res. 2006, 112, 193–203. [Google Scholar] [CrossRef]
- Chabchoub, I.; Nouioui, M.A.; Araoud, M.; Mabrouk, M.; Amira, D.; Ben Aribia, M.H.; Mahmoud, K.; Zhioua, F.; Merdassi, G.; Hedhili, A. Effects of lead, cadmium, copper and zinc levels on the male reproductive function. Andrologia 2021, 53, e14181. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Yue, X.; Li, Q.; Zhou, X.; Dong, R.; Chen, J.; Zhang, R.; Wang, X.; He, S.; Jiang, T.; et al. The Association Between the Levels of Oxidative Stress Indicators (MDA, SOD, and GSH) in Seminal Plasma and the Risk of Idiopathic Oligo-asthenotera-tozoospermia: Does Cu or Se Level Alter the Association? Biol. Trace Elem. Res. 2024, 202, 2941–2953. [Google Scholar] [CrossRef]
- Akinloye, O.; Abbiyesuku, F.M.; Oguntibeju, O.O.; Arowojolu, A.O.; Truter, E.J. The impact of blood and seminal plasma zinc and copper concentrations on spermogram and hormonal changes in infertile Nigerian men. Reprod. Biol. 2011, 11, 83–98. [Google Scholar] [CrossRef]
- Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022, 7, 378. [Google Scholar] [CrossRef]
- Al-Musawi, M.M.S.; Al-Shmgani, H.; Al-Bairuty, G.A. Histopathological and Biochemical Comparative Study of Copper Oxide Nanoparticles and Copper Sulphate Toxicity in Male Albino Mice Reproductive System. Int. J. Biomater. 2022, 2022, 4877637. [Google Scholar] [CrossRef]
- Nicy, V.; Das, M.; Gurusubramanian, G.; Mondal, P.; Roy, V.K. Treatment of copper nanoparticles (CuNPs) for two spermatogenic cycles impairs testicular activity via down-regulating steroid receptors and inhibition of germ cell proliferation in a mice model. Nanotoxicology 2022, 16, 658–678. [Google Scholar] [CrossRef]
- Liu, J.Y.; Yang, X.; Sun, X.D.; Zhuang, C.C.; Xu, F.B.; Li, Y.F. Suppressive Effects of Copper Sulfate Accumulation on the Spermatogenesis of Rats. Biol. Trace Elem. Res. 2016, 174, 356–361. [Google Scholar] [CrossRef]
- Nicy, V.; Gurusubramanian, G.; Roy, V.K. Effects of chronic CuNPs treatment followed by termination for two spermatogenic cycles in the testicular functions of mice. Reprod. Toxicol. 2024, 129, 108669. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Yu, X.J.; Li, J.J.; Xiao, Y.; Li, G.S.; Yang, F.; Dong, L. Cuproptosis mediates copper-induced testicular spermatogenic cell death. Asian J. Androl. 2024, 26, 295–301. [Google Scholar] [CrossRef]
- Guo, H.; Ouyang, Y.; Wang, J.; Cui, H.; Deng, H.; Zhong, X.; Jian, Z.; Liu, H.; Fang, J.; Zuo, Z.; et al. Cu-induced spermatogenesis disease is related to oxidative stress-mediated germ cell apoptosis and DNA damage. J. Hazard. Mater. 2021, 416, 125903. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Liao, J.; Chen, K.; Javed, M.T.; Qiao, N.; Zeng, Q.; Liu, B.; Yi, J.; Tang, Z.; et al. Long-term copper exposure promotes apoptosis and autophagy by inducing oxidative stress in pig testis. Environ. Sci. Pollut. Res. Int. 2021, 28, 55140–55153. [Google Scholar] [CrossRef]
- Zhao, M.; Yu, W.X.; Liu, S.J.; Deng, Y.J.; Zhao, Z.W.; Guo, J.; Gao, Q.H. Identification and immuno-infiltration analysis of cuproptosis regulators in human spermatogenic dysfunction. Front. Genet. 2023, 14, 1115669. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, L.; Fang, X.; Wang, L.; Liu, Q.; Jiang, P.; Ji, Z.; Zhang, N.; Yin, M.; Han, H. Copper exposure induces inflammation and PANoptosis through the TLR4/NF-κB signaling pathway, leading to testicular damage and impaired spermatogenesis in Wilson disease. Chem. Biol. Interact. 2024, 396, 111060. [Google Scholar] [CrossRef]
- Shaoyong, W.; Wang, W.; Pan, B.; Liu, R.; Yin, L.; Wangjie, R.; Tian, H.; Wang, Y.; Jin, M. Transgenerational Inheritance Effects of Copper Oxide Nanoparticles (CuONPs) Induced Asthenospermia and Infertility via Gamete H3K9me3 Insufficiency Pathway in Mice. ACS Nano 2024, 18, 20541–20555. [Google Scholar] [CrossRef]
- Huang, Q.; Li, J.; Qi, Y.; He, X.; Shen, C.; Wang, C.; Wang, X.; Xia, Q.; Zhang, Y.; Pan, Z.; et al. Copper overload exacerbates testicular aging mediated by lncRNA:CR43306 deficiency through ferroptosis in Drosophila. Redox Biol. 2024, 76, 103315. [Google Scholar] [CrossRef]
- Chen, K.; Wu, L.; Liu, Q.; Tan, F.; Wang, L.; Zhao, D.; Fang, X.; Liu, X.; Liu, J.; Han, H. Glutathione improves testicular spermatogenesis through inhibiting oxidative stress, mitochondrial damage, and apoptosis induced by copper deposition in mice with Wilson disease. Biomed. Pharmacother. 2023, 158, 114107. [Google Scholar] [CrossRef]
- Yi, H.; Chen, T.; He, G.; Liu, L.; Zhao, J.; Guo, K.; Cao, Y.; Sun, P.; Zhou, X.; Zhang, B.; et al. Retinoic acid mitigates the NSC319726-induced spermatogenesis dysfunction through cuproptosis-independent mechanisms. Cell Biol. Toxicol. 2024, 40, 26. [Google Scholar] [CrossRef]
