Gulf War Illness Induced Sex-Specific Transcriptional Differences Under Stressful Conditions
Abstract
1. Introduction
2. Results
2.1. Participant Characteristics
2.2. Transcriptomic Changes Between Maximum Exertion (T1) and Baseline Before Exercise Challenge (T0) Stratified by Sex
2.3. Transcriptomic Changes Between T2 (4 h After Maximal Exertion) and T1 (Maximal Exertion)
2.4. Nanostring Validation
3. Discussion
3.1. Transcriptomic Changes Between Maximal Exertion (T1) and Baseline Before Exercise (T0) in GWI Patients and HCs
3.1.1. Regulation of Leukocyte Chemotaxis
3.1.2. Oxidative Stress
3.1.3. Response to a Toxic Substance
3.1.4. Immune Dysfunction
3.1.5. Leukocyte Activation and Lymphoid/Non-Lymphoid
3.1.6. IL-12
3.1.7. Pro-Inflammatory and Profibrotic Mediators
3.1.8. Overall Transcriptomic Changes Between Maximal Exertion (T1) and Baseline (T0)
3.2. Transcriptomic Changes Between Four Hours After Maximal Exertion (T2) and Maximal Exertion (T1) in GWI Patients and HCs
3.2.1. HCMV Events
3.2.2. Oxidative Stress-Induced Senescence
3.2.3. Leukocyte Differentiation
3.2.4. Regulation of Extrinsic Apoptotic Signaling
3.2.5. Negative Regulation of Type II Interferon
3.2.6. Overall Transcriptomic Changes Between Four Hours After Maximal Exertion (T2) and Maximal Exertion (T1)
4. Materials and Methods
4.1. Cohort
4.2. PBMC Isolation and RNA Extraction
4.3. RNA-Seq
4.4. RNA-Seq Analysis
4.5. Validation of RNA-Seq Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATP | Adenosine triphosphate |
BMI | Body mass index |
CDC | Centers for Disease Control and Prevention |
CGT | Center of Genome Technology |
CDMRP | Congressionally Directed Medical Research Programs |
DEG | Differentially expressed genes |
FC | Fold change |
FDR | False Discovery Rate |
GEO | Gene Expression Omnibus |
GO | Gene Ontology |
GRECC | Geriatric Research Education and Clinical Center |
GSE | Gene Series Expression |
GWI | Gulf War Illness |
GXT | Graded exercise test |
HC | Healthy control |
HCMV | Human cytomegalovirus |
HHV-5 | Human herpes virus 5 |
HISAT2 | Hierarchical Indexing for Spliced Alignment of Transcripts 2 |
IFN-y | Interferon Gamma |
IL-10 | Interleukin-10 |
IL-12 | Interleukin-12 |
ILC | Innate Lymphoid Cell |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MDA | Malondialdehyde |
References
- White, R.F.; Steele, L.; O’Callaghan, J.P.; Sullivan, K.; Binns, J.H.; Golomb, B.A.; Bloom, F.E.; Bunker, J.A.; Crawford, F.; Graves, J.C.; et al. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex 2016, 74, 449–475. [Google Scholar] [CrossRef] [PubMed]
- Steele, L. Prevalence and patterns of Gulf War illness in Kansas veterans: Association of symptoms with characteristics of person, place, and time of military service. Am. J. Epidemiol. 2000, 152, 992–1002. [Google Scholar] [CrossRef]
- Kerr, K.J. Gulf War illness: An overview of events, most prevalent health outcomes, exposures, and clues as to pathogenesis. Rev. Environ. Health 2015, 30, 273–286. [Google Scholar] [CrossRef]
- Ramirez-Sanchez, I.; Navarrete-Yañez, V.; Garate-Carrillo, A.; Loredo, M.; Lira-Romero, E.; Estrada-Mena, J.; Campeau, A.; Gonzalez, D.; Carrillo-Terrazas, M.; Moreno-Ulloa, A.; et al. Development of muscle atrophy and loss of function in a Gulf-War illness model: Underlying mechanisms. Sci. Rep. 2020, 10, 14526. [Google Scholar] [CrossRef]
