A 3D Co-Culture Scaffold Approach to Assess Spatially Fractionated Radiotherapy Bystander and Abscopal Immune Effects on Clonogenic Survival
Abstract
:1. Introduction
2. Results
2.1. Dosimetry
2.2. Clonogenic Survival for All Cell Culture Groups
2.3. Local Effect of PBMCs Alone (C2 vs. C1)
2.4. Effect of Irradiated Conditioned Media (ICM) Alone (1A/1B vs. C1)
2.5. Test for Abscopal Effect (2A/2B vs. 1A/1B, Respectively)
2.6. Radiation Alone to Test for Bystander Effect (3A/3B vs. Expected Survival)
2.7. Effect of Repopulation (5A/5B vs. 3A/3B, Respectively)
2.8. Local Effect of Radiation + PBMCs vs. Radiation Alone (4A/4B vs. 5A/5B, Respectively)
3. Discussion
3.1. Observation of the Radiation-Induced Bystander Effect
3.2. Observation of an Immune System Response
3.3. Study Limitations
3.4. Future Studies
4. Materials and Methods
4.1. Experimental Workflow and Cell Culture Group Comparisons
- Local effect of PBMCs alone (C2 vs. C1): Non-irradiated 3D MDA-MB-231 cell scaffolds were co-cultured with PBMCs (1:1 ratio) for 5 days and compared with non-irradiated controls.
- Effect of irradiated conditioned media (ICM) alone (1A/1B vs. C1): Non-irradiated MDA-MB-231 cultures were incubated for 5 days in ICM derived from either 3- or 6-hole GRID irradiations. This group served as a control for the abscopal effect.
- Test for abscopal effect (2A/2B vs. 1A/1B, respectively): Non-irradiated MDA-MB-231 culture scaffolds (representing metastases) were co-cultured with PBMCs (1:1 ratio) for 5 days in ICM derived from the 3- or 6-hole GRID irradiation of MDA-MB-231 scaffolds. These were compared to MDA-MB-231 cells cultured in ICM without PBMCs.
- Radiation alone to test for bystander effect (3A/3B vs expected survival): MDA-MB-231 cells were irradiated, allowed to repair for 1 day, and compared to the expected total reproductive cell survival based on the total irradiated area. That is, we assumed no clonogenic cell survival in the irradiated regions and full clonogenic survival in the lead-shielded regions.
- Effect of repopulation (5A/5B vs. 3A/3B, respectively): Irradiated MDA-MB-231 cells were allowed to repopulate for 5 days following a 24 h period of post-irradiation repair and compared to the groups that allowed for post-irradiation repair only.
- Local effect of radiation + PBMCs vs. radiation alone (4A/4B vs. 5A/5B, respectively): MDA-MB-231 cells were irradiated, allowed to repair for 1 day, and then either co-cultured with PBMCs (1:1 ratio) or not for 5 days.
4.2. Construction of GRID Collimators
4.3. Irradiator Set-Up and Dose Delivery Time
4.4. GRID Film Dosimetry Verification
4.5. Culturing the MDA-MB-231 Cells
4.6. Culturing the MDA-MB-231 Cells in the 3D Scaffolds
4.7. Irradiating the 3D Scaffolds
4.8. Preparing the PBMCs for Co-Culture
4.9. Extracting MDA-MB-231 Cells from the Scaffold
4.10. Clonogenic Assay
4.11. Local Effect of PBMCs Alone on MDA-MB-231 Cells
4.12. Simulating the Abscopal Effect
4.13. Expected Surviving Fraction from GRID Irradiation
4.14. Assessing the RIBE with GRID Irradiation
4.15. Combined RIBE and Immune-Mediated Response
4.16. GRID Effect on Irradiated and Non-Irradiated Clonogenic Survival
4.17. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Billena, C.; Khan, A.J. A Current Review of Spatial Fractionation: Back to the Future? Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Buckey, C.; Stathakis, S.; Cashon, K.; Gutierrez, A.; Esquivel, C.; Shi, C.; Papanikolaou, N. Evaluation of a Commercially-Available Block for Spatially Fractionated Radiation Therapy. J. Appl. Clin. Med. Phys. 2010, 11, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Asur, R.; Butterworth, K.T.; Penagaricano, J.A.; Prise, K.M.; Griffin, R.J. High Dose Bystander Effects in Spatially Fractionated Radiation Therapy. Cancer Lett. 2015, 356, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Khan, M.K.; Wu, X.; Simone, C.B.; Fan, J.; Gressen, E.; Zhang, X.; Limoli, C.L.; Bahig, H.; Tubin, S.; et al. Spatially Fractionated Radiation Therapy: History, Present and the Future. Clin. Transl. Radiat. Oncol. 2020, 20, 30–38. [Google Scholar] [CrossRef]