- Seven, I.; Tatli Seven, P.; Gul Baykalir, B.; Parlak Ak, T.; Ozer Kaya, S.; Yaman, M. Bee glue (propolis) improves reproductive organs, sperm quality and histological changes and antioxidant parameters of testis tissues in rats exposed to excess copper. Andrologia 2020, 52, e13540. [Google Scholar] [CrossRef]
- Arafa, M.H.; Amin, D.M.; Samir, G.M.; Atteia, H.H. Protective effects of tribulus terrestris extract and angiotensin blockers on testis steroidogenesis in copper overloaded rats. Ecotoxicol. Environ. Saf. 2019, 178, 113–122. [Google Scholar] [CrossRef]
- Wang, T.; Wu, L.; Chen, Q.; Chen, K.; Tan, F.; Liu, J.; Liu, X.; Han, H. Copper deposition in Wilson’s disease causes male fertility decline by impairing reproductive hormone release through inducing apoptosis and inhibiting ERK signal in hypothalamic-pituitary of mice. Front. Endocrinol. 2022, 13, 961748. [Google Scholar] [CrossRef]
- Iorio, G.G.; Conforti, A.; Vallone, R.; Carbone, L.; Matarazzo, M.; De Rosa, A.; De Rosa, P.; Picarelli, S.; Fedele, F.; Perruolo, G.; et al. Reproductive function of long-term treated patients with hepatic onset of Wilson’s disease: A prospective study. Reprod. Biomed. Online 2021, 42, 835–841. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, M.; Liu, Y.; Si, Z. Cope with copper: From copper linked mechanisms to copper-based clinical cancer therapies. Cancer Lett. 2023, 561, 216157. [Google Scholar] [CrossRef]
- Kirk, F.T.; Munk, D.E.; Swenson, E.S.; Quicquaro, A.M.; Vendelbo, M.H.; Larsen, A.; Schilsky, M.L.; Ott, P.; Sandahl, T.D. Effects of tetrathiomolybdate on copper metabolism in healthy volunteers and in patients with Wilson disease. J. Hepatol. 2024, 80, 586–595. [Google Scholar] [CrossRef]
- Chan, N.; Willis, A.; Kornhauser, N.; Ward, M.M.; Lee, S.B.; Nackos, E.; Seo, B.R.; Chuang, E.; Cigler, T.; Moore, A.; et al. Influencing the Tumor Microenvironment: A Phase II Study of Copper Depletion Using Tetrathiomolybdate in Patients with Breast Cancer at High Risk for Recurrence and in Preclinical Models of Lung Metastases. Clin. Cancer Res. 2017, 23, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Ogórek, M.; Herman, S.; Pierzchała, O.; Bednarz, A.; Rajfur, Z.; Baster, Z.; Grzmil, P.; Starzyński, R.R.; Szudzik, M.; Jończy, A.; et al. Molecular machinery providing copper bioavailability for spermatozoa along the epididymial tubule in mouse. Biol. Reprod. 2019, 100, 1505–1520. [Google Scholar] [CrossRef]
- Ghaffari, R.; Di Bona, K.R.; Riley, C.L.; Richburg, J.H. Copper transporter 1 (CTR1) expression by mouse testicular germ cells, but not Sertoli cells, is essential for functional spermatogenesis. PLoS ONE 2019, 14, e0215522. [Google Scholar] [CrossRef]
- Ogórek, M.; Lenartowicz, M.; Starzyński, R.; Jończy, A.; Staroń, R.; Doniec, A.; Krzeptowski, W.; Bednarz, A.; Pierzchała, O.; Lipiński, P.; et al. Atp7a and Atp7b regulate copper homeostasis in developing male germ cells in mice. Metallomics 2017, 9, 1288–1303. [Google Scholar] [CrossRef]
- Zhang, G.; Shen, L.; Li, Z.; Zhao, Y. FDX1 serves as a prognostic biomarker and promotes glioma progression by regulating the immune response. Aging 2023, 15, 4963–4985. [Google Scholar]
- Yang, L.; Zhang, Y.; Wang, Y.; Jiang, P.; Liu, F.; Feng, N. Ferredoxin 1 is a cuproptosis-key gene responsible for tumor immunity and drug sensitivity: A pan-cancer analysis. Front. Pharmacol. 2022, 13, 938134. [Google Scholar] [CrossRef]
- Jiang, S.; Wei, Y.; Li, Y.; Liu, W.; Wang, Z.; Meng, X.; Zhu, Q.; Shen, L. A comparative cross-platform analysis of cuproptosis-related genes in human nonobstructive azoospermia: An observational study. Medicine 2024, 103, e39176. [Google Scholar]
- Gao, W.; Wang, X.; Zhou, Y.; Wang, X.; Yu, Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct. Target. Ther. 2022, 7, 196. [Google Scholar] [CrossRef]
- Yamamoto, H.; Zhang, S.; Mizushima, N. Autophagy genes in biology and disease. Nat. Rev. Genet. 2023, 24, 382–400. [Google Scholar]
- Qiao, L.; Hu, J.; Qiu, X.; Wang, C.; Peng, J.; Zhang, C.; Zhang, M.; Lu, H.; Chen, W. LAMP2A, LAMP2B and LAMP2C: Similar structures, divergent roles. Autophagy 2023, 19, 2837–2852. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, C.; Yang, Y.; Wang, Y.; Zhou, H.; Dai, S.; Liu, M.; Yang, Y.; Yang, L.; Shen, Q.; et al. Deficiency of cancer/testis antigen gene CT55 causes male infertility in humans and mice. Cell Death Differ. 2023, 30, 500–514. [Google Scholar]
- Wang, Y.; Tian, C.C.; Jiao, Y.Y.; Liu, M.R.; Ma, X.S.; Jin, H.X.; Su, Y.C.; Zhang, X.Y.; Niu, W.B.; Yao, G.D.; et al. miR-188-3p-targeted regulation of ATG7 affects cell autophagy in patients with nonobstructive azoospermia. Reprod. Biol. Endocrinol. 2022, 20, 90. [Google Scholar]