- Haley, R.W.; Vongpatanasin, W.; Wolfe, G.I.; Bryan, W.W.; Armitage, R.; Hoffmann, R.F.; Petty, F.; Callahan, T.S.; Charuvastra, E.; Shell, W.E.; et al. Blunted circadian variation in autonomic regulation of sinus node function in veterans with Gulf War syndrome. Am. J. Med. 2004, 117, 469–478. [Google Scholar] [CrossRef]
- Whistler, T.; Fletcher, M.A.; Lonergan, W.; Zeng, X.R.; Lin, J.M.; Laperriere, A.; Vernon, S.D.; Klimas, N.G. Impaired immune function in Gulf War Illness. BMC Med. Genom. 2009, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, M.S.; Abreu, M.M.; Sarria, L.; Rose, N.; Ahmed, N.; Beljanski, V.; Fletcher, M.A.; Klimas, N.G.; Nathanson, L. Alterations in DNA Methylation Status Associated with Gulf War Illness. DNA Cell Biol. 2019, 38, 561–571. [Google Scholar] [CrossRef]
- Ashbrook, D.G.; Hing, B.; Michalovicz, L.T.; Kelly, K.A.; Miller, J.V.; de Vega, W.C.; Miller, D.B.; Broderick, G.; O’Callaghan, J.P.; McGowan, P.O. Epigenetic impacts of stress priming of the neuroinflammatory response to sarin surrogate in mice: A model of Gulf War illness. J. Neuroinflamm. 2018, 15, 86. [Google Scholar] [CrossRef] [PubMed]
- Mozhui, K.; O’Callaghan, J.P.; Ashbrook, D.G.; Prins, P.; Zhao, W.; Lu, L.; Jones, B.C. Epigenetic analysis in a murine genetic model of Gulf War illness. Front. Toxicol. 2023, 5, 1162749. [Google Scholar] [CrossRef]
- Haley, R.W.; Kramer, G.; Xiao, J.; Dever, J.A.; Teiber, J.F. Evaluation of a Gene-Environment Interaction of PON1 and Low-Level Nerve Agent Exposure with Gulf War Illness: A Prevalence Case-Control Study Drawn from the U.S. Military Health Survey’s National Population Sample. Environ. Health Perspect. 2022, 130, 57001. [Google Scholar] [CrossRef]
- Golomb, B.A.; Sanchez Baez, R.; Schilling, J.M.; Dhanani, M.; Fannon, M.J.; Berg, B.K.; Miller, B.J.; Taub, P.R.; Patel, H.H. Mitochondrial impairment but not peripheral inflammation predicts greater Gulf War illness severity. Sci. Rep. 2023, 13, 10739. [Google Scholar] [CrossRef] [PubMed]
- Steele, L.; Sastre AFau-Gerkovich, M.M.; Gerkovich, M.M.; Cook, M.R. Complex factors in the etiology of Gulf War illness: Wartime exposures and risk factors in veteran subgroups. Environ. Health Perspect. 2012, 120, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Nugent, S.M.; Freeman, M.; Ayers, C.K.; Winchell, K.A.; Press, A.M.; O’Neil, M.E.; Paynter, R.; Kansagara, D. A Systematic Review of Therapeutic Interventions and Management Strategies for Gulf War Illness. Mil. Med. 2021, 186, e169–e178. [Google Scholar] [CrossRef]
- Dickey, B.; Madhu, L.N.; Shetty, A.K. Gulf War Illness: Mechanisms Underlying Brain Dysfunction and Promising Therapeutic Strategies. Pharmacol. Ther. 2021, 220, 107716. [Google Scholar] [CrossRef]
- Chester, J.E.; Rowneki, M.; Van Doren, W.; Helmer, D.A. Progression of intervention-focused research for Gulf War illness. Mil. Med Res. 2019, 6, 31. [Google Scholar] [CrossRef]