- Prezado, Y.; Grams, M.; Jouglar, E.; Martínez-Rovira, I.; Ortiz, R.; Seco, J.; Chang, S. Spatially Fractionated Radiation Therapy: A Critical Review on Current Status of Clinical and Preclinical Studies and Knowledge Gaps. Phys. Med. Biol. 2024, 69, 10TR02. [Google Scholar] [CrossRef]
- Wu, X.; Perez, N.C.; Zheng, Y.; Li, X.; Jiang, L.; Amendola, B.E.; Xu, B.; Mayr, N.A.; Lu, J.J.; Hatoum, G.F.; et al. The Technical and Clinical Implementation of LATTICE Radiation Therapy (LRT). Radiat. Res. 2020, 194, 737–746. [Google Scholar] [CrossRef]
- Asur, R.S.; Sharma, S.; Chang, C.W.; Penagaricano, J.; Kommuru, I.M.; Moros, E.G.; Corry, P.M.; Griffin, R.J. Spatially Fractionated Radiation Induces Cytotoxicity and Changes in Gene Expression in Bystander and Radiation Adjacent Murine Carcinoma Cells. Radiat. Res. 2012, 177, 751–765. [Google Scholar] [CrossRef]
- Nagasawa, H.; Little, J.B. Induction of Sister Chromatid Exchanges by Extremely Low Doses of A-Particles. Cancer Res. 1992, 52, 6394–6396. [Google Scholar]
- Gaillard, S.; Pusset, D.; de Toledo, S.M.; Azzam, E.I.; Fromm, M. Distance Distribution of Bystander Effects in Alpha-Particle Irradiated Cell Populations Using a CR-39-Based Culture Dish. Radiat. Meas. 2008, 43, S34–S40. [Google Scholar] [CrossRef]
- Farias, V.d.A.; Tovar, I.; del Moral, R.; O’Valle, F.; Expósito, J.; Oliver, F.J.; Ruiz de Almodóvar, J.M. Enhancing the Bystander and Abscopal Effects to Improve Radiotherapy Outcomes. Front. Oncol. 2020, 9, 1381. [Google Scholar] [CrossRef]
- Ahmed, M.; Bicher, S.; Stewart, R.D.; Bartzsch, S.; Schmid, T.E.; Combs, S.E.; Meyer, J. Dosimetric Quantities and Cell Survival for Spatially Fractionated Radiation Therapy. Front. Phys. 2023, 10, 1064860. [Google Scholar] [CrossRef]
- Johnson, T.R.; Bassil, A.M.; Williams, N.T.; Brundage, S.; Kent, C.L.; Palmer, G.; Mowery, Y.M.; Oldham, M. An Investigation of KV Mini-GRID Spatially Fractionated Radiation Therapy: Dosimetry and Preclinical Trial. Phys. Med. Biol. 2022, 67, 045017. [Google Scholar] [CrossRef]
- Peng, V.; Suchowerska, N.; Rogers, L.; Claridge Mackonis, E.; Oakes, S.; McKenzie, D.R. Grid Therapy Using High Definition Multileaf Collimators: Realizing Benefits of the Bystander Effect. Acta Oncol. 2017, 56, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Sontheimer-Phelps, A.; Hassell, B.A.; Ingber, D.E. Modelling Cancer in Microfluidic Human Organs-on-Chips. Nat. Rev. Cancer 2019, 19, 65–81. [Google Scholar] [CrossRef]
- Antonelli, F. 3D Cell Models in Radiobiology: Improving the Predictive Value of In Vitro Research. Int. J. Mol. Sci. 2023, 24, 10620. [Google Scholar] [CrossRef]
- Fitzgerald, A.A.; Li, E.; Weiner, L.M. 3D Culture Systems for Exploring Cancer Immunology. Cancers 2021, 13, 56. [Google Scholar] [CrossRef] [PubMed]
- Raitanen, J.; Barta, B.; Hacker, M.; Georg, D.; Balber, T.; Mitterhauser, M. Comparison of Radiation Response between 2D and 3D Cell Culture Models of Different Human Cancer Cell Lines. Cells 2023, 12, 360. [Google Scholar] [CrossRef] [PubMed]
- Doctor, A.; Seifert, V.; Ullrich, M.; Hauser, S.; Pietzsch, J. Three-Dimensional Cell Culture Systems in Radiopharmaceutical Cancer Research. Cancers 2020, 12, 2765. [Google Scholar] [CrossRef]