- Foroozan-Broojeni, S.; Tavalaee, M.; Lockshin, R.A.; Zakeri, Z.; Abbasi, H.; Nasr-Esfahani, M.H. Comparison of main molecular markers involved in autophagy and apoptosis pathways between spermatozoa of infertile men with varicocele and fertile individuals. Andrologia 2019, 51, e13177. [Google Scholar]
- Wu, C.; Zhu, S.M.; Cheng, F.; Zhou, X.J.; Yu, W.M.; Rao, T.; Li, H.Y.; Ning, J.Z.; Xia, Y.Q.; Zhu, C.C. Effect of testicular autophagy on spermatogenic cells in varicocele rats. Zhonghua Nan Ke Xue 2020, 26, 111–117. [Google Scholar]
- Liu, X.; Xi, H.; Han, S.; Zhang, H.; Hu, J. Zearalenone induces oxidative stress and autophagy in goat Sertoli cells. Ecotoxicol. Environ. Saf. 2023, 252, 114571. [Google Scholar]
- Huang, W.; Cao, Z.; Zhang, J.; Ji, Q.; Li, Y. Aflatoxin B1 promotes autophagy associated with oxidative stress-related PI3K/AKT/mTOR signaling pathway in mice testis. Environ. Pollut. 2019, 255, 113317. [Google Scholar] [CrossRef]
- Ali, W.; Deng, K.; Sun, J.; Ma, Y.; Liu, Z.; Zou, H. A new insight of cadmium-induced cellular evidence of autophagic-associated spermiophagy during spermatogenesis. Environ. Sci. Pollut. Res. Int. 2023, 30, 101064–101074. [Google Scholar]
- Chen, N.; Wan, X.; Wang, M.; Li, Y.; Wang, X.; Zeng, L.; Zhou, J.; Zhang, Y.; Cheng, S.; Shen, Y. Cross-talk between Vimentin and autophagy regulates blood-testis barrier disruption induced by cadmium. Environ. Pollut. 2024, 346, 123625. [Google Scholar]
- Guo, H.; Ouyang, Y.; Yin, H.; Cui, H.; Deng, H.; Liu, H.; Jian, Z.; Fang, J.; Zuo, Z.; Wang, X.; et al. Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder. Redox Biol. 2022, 49, 102227. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, M.; Gan, Y.; Yang, S.; Wang, J.; Yu, M.; Wei, J.; Chen, J. Involvement of oxidative stress in ZnO NPs-induced apoptosis and autophagy of mouse GC-1 spg cells. Ecotoxicol. Environ. Saf. 2020, 202, 110960. [Google Scholar]
- Hong, Y.; Zhou, X.; Li, Q.; Chen, J.; Wei, Y.; Long, C.; Shen, L.; Zheng, X.; Li, D.; Wang, X.; et al. X-box binding protein 1 caused an imbalance in pyroptosis and mitophagy in immature rats with di-(2-ethylhexyl) phthalate-induced testis toxicity. Genes Dis. 2024, 11, 935–951. [Google Scholar]
- Chen, P.; Chen, J.; Zhang, W.; Tang, L.; Cheng, G.; Li, H.; Fan, T.; Wang, J.; Zhong, W.; Song, Y. Biochemical mechanisms of tributyltin chloride-induced cell toxicity in Sertoli cells. Ecotoxicol. Environ. Saf. 2023, 255, 114725. [Google Scholar]
- Yang, Y.; Fu, G.; Zhao, X.; Wu, X.; Zhu, K.; Liu, S.; Yuan, D.; Wu, J.; Wang, T.; Zhang, C.; et al. Perfluorooctanoic acid induces tight junction injury of Sertoli cells by blocking autophagic flux. Food Chem. Toxicol. 2023, 173, 113649. [Google Scholar]
- Horibe, A.; Eid, N.; Ito, Y.; Otsuki, Y.; Kondo, Y. Ethanol-Induced Autophagy in Sertoli Cells Is Specifically Marked at Androgen-Dependent Stages of the Spermatogenic Cycle: Potential Mechanisms and Implications. Int. J. Mol. Sci. 2019, 20, 184. [Google Scholar] [CrossRef]
- Li, G.; Xu, Y.; Li, Y.; Chang, D.; Zhang, P.; Ma, Z.; Chen, D.A.; You, Y.; Huang, X.; Cai, J. Qiangjing tablets ameliorate asthenozoospermia via mitochondrial ubiquitination and mitophagy mediated by LKB1/AMPK/ULK1 signaling. Pharm. Biol. 2023, 61, 271–280. [Google Scholar] [PubMed]
- Abu-Baih, R.H.; Abu-Baih, D.H.; Abdel-Hafez, S.M.N.; Fathy, M. Activation of SIRT1/Nrf2/HO-1 and Beclin-1/AMPK/mTOR autophagy pathways by eprosartan ameliorates testicular dysfunction induced by testicular torsion in rats. Sci. Rep. 2024, 14, 12566. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, T.; El-Taweel, A.E.I.; Rashed, L.A.; Mohammed, N.A.M.; Akl, E.M. Assessment of seminal cystatin C levels in infertile men with varicocele: A preliminary study. Andrologia 2022, 54, e14278. [Google Scholar]
- Xia, Y.; Tian, Y.; Zhou, D.; Zhang, L.; Cai, Y.; Fu, S.; Zhang, X.; Gao, Y.; Chen, Q.; Gao, P. Gut microbiota involved in spermatogenic function of Sancai Lianmei granules in obese mice. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 83–97. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, H.; He, Z.; Zhang, K.; Qian, Z.; Shen, J.; Zheng, L.; Xue, M.; Sun, S.; Li, C.; et al. Octanoic acid mitigates busulfan-induced blood-testis barrier damage by alleviating oxidative stress and autophagy. Lipids Health Dis. 2024, 23, 180. [Google Scholar]
- Kankılıç, N.A.; Şimşek, H.; Akaras, N.; Gür, C.; İleritürk, M.; Küçükler, S.; Akarsu, S.A.; Kandemir, F.M. Protective effects of naringin on colistin-induced damage in rat testicular tissue: Modulating the levels of Nrf-2/HO-1, AKT-2/FOXO1A, Bax/Bcl2/Caspase-3, and Beclin-1/LC3A/LC3B signaling pathways. J. Biochem. Mol. Toxicol. 2024, 38, e23643. [Google Scholar]