- Van Booven, D.; Zarnowski, O.; Perez, M.; Sarria, L.; Collado, F.; Hansotia, K.; Riegle, S.; Finger, T.; Fletcher, M.A.; Klimas, N.G.; et al. The effect of stress on the transcriptomes of circulating immune cells in patients with Gulf War Illness. Life Sci. 2021, 281, 119719. [Google Scholar] [CrossRef]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Shetty, G.A.; Hattiangady, B.; Upadhya, D.; Bates, A.; Attaluri, S.; Shuai, B.; Kodali, M.; Shetty, A.K. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness. Front. Mol. Neurosci. 2017, 10, 182. [Google Scholar] [CrossRef]
- Cohen, J.; Mathew, A.; Dourvetakis, K.D.; Sanchez-Guerrero, E.; Pangeni, R.P.; Gurusamy, N.; Aenlle, K.K.; Ravindran, G.; Twahir, A.; Isler, D.; et al. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells 2024, 13, 511. [Google Scholar] [CrossRef]
- Maksoud, R.; Magawa, C.; Eaton-Fitch, N.; Thapaliya, K.; Marshall-Gradisnik, S. Biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A systematic review. BMC Med. 2023, 21, 189. [Google Scholar] [CrossRef] [PubMed]
- Montoya, J.G.; Holmes, T.H.; Anderson, J.N.; Maecker, H.T.; Rosenberg-Hasson, Y.; Valencia, I.J.; Chu, L.; Younger, J.W.; Tato, C.M.; Davis, M.M. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc. Natl. Acad. Sci. USA 2017, 114, E7150–E7158. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yang, Y.; Wang, D.; Li, C.; Qu, Y.; Guo, J.; Shi, T.; Bo, W.; Sun, Z.; Asakawa, T. The clinical value of cytokines in chronic fatigue syndrome. J. Transl. Med. 2019, 17, 213. [Google Scholar] [CrossRef]
- Wood, E.; Hall, K.H.; Tate, W. Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: A possible approach to SARS-CoV-2 ‘long-haulers’? Chronic Dis. Transl. Med. 2021, 7, 14–26. [Google Scholar] [CrossRef]
- Elhaj, R.; Reynolds, J.M. Chemical exposures and suspected impact on Gulf War Veterans. Mil. Med. Res. 2023, 10, 11. [Google Scholar] [CrossRef]
- Pearson, J.N.; Patel, M. The role of oxidative stress in organophosphate and nerve agent toxicity. Ann. N. Y. Acad. Sci. 2016, 1378, 17–24. [Google Scholar] [CrossRef]
- Coughlin, S.S. A Neuroimmune Model of Gulf War Illness. J. Environ. Health Sci. 2017, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Trageser, K.J.; Sebastian-Valverde, M.; Naughton, S.X.; Pasinetti, G.M. The Innate Immune System and Inflammatory Priming: Potential Mechanistic Factors in Mood Disorders and Gulf War Illness. Front. Psychiatry 2020, 11, 704. [Google Scholar] [CrossRef]
- Gabryšová, L.; Nicolson, K.S.; Streeter, H.B.; Verhagen, J.; Sabatos-Peyton, C.A.; Morgan, D.J.; Wraith, D.C. Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10-secreting Th1 cells. J. Exp. Med. 2009, 206, 1755–1767. [Google Scholar] [CrossRef]
- Sun, L.; He, C.; Nair, L.; Yeung, J.; Egwuagu, C.E. Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine 2015, 75, 249–255. [Google Scholar] [CrossRef]
- Liu, J.; Cao, S.; Kim, S.; Chung, E.Y.; Homma, Y.; Guan, X.; Jimenez, V.; Ma, X. Interleukin-12: An update on its immunological activities, signaling and regulation of gene expression. Curr. Immunol. Rev. 2005, 1, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Zwirner, N.W.; Ziblat, A. Regulation of NK Cell Activation and Effector Functions by the IL-12 Family of Cytokines: The Case of IL-27. Front. Immunol. 2017, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.K.; Cho, J.H.; Lee, S.W.; Sung, Y.C. IL-12 provides proliferation and survival signals to murine CD4+ T cells through phosphatidylinositol 3-kinase/Akt signaling pathway. J. Immunol. 2002, 169, 3637–3643. [Google Scholar] [CrossRef] [PubMed]