- Shojaedini, M.; Hemadi, M.; Saki, G.; Fakhredini, F.; Khodayar, M.J.; Khorsandi, L. Thymoquinone effects on autophagy, apoptosis, and oxidative stress in cisplatin-induced testicular damage in mice. J. Assist. Reprod. Genet. 2024, 41, 1881–1891. [Google Scholar] [CrossRef]
- He, H.; Chen, X.; Li, X.; Yang, K.; Li, J.; Shi, H. Lactoferrin alleviates spermatogenesis dysfunction caused by bisphenol A and cadmium via ameliorating disordered autophagy, apoptosis and oxidative stress. Int. J. Biol. Macromol. 2022, 222 Pt A, 1048–1062. [Google Scholar] [CrossRef]
- Chen, Z.; Mo, J.; Yang, Q.; Guo, Z.; Li, X.; Xie, D.; Deng, C. MSC-derived exosomes mitigate cadmium-induced male reproductive injury by ameliorating DNA damage and autophagic flux. Ecotoxicol. Environ. Saf. 2024, 276, 116306. [Google Scholar]
- Helal, A.M.; Yossef, M.M.; Seif, I.K.; Abd El-Salam, M.; El Demellawy, M.A.; Abdulmalek, S.A.; Ghareeb, A.Z.; Holail, J.; Mohsen Al-Mahallawi, A.; El-Zahaby, S.A.; et al. Nanostructured biloalbuminosomes loaded with berberine and berberrubine for Alleviating heavy Metal-Induced male infertility in rats. Int. J. Pharm. 2024, 667 Pt A, 124892. [Google Scholar]
- Wang, H.; Yang, F.; Ye, J.; Dai, X.; Liao, H.; Xing, C.; Jiang, Z.; Peng, C.; Gao, F.; Cao, H. Ginkgo biloba extract alleviates deltamethrin-induced testicular injury by upregulating SKP2 and inhibiting Beclin1-independent autophagy. Phytomedicine 2024, 135, 156245. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Miao, C.X.; Li, N.; Han, J. FOXJ2 controls meiosis during spermatogenesis in male mice. Mol. Reprod. Dev. 2016, 83, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.R.; Wu, Q.Q.; Wu, Y.J.; Hu, Y.Q.; Jiang, Z.X.; Lv, H.; Qian, W.Z.; Cai, C.; Wu, J.W. Germline FOXJ2 overexpression causes male infertility via aberrant autophagy activation by LAMP2A upregulation. Cell Death Dis. 2022, 13, 665. [Google Scholar] [CrossRef]
- Brower, J.V.; Rodic, N.; Seki, T.; Jorgensen, M.; Fliess, N.; Yachnis, A.T.; McCarrey, J.R.; Oh, S.P.; Terada, N. Evolutionarily conserved mammalian adenine nucleotide translocase 4 is essential for spermatogenesis. J. Biol. Chem. 2007, 282, 29658–29666. [Google Scholar] [CrossRef]
- Yang, F.; Yang, X.; Zhu, H.; Wang, X.; Liao, X.; Fu, Y.; Fu, T.; Chen, X.; Sysa, A.; Lyu, J.; et al. The essential role of adenine nucleotide translocase 4 on male reproductive function in mice. Braz. J. Med. Biol. Res. 2024, 57, e13590. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Y.; Zhang, S.; Yap, Y.T.; Li, W.; Zhang, D.; Gardner, A.; Zhang, L.; Song, S.; Hess, R.A.; et al. Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice. Autophagy 2021, 17, 1753–1767. [Google Scholar] [CrossRef]
- Ke, L.; Lin, X.; Luo, Y.; Tao, S.; Yan, C.; He, Y.; Wu, Y.; Liu, N.; Qin, Y. Autophagy core protein BECN1 is vital for spermatogenesis and male fertility in mice†. Biol. Reprod. 2024, 110, 599–614. [Google Scholar] [CrossRef]
- Wang, F.; Trosdal, E.S.; Paddar, M.A.; Duque, T.L.A.; Allers, L.; Mudd, M.; Akepati, P.R.; Javed, R.; Jia, J.; Salemi, M.; et al. The role of ATG5 beyond Atg8ylation and autophagy. Autophagy 2024, 20, 448–450. [Google Scholar] [CrossRef]
- Wen, Z.; Zhu, H.; Wu, B.; Zhang, A.; Wang, H.; Cheng, Y.; Zhao, H.; Li, J.; Liu, M.; Gao, J. Cathepsin B plays a role in spermatogenesis and sperm maturation through regulating autophagy and apoptosis in mice. PeerJ 2022, 10, e14472. [Google Scholar] [CrossRef]
- Araujo, T.F.; Cordeiro, A.V.; Vasconcelos, D.A.A.; Vitzel, K.F.; Silva, V.R.R. The role of cathepsin B in autophagy during obesity: A systematic review. Life Sci. 2018, 209, 274–281. [Google Scholar] [CrossRef]
- Deng, C.Y.; Lv, M.; Luo, B.H.; Zhao, S.Z.; Mo, Z.C.; Xie, Y.J. The Role of the PI3K/AKT/mTOR Signalling Pathway in Male Reproduction. Curr. Mol. Med. 2021, 21, 539–548. [Google Scholar] [PubMed]
- Zhou, Y.; Yan, J.; Qiao, L.; Zeng, J.; Cao, F.; Sheng, X.; Qi, X.; Long, C.; Liu, B.; Wang, X.; et al. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Ameliorate Aging-Induced BTB Impairment in Porcine Testes by Activating Autophagy and Inhibiting ROS/NLRP3 Inflammasomes via the AMPK/mTOR Signaling Pathway. Antioxidants 2024, 13, 183. [Google Scholar] [CrossRef] [PubMed]
- Menon, M.B.; Dhamija, S. Beclin 1 Phosphorylation—at the Center of Autophagy Regulation. Front. Cell Dev. Biol. 2018, 6, 137. [Google Scholar] [CrossRef]
- Dong, F.; Ma, Y.; Chen, X.F. Identification of a novel pyroptosis-related gene signature in human spermatogenic dysfunction. J. Assist. Reprod. Genet. 2023, 40, 2251–2266. [Google Scholar] [CrossRef]