- Gamer, J.; Van Booven, D.J.; Zarnowski, O.; Arango, S.; Elias, M.; Kurian, A.; Joseph, A.; Perez, M.; Collado, F.; Klimas, N.; et al. Sex-Dependent Transcriptional Changes in Response to Stress in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Pilot Project. Int. J. Mol. Sci. 2023, 24, 10255. [Google Scholar] [CrossRef]
- Racciatti, D.; Vecchiet, J.; Ceccomancini, A.; Ricci, F.; Pizzigallo, E. Chronic fatigue syndrome following a toxic exposure. Sci. Total Environ. 2001, 270, 27–31. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Y.; Tao, J. Sex-Related Overactivation of NLRP3 Inflammasome Increases Lethality of the Male COVID-19 Patients. Front. Mol. Biosci. 2021, 8, 671363. [Google Scholar] [CrossRef]
- Ohs, I.; van den Broek, M.; Nussbaum, K.; Münz, C.; Arnold, S.J.; Quezada, S.A.; Tugues, S.; Becher, B. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nat. Commun. 2016, 7, 13708. [Google Scholar] [CrossRef]
- Morris, G.; Anderson, G.; Maes, M. Hypothalamic-Pituitary-Adrenal Hypofunction in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS) as a Consequence of Activated Immune-Inflammatory and Oxidative and Nitrosative Pathways. Mol. Neurobiol. 2017, 54, 6806–6819. [Google Scholar] [CrossRef]
- Li, X.; Ye, Y.; Peng, K.; Zeng, Z.; Chen, L.; Zeng, Y. Histones: The critical players in innate immunity. Front. Immunol. 2022, 13, 1030610. [Google Scholar] [CrossRef]
- He, Y.; Liu, Y.; Zhang, M. The beneficial effects of curcumin on aging and age-related diseases: From oxidative stress to antioxidant mechanisms, brain health and apoptosis. Front. Aging Neurosci. 2025, 17, 1533963. [Google Scholar] [CrossRef]
- Nousis, L.; Kanavaros, P.; Barbouti, A. Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link? Antioxidants 2023, 12, 1250. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, A.; Sekhon, H.K.; Kaur, G. Sex hormones and immune dimorphism. Sci. World J. 2014, 2014, 159150. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Berk, M.; Galecki, P.; Maes, M. The Emerging Role of Autoimmunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/cfs). Mol. Neurobiol. 2014, 49, 741–756. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Kang, Y.; Wang, L.; Zhao, H.; Ji, X.; Huang, Y.; Yan, W.; Cui, R.; Zhang, G.; et al. Testosterone enhances mitochondrial complex V function in the substantia nigra of aged male rats. Aging 2020, 12, 10398–10414. [Google Scholar] [CrossRef] [PubMed]
- Craddock, T.J.; Fritsch, P.; Rice, M.A., Jr.; del Rosario, R.M.; Miller, D.B.; Fletcher, M.A.; Klimas, N.G.; Broderick, G. A role for homeostatic drive in the perpetuation of complex chronic illness: Gulf War Illness and chronic fatigue syndrome. PLoS ONE 2014, 9, e84839. [Google Scholar] [CrossRef]
- Broderick, G.; Kreitz, A.; Fuite, J.; Fletcher, M.A.; Vernon, S.D.; Klimas, N. A pilot study of immune network remodeling under challenge in Gulf War Illness. Brain Behav. Immun. 2011, 25, 302–313. [Google Scholar] [CrossRef]