- Jia, Z.C.; Liu, S.J.; Chen, T.F.; Shi, Z.Z.; Li, X.L.; Gao, Z.W.; Zhang, Q.; Zhong, C.F. Chlorogenic acid can improve spermatogenic dysfunction in rats with varicocele by regulating mitochondrial homeostasis and inhibiting the activation of NLRP3 inflammasomes by oxidative mitochondrial DNA and cGAS/STING pathway. Bioorg. Chem. 2024, 150, 107571. [Google Scholar] [CrossRef]
- Camargo, M.; Ibrahim, E.; Intasqui, P.; Belardin, L.B.; Antoniassi, M.P.; Lynne, C.M.; Brackett, N.L.; Bertolla, R.P. Seminal inflammasome activity in the adult varicocele. Hum. Fertil. 2022, 25, 548–556. [Google Scholar] [CrossRef]
- Elmorsy, E.H.; Aly, R.G.; Badae, N.M.; Aboghazala, M.M.; Omar, S.S. Zinc alleviates high fat diet-induced spermatogenic dysfunction in Wistar rats: Role of oxidative stress, HMGB1 and inflammasome. Rev. Int. Androl. 2024, 22, 44–52. [Google Scholar]
- Zhong, Y.; Deng, H.; Zhao, J.; Luo, G.; Li, H. Effects of acetate-producing Blautia wexlerae on oxidative stress and NLRP3 inflammasome in obesity-associated male infertility. Med. Microbiol. Immunol. 2024, 213, 11. [Google Scholar] [CrossRef]
- Cheng, A.; Luo, H.; Fan, B.; Xiang, Q.; Nie, Z.; Feng, S.; Qiao, Y.; Wu, Y.; Zhu, Q.; Liu, R.; et al. Fluoride induces pyroptosis via IL-17A-mediated caspase-1/11-dependent pathways and Bifidobacterium intervention in testis. Sci. Total Environ. 2024, 926, 172036. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Y.; Du, J.; Ye, R.; Fan, B.; Deng, Y.; Bai, R.; Feng, Y.; Yang, X.; Huang, Y.; et al. 1,2-Dichloroethane induces testicular pyroptosis by activating piR-mmu-1019957/IRF7 pathway and the protective effects of melatonin. Environ. Int. 2024, 184, 108480. [Google Scholar] [CrossRef]
- Liu, H.; Du, X.; Zhang, Z.; Ge, K.; Chen, X.; Losiewicz, M.D.; Guo, H.; Zhang, H. Co-exposure of microcystin and nitrite enhanced spermatogenic disorders: The role of mtROS-mediated pyroptosis and apoptosis. Environ. Int. 2024, 188, 108771. [Google Scholar] [CrossRef]
- Skóra, B.; Piechowiak, T.; Szychowski, K.A. Engagement of specific intracellular pathways in the inflammation-based reprotoxicity effect of small-size silver nanoparticles on spermatogonia and spermatocytes invitro cell models. Chemosphere 2024, 363, 142897. [Google Scholar] [CrossRef]
- Zheng, X.; Guo, C.; Lv, Z.; Jiang, H.; Li, S.; Yu, L.; Zhang, Z. From animal to cell model: Pyroptosis targeted-fibrosis is a novel mechanism of lead-induced testicular toxicity. Food Chem. Toxicol. 2023, 178, 113886. [Google Scholar] [CrossRef]
- Ouyang, K.W.; Wang, T.T.; Wang, H.; Luo, Y.X.; Hu, Y.F.; Zheng, X.M.; Ling, Q.; Wang, K.W.; Xiong, Y.W.; Zhang, J.; et al. m6A-methylated Lonp1 drives mitochondrial proteostasis stress to induce testicular pyroptosis upon environmental cadmium exposure. Sci. Total Environ. 2024, 931, 172938. [Google Scholar] [CrossRef]
- Taha, M.; Ali, L.S.; El-Nablaway, M.; Ibrahim, M.M.; Badawy, A.M.; Farage, A.E.; Ibrahim, H.S.A.; Zaghloul, R.A.; Hussin, E. Multifaceted Impacts of Monosodium Glutamate on Testicular Health: Insights into Pyroptosis and Therapeutic Potential of Resveratrol. Folia Morphol. 2024, 84, 151–166. [Google Scholar] [CrossRef]
- Rao, Z.; Zhu, Y.; Yang, P.; Chen, Z.; Xia, Y.; Qiao, C.; Liu, W.; Deng, H.; Li, J.; Ning, P.; et al. Pyroptosis in inflammatory diseases and cancer. Theranostics 2022, 12, 4310–4329. [Google Scholar] [CrossRef]
- Coll, R.C.; Schroder, K.; Pelegrín, P. NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol. Sci. 2022, 43, 653–668. [Google Scholar] [CrossRef]
- Miao, R.; Jiang, C.; Chang, W.Y.; Zhang, H.; An, J.; Ho, F.; Chen, P.; Zhang, H.; Junqueira, C.; Amgalan, D.; et al. Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis. Immunity 2023, 56, 2523–2541.e8. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Ma, Q.; Zhu, Y.; Zhao, W.; Yang, Y.; Xiao, W.; Huang, D.; Cai, F.; Chan, D.Y.L.; et al. Testis cell pyroptosis mediated by CASP1 and CASP4: Possible sertoli cell-only syndrome pathogenesis. Reprod. Biol. Endocrinol. 2023, 21, 53. [Google Scholar] [CrossRef]
- Ning, J.; Wang, J.; Xu, L.; Li, H. MiR-153 is Involved in Testicular Ischemia/Reperfusion Injury by Directly Targeting FOXO3 and Regulating Spermatogonia Pyroptosis. Mol. Biotechnol. 2024, 67, 1707–1719. [Google Scholar] [CrossRef]
- He, K.X.; Xu, L.; Ning, J.Z.; Cheng, F. MiR-195-5p is involved in testicular ischemia/reperfusion injury by directly targeting PELP1 and regulating spermatogonia pyroptosis. Int. Immunopharmacol. 2023, 121, 110427. [Google Scholar] [CrossRef]
- Ma, C.; Huang, J.; Jiang, Y.; Liu, L.; Wang, N.; Huang, S.; Li, H.; Zhang, X.; Wen, S.; Wang, B.; et al. Gasdermin D in macrophages drives orchitis by regulating inflammation and antigen presentation processes. EMBO Mol. Med. 2024, 16, 361–385. [Google Scholar] [CrossRef]
- Sheng, W.; Xu, W.; Ding, J.; Lu, B.; Liu, L.; He, Q.; Zhou, Q. Guijiajiao (Colla Carapacis et Plastri, CCP) prevents male infertility via gut microbiota modulation. Chin. J. Nat. Med. 2023, 21, 403–410. [Google Scholar] [CrossRef]
- Bazrafkan, M.; Hosseini, E.; Nazari, M.; Amorim, C.A.; Sadeghi, M.R. NLRP3 inflammasome: A joint, potential therapeutic target in management of COVID-19 and fertility problems. J. Reprod. Immunol. 2021, 148, 103427. [Google Scholar] [CrossRef]
- Al-Madhagi, H.; Muhammed, M.T. Targeting COVID-19 and varicocele by blocking inflammasome: Ligand-based virtual screening. Arch. Biochem. Biophys. 2024, 759, 110107. [Google Scholar]
- Hasani, A.; Khosravi, A.; Behnam, P.; Ramezani, F.; Eslami Farsani, B.; Aliaghaei, A.; Pirani, M.; Akaberi-Nasrabadi, S.; Abdi, S.; Abdollahifar, M.A. Non-apoptotic cell death such as pyroptosis, autophagy, necroptosis and ferroptosis acts as partners to induce testicular cell death after scrotal hyperthermia in mice. Andrologia 2022, 54, e14320. [Google Scholar] [CrossRef]
- Li, M.Y.; Zhu, X.L.; Zhao, B.X.; Shi, L.; Wang, W.; Hu, W.; Qin, S.L.; Chen, B.H.; Zhou, P.H.; Qiu, B.; et al. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death Dis. 2019, 10, 489. [Google Scholar]
- Zheng, P.; Zhou, C.; Ding, Y.; Duan, S. Disulfidptosis: A new target for metabolic cancer therapy. J. Exp. Clin. Cancer Res. 2023, 42, 103. [Google Scholar] [CrossRef]
- Liu, X.; Nie, L.; Zhang, Y.; Yan, Y.; Wang, C.; Colic, M.; Olszewski, K.; Horbath, A.; Chen, X.; Lei, G.; et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol. 2023, 25, 404–414. [Google Scholar] [CrossRef]
- Zhuge, R.; Zhang, L.; Xue, Q.; Wang, R.; Xu, J.; Wang, C.; Meng, C.; Lu, R.; Yin, F.; Guo, L. Ferritinophagy is involved in hexavalent chromium-induced ferroptosis in Sertoli cells. Toxicol. Appl. Pharmacol. 2024, 492, 117139. [Google Scholar] [CrossRef]
- Yang, H.; Ding, L.; Xu, B.; Zhang, Z.; Dai, W.; He, T.; Liu, L.; Du, X.; Fu, X. Lycium barbarum polysaccharide alleviates ferroptosis in Sertoli cells through NRF2/SLC7A11/GPX4 pathway and ameliorates DEHP-induced male reproductive damage in mice. Int. J. Biol. Macromol. 2024, 282 Pt 5, 137241. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Jin, Z.; Xi, Y.; Cheng, J.; Fang, Z.; Zhao, Q.; Weng, J.; Zhu, J.; Tang, Y.; Zhang, Z.; et al. Roles of ferroptosis in type 1 diabetes induced spermatogenic dysfunction. Free Radic. Biol. Med. 2024, 214, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Elseweidy, M.M.; Harb, N.G.; Ali, A.A.; El-Aziz, R.M.A.; Elrashidy, R.A. Sulforaphane substantially impedes testicular ferroptosis in adult rats exposed to di-2-ethylhexyl phthalate through activation of NRF-2/SLC7A11/GPX-4 trajectory. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 398, 3163–3175. [Google Scholar] [CrossRef]
- Shi, Y.; Yin, L.; Li, J.Y.; Zhou, S.M.; Wang, N.; Chen, H.Q.; Zeng, Y.; Li, Y.W.; Liu, W.B. FTO mediates bisphenol F-induced blood-testis barrier impairment through regulating ferroptosis via YTHDF1/TfRc and YTHDF2/SLC7A11 signal axis. Environ. Pollut. 2024, 359, 124531. [Google Scholar] [CrossRef]
- Fan, Z.; Xin, P.; Zhao, L.; Kong, C.; Piao, C.; Wu, Z.; Qiu, Z.; Zhao, W.; Zhang, Z. Ferroptosis Is Crucial for Cisplatin Induced Sertoli Cell Injury via N6-Methyladenosine Dependent Manner. World J. Mens Health 2024, 42, 865–880. [Google Scholar] [CrossRef]
Environmental Pollutant | Experimental Animal (Male) | Experimental Cell Type | Impact on Male Fertility | Cell Death-Related Phenomena | Form of Cell Death | Ref |
---|---|---|---|---|---|---|
Cadmium (Cd) | Institute of Cancer Research (ICR) mice | GC-1 spermatogonial cell line (GC-1) | Cd exposure during puberty damaged testicular development and spermatogenesis in mice in adulthood. | Cd caused iron overload, triggered ferroptosis in spermatogonia, and disturbed iron metabolism in spermatogonia. | Ferroptosis | [29] |
C57BL/6 mice aged 6 weeks | / | Disruption of seminiferous tubules, extensive degenerative vacuolization, and intercellular gaps between germ cells. | Elevated levels of LC3, p62, Atg7, Beclin-1, Atg5, and lysosomal membrane protein Lamp2. | Autophagy | [104] | |
Sprague-Dawley (SD) rats aged 10 weeks | TM4 Sertoli cell line (TM4) | BTB disruption with irregular and open Sertoli cell junctions. | Accumulation of autophagic vacuoles and increased LC3-II levels. | Autophagy | [105] | |
CD-1 mice | GC-1 | Enhanced testicular hyperemia and vacuolation. | Elevated levels of N-GSDMD, cleaved caspase-1, and mature IL-1β | Pyroptosis | [145] | |
Copper (Cu) | ICR mice aged 8 weeks | GC-1 | Reduction of spermatogonia and spermatocytes with vacuolar degeneration and necrosis of spermatogenic cells. | Upregulation of Beclin-1, Atg5-Atg12, Atg7, Atg3, and Atg16L, and an increase in the LC3-II/LC3-I ratio. | Autophagy | [106] |