- Maule, A.L.; Janulewicz, P.A.; Sullivan, K.A.; Krengel, M.H.; Yee, M.K.; McClean, M.; White, R.F. Meta-analysis of self-reported health symptoms in 1990–1991 Gulf War and Gulf War-era veterans. BMJ Open 2018, 8, e016086. [Google Scholar] [CrossRef]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Exercise Physiology: Nutrition, Energy, and Human Performance; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001. [Google Scholar]
- Wu, T.D.; Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 2010, 26, 873–881. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Dobin, A.; Gingeras, T.R. Mapping RNA-seq Reads with STAR. Curr. Protoc. Bioinform. 2015, 51, 11.14.1–11.14.9. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Parmigiani, G.; Johnson, W.E. ComBat-seq: Batch effect adjustment for RNA-seq count data. NAR Genom. Bioinform. 2020, 2, lqaa078. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Washington, S.D.; Rayhan, R.U.; Garner, R.; Provenzano, D.; Zajur, K.; Addiego, F.M.; VanMeter, J.W.; Baraniuk, J.N. Exercise alters cerebellar and cortical activity related to working memory in phenotypes of Gulf War Illness. Brain Commun. 2020, 2, fcz039. [Google Scholar] [CrossRef]
Category | GWI Females | Healthy Controls | p-Value | |
---|---|---|---|---|
Age | 53.2 ± 1.4 | 49.8 ± 1.4 | 0.09 | |
BMI | 29.0 ± 1.0 | 26.6 ± 1.2 | 0.16 | |
Physical Health | ||||
Physical Function | 49.0 ± 4.8 | 96.3 ± 1.5 | <0.00 * | |
Role–Physical | 20.0 ± 6.6 | 98.4 ± 1.5 | <0.00 * | |
Body Pain | 33.6 ± 4.0 | 90.7 ± 2.9 | <0.00 * | |
General Health | 37.7 ± 4.4 | 79.0 ± 4.6 | <0.00 * | |
Mental Health | ||||
Vitality | 32.8 ± 4.1 | 65.7 ± 6.3 | <0.00 * | |
Social Function | 24.9 ± 5.0 | 95.3 ± 2.2 | <0.00 * | |
Role–Emotional | 36 ± 8.5 | 95.8 ± 2.8 | <0.00 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frank, J.; Tehrani, L.; Gamer, J.; Van Booven, D.J.; Ballarin, S.; Rossman, R.; Edelstein, A.; Uppalati, S.; Reuthebuck, A.; Collado, F.; et al. Gulf War Illness Induced Sex-Specific Transcriptional Differences Under Stressful Conditions. Int. J. Mol. Sci. 2025, 26, 3610. https://doi.org/10.3390/ijms26083610
Frank J, Tehrani L, Gamer J, Van Booven DJ, Ballarin S, Rossman R, Edelstein A, Uppalati S, Reuthebuck A, Collado F, et al. Gulf War Illness Induced Sex-Specific Transcriptional Differences Under Stressful Conditions. International Journal of Molecular Sciences. 2025; 26(8):3610. https://doi.org/10.3390/ijms26083610
Chicago/Turabian StyleFrank, Joshua, Lily Tehrani, Jackson Gamer, Derek J. Van Booven, Sarah Ballarin, Raquel Rossman, Abraham Edelstein, Sadhika Uppalati, Ana Reuthebuck, Fanny Collado, and et al. 2025. "Gulf War Illness Induced Sex-Specific Transcriptional Differences Under Stressful Conditions" International Journal of Molecular Sciences 26, no. 8: 3610. https://doi.org/10.3390/ijms26083610
APA StyleFrank, J., Tehrani, L., Gamer, J., Van Booven, D. J., Ballarin, S., Rossman, R., Edelstein, A., Uppalati, S., Reuthebuck, A., Collado, F., Klimas, N. G., & Nathanson, L. (2025). Gulf War Illness Induced Sex-Specific Transcriptional Differences Under Stressful Conditions. International Journal of Molecular Sciences, 26(8), 3610. https://doi.org/10.3390/ijms26083610