Plasticizer di (2-ethylhexyl) phthalate (DEHP) | ICR mice | TM4 | Testicular atrophy decreased the organ coefficient of mouse testes and disrupted the BTB in Sertoli cells. | DEHP induces ferroptosis in Sertoli cells, and its metabolite MEHP induces functional injury, disrupts glutathione metabolism disorder in TM4 cells, and accelerates ROS generation and lipid peroxidation. | Ferroptosis | [23] |
Acrolein (ACR) | / | TM4 | / | Increased Fe2+ levels, lipid peroxidation in Sertoli cells. | Ferroptosis | [33] |
2,2′,4,4′-Tetrabromodiphenyl ether (PBDE-47) | SD rats | TM4 | Reduced sperm count, increased the percentage of abnormal sperm, disrupted BTB integrity, and impaired testicular development. | Upregulation of Fe2+ and MDA levels, and downregulation of GSH levels and Gpx4 and Slc7a11 protein levels in Sertoli cells and testes. | Ferroptosis | [27] |
Cu sulfate (CuSO4) | ICR mice | / | Dose-dependent testicular pathological disturbances, with reduced Sertoli cell and spermatogenic cell numbers. | Elevated blood levels of Cu, Fdx1, and Slc7a11. | Cuproptosis | [73] |
Cu oxide nanoparticles (CuONP) | BALB/c mice | / | Testis development disorder and damaged sperm function and capacitation. | Increased ROS and MDA levels, decreased GSH content. | Cuproptosis | [78] |
Di-(2-ethylhexyl) phthalate (DEHP) | SD rats | GC-1 and GC-2 spermatocyte cell line (GC-2) | The testicular organ coefficient is low, the seminiferous epithelium is disordered, the number of germ cells is reduced, and the supporting cells are deformed. | Upregulated PINK1 and PARKIN levels, and LC3 and COX IV co-localization. | Autophagy | [108] |
Zinc oxide nanoparticles (ZnO NPs) | / | GC-1 | Decreased vitality of GC-1 spg cells in mice. | The protein content of LC3-II, the ratio of LC3-II/LC3-I, and the protein levels of ATG5 and Beclin-1 increased. | Autophagy | [107] |
Tributyltin chloride (TBTCL) | / | Mouse Leydig cell line | Reduced cell vitality. | Decreased LC3-II and Beclin-1 levels, increased autophagic substrate p62 level. | Autophagy | [109] |
Perfluorooctanoic acid (PFOA) | BABL/c mice aged 8 weeks | TM4 | Disruption of BTB integrity, reduction in sperm motility and count, seminiferous tubule damage, and significant decrease in seminiferous epithelium height. | Upregulation of autophagy-related proteins LC3B and p62 in testicular Sertoli cells, and elevated levels of LC3-II/I, Beclin-1, and p62 in TM4 cells. | Autophagy | [110] |
Zearalenone (ZEA) | / | Dairy goat Sertoli cells | Induction of oxidative stress and impairment of spermatogenesis. | Increased the LC3-II/I ratio and decreased the level of p62 protein. | Autophagy | [102] |
Aflatoxin B1 (AFB1) | Kunming mice | / | Atrophy of seminiferous tubules, vacuolar changes in seminiferous epithelium, reduction in testicular interstitial cell and sperm count, significant increase in sperm deformity rate, significant decrease in sperm motility, and decrease in serum testosterone levels. | Increased expression of LC3, Beclin-1, Atg5, Atg12, Atg13, and p62. | Autophagy | [103] |
Cigarette/cigarette smoke condensate (CSC) | Semen samples | GC-2 | Higher abnormalities of sperm viability and sperm progressive motility. | Heavy smokers: Decreased GSH levels, increased lipid ROS and iron levels. CSC treatment effects: Decreased GSH level and GPX4 protein level, increased lipid ROS and iron levels in GC-2spd cells. | Ferroptosis | [21] |
Monosodium glutamate | Wistar rats | / | Testicular degeneration, decreased testosterone, FSH, and LH levels, and abnormal sperm morphology. | Elevated the levels of GSK-3β, NLRP3, caspase-1, and IL-1 β. | Pyroptosis | [146] |
Ethanol | Adult Wistar rats | / | Inhibition of androgen receptor in testicular somatic cells. | Elevated expression of LC3, accumulation of PINK1 and large lipid droplets. | Autophagy | [111] |
PM2.5 | SD rats | / | Decreased the number of sperm in the testes, induced mitochondrial damage in testicular cells during sexual maturity in juvenile male rats, and disrupted iron metabolism. | Decreased Gpx4 expression, reduced Slc7a11 expression. | Ferroptosis | [25] |
/ | TM-3 cells, mouse Leydig cell line | Dose-dependent decrease in TM-3 cell viability. | Significant lipid peroxidation, elevated MDA levels, and increased ferrous content. | Ferroptosis | [22] | |
Fluoride (NaF) microplastics (MPs) | BALB/c mice | TM4 | Testicular injury, decreased Sertoli cell number, and functional impairment in mice. | Gpx4 and downregulation in PS-MP and NaF + PS-MP groups.NaF and PS-MP co-exposure induces ferroptosis in Sertoli cells. | Ferroptosis | [28] |
Microcystin and nitrite | Balb/c mice | GC-1 and TM4 | Decreased gonadal index and testosterone levels, reduced sperm density and survival rate, lowered number of spermatogonia. | Increased caspase-1, N-GSDMD, and NLRP3 levels. | Pyroptosis | [142] |
Silver nanoparticles (AgNPs) | / | GC-1 and GC-2 | / | Increased NF–κB and NLRP3 protein levels. | Pyroptosis | [143] |
Fluoride | C57BL/6J mice aged 6 weeks | / | Decreased sperm number and vitality, increased sperm abnormalities, reduced spermatogenic cell count, loosened testicular structure, and widened seminiferous tubule spacing. | Upregulation of IL-18, IL-1β, LDH, NLRP3, AIM2, PYRIN, NLRP1, ASC, GSDMD, IL-1β, IL-18, Caspase-11, and Caspase-3. | Pyroptosis | [140] |
1,2-Dichloroethane | Mice | GC-2 | Testicular apoptosis, sperm malformation, and decreased sperm concentration. | Elevated levels of NLRP3, GSDMD, N-GSDMD, Caspase-1, IL-1β, ASC, and IL-18, and formation of membrane pores in GC-2 spd cells. | Pyroptosis | [141] |
Experimental Animal | Experimental Cell Type | Form of Cell Death | Phenomena | Possible Mechanism | Refs |
---|---|---|---|---|---|
/ | Fdx1 knockdown model in TM-3 cells | Ferroptosis | The reduction in cell viability was alleviated, lipid peroxidation and cellular iron significantly declined after FDX1 knockdown. | Upregulation of Fdx1 can promote ROS accumulation and ferrous overload in Leydig cells, induce lipid peroxidation, and lead to ferroptosis. After knocking down Fdx1, lipid peroxidation and cellular iron were significantly reduced, improving PM2.5-induced lipid peroxidation and ferrous accumulation. | [22] |
Nrf2−/− male mice | / | Ferroptosis | Decrease in fertility, decreases in sperm concentration and motility, inhibition of ferroptosis attenuated spermatogenic cell damage in the testes and epididymis, and increases in sperm concentration and motility. | Gpx4 and Slc7a11 significantly decreased. | [59] |
S8/Gss−/− male mice | / | Ferroptosis | There was a decline in Gpx4 and an increase in Alox15 levels observed in 8-month-old S8/Gss−/− mice, resulting in the accumulation of ROS, lipid peroxidation, and ultimately testicular ferroptosis. | Gss deficiency caused ferroptosis in the testes of mice, testicular ferroptosis may cause meiosis disruption and acrosome heterotopia. The resulting aberrant sperm showed lower concentrations and abnormal morphology, leading to reduced fertility. | [54] |
Atg5flox/flox; Stra8-iCre | / | Autophagy | 70% of mice are infertile, with reduced sperm count and motility and impaired sperm morphology. | The absence of ATG5 significantly reduces the expression of testicular LC3A/B-II, increases the expression of autophagy receptor SQSTM1/p62, and reduces testicular autophagy activity. | [127] |
Becn1flox/Δ; Stra8-Cre | / | Autophagy | The fertility of mice decreased, with a significant decrease in sperm motility and count, as well as abnormalities in sperm morphology and structure. | The absence of Beclin-1 leads to the accumulation of p62, a decrease in Atg5, and inhibition of the autophagic process. | [128] |
Gsdmdfl/flCx3cr1-cre | / | Pyroptosis | Improved sperm quality and reduced the expression of pro-inflammatory cytokines IL-1 β and TNF-α. | Specific knockout of GSDMD in macrophages can reduce the expression of pro-inflammatory cytokines IL-1 β and TNF-α and improve testicular injury induced by orchitis. | [153] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, D.; Li, J.; Peng, Z.; Fu, R.; Chen, C.; Liu, F.; Li, Y.; Su, Y.; Li, C.; Chen, W. Interplay of Ferroptosis, Cuproptosis, Autophagy and Pyroptosis in Male Infertility: Molecular Crossroads and Therapeutic Opportunities. Int. J. Mol. Sci. 2025, 26, 3496. https://doi.org/10.3390/ijms26083496
Cai D, Li J, Peng Z, Fu R, Chen C, Liu F, Li Y, Su Y, Li C, Chen W. Interplay of Ferroptosis, Cuproptosis, Autophagy and Pyroptosis in Male Infertility: Molecular Crossroads and Therapeutic Opportunities. International Journal of Molecular Sciences. 2025; 26(8):3496. https://doi.org/10.3390/ijms26083496
Chicago/Turabian StyleCai, Difan, Junda Li, Zekang Peng, Rong Fu, Chuyang Chen, Feihong Liu, Yiwang Li, Yanjing Su, Chunyun Li, and Wei Chen. 2025. "Interplay of Ferroptosis, Cuproptosis, Autophagy and Pyroptosis in Male Infertility: Molecular Crossroads and Therapeutic Opportunities" International Journal of Molecular Sciences 26, no. 8: 3496. https://doi.org/10.3390/ijms26083496
APA StyleCai, D., Li, J., Peng, Z., Fu, R., Chen, C., Liu, F., Li, Y., Su, Y., Li, C., & Chen, W. (2025). Interplay of Ferroptosis, Cuproptosis, Autophagy and Pyroptosis in Male Infertility: Molecular Crossroads and Therapeutic Opportunities. International Journal of Molecular Sciences, 26(8), 3496. https://doi.org/10.3390/ijms26083496