- Prezado, Y.; Dos Santos, M.; Gonzalez, W.; Jouvion, G.; Guardiola, C.; Heinrich, S.; Labiod, D.; Juchaux, M.; Jourdain, L.; Sebrie, C.; et al. Transfer of Minibeam Radiation Therapy into a Cost-Effective Equipment for Radiobiological Studies: A Proof of Concept. Sci. Rep. 2017, 7, 17295. [Google Scholar] [CrossRef]
- Prezado, Y.; Sarun, S.; Gil, S.; Deman, P.; Bouchet, A.; Le Duc, G. Increase of Lifespan for Glioma-Bearing Rats by Using Minibeam Radiation Therapy. J. Synchrotron Radiat. 2012, 19, 60–65. [Google Scholar] [CrossRef]
- Dilmanian, F.A.; Zhong, Z.; Bacarian, T.; Benveniste, H.; Romanelli, P.; Wang, R.; Welwart, J.; Yuasa, T.; Rosen, E.M.; Anschel, D.J. Interlaced x-ray microplanar beams: A radiosurgery approach with clinical potential. Proc. Natl. Acad. Sci. USA 2006, 103, 9709–9714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trappetti, V.; Fazzari, J.M.; Fernandez-palomo, C.; Scheidegger, M.; Volarevic, V.; Martin, O.A.; Djonov, V.G. Microbeam Radiotherapy—A Novel Therapeutic Approach to Overcome Radioresistance and Enhance Anti-tumour Response in Melanoma. Int. J. Mol. Sci. 2021, 22, 7755. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.A.; Marino, S.A.; Brenner, D.J.; Hall, E.J. Bystander Effect and Adaptive Response in C3H 10T1/2 Cells. Int. J. Radiat. Biol. 2004, 80, 465–472. [Google Scholar] [CrossRef]
- Guerin, M.V.; Finisguerra, V.; Van den Eynde, B.J.; Bercovici, N.; Trautmann, A. Preclinical Murine Tumor Models: A Structural and Functional Perspective. eLife 2020, 9, e50740. [Google Scholar] [CrossRef]
- Koontz, B.F.; Verhaegen, F.; De Ruysscher, D. Tumour and Normal Tissue Radiobiology in Mouse Models: How Close Are Mice to Mini-Humans? Br. J. Radiol. 2017, 90, 20160441. [Google Scholar] [CrossRef]
- Lopes, J.; Ferreira-Gonçalves, T.; Ascensão, L.; Viana, A.S.; Carvalho, L.; Catarino, J.; Faísca, P.; Oliva, A.; de Barros, D.P.C.; Rodrigues, C.M.P.; et al. Safety of Gold Nanoparticles: From In Vitro to In Vivo Testing Array Checklist. Pharmaceutics 2023, 15, 1120. [Google Scholar] [CrossRef]
- Unnikrishnan, K.; Thomas, L.V.; Ram Kumar, R.M. Advancement of Scaffold-Based 3D Cellular Models in Cancer Tissue Engineering: An Update. Front. Oncol. 2021, 11, 733652. [Google Scholar] [CrossRef]
- Rijal, G.; Li, W. 3D Scaffolds in Breast Cancer Research. Biomaterials 2016, 81, 135–156. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.; Murray, B.; Carnachan, R.; Przyborski, S. Alvetex®: Polystyrene Scaffold Technology for Routine Three Dimensional Cell Culture. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2011; Volume 695, pp. 323–340. [Google Scholar]
- Liu, K.; Newbury, P.A.; Glicksberg, B.S.; Zeng, W.Z.D.; Paithankar, S.; Andrechek, E.R.; Chen, B. Evaluating Cell Lines as Models for Metastatic Breast Cancer through Integrative Analysis of Genomic Data. Nat. Commun. 2019, 10, 2138. [Google Scholar] [CrossRef]
- Saraiva, D.P.; Matias, A.T.; Braga, S.; Jacinto, A.; Cabral, M.G. Establishment of a 3D Co-Culture With MDA-MB-231 Breast Cancer Cell Line and Patient-Derived Immune Cells for Application in the Development of Immunotherapies. Front. Oncol. 2020, 10, 1543. [Google Scholar] [CrossRef]
- Daguenet, E.; Louati, S.; Wozny, A.S.; Vial, N.; Gras, M.; Guy, J.B.; Vallard, A.; Rodriguez-Lafrasse, C.; Magné, N. Radiation-Induced Bystander and Abscopal Effects: Important Lessons from Preclinical Models. Br. J. Cancer 2020, 123, 339–348. [Google Scholar] [CrossRef]
- Belyakov, O.V.; Mitchell, S.A.; Parikh, D.; Randers-Pehrson, G.; Marino, S.A.; Amundson, S.A.; Geard, C.R.; Brenner, D.J. Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away. Proc. Natl. Acad. Sci. USA 2005, 102, 14203–14208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.; Li, K.; Hong, M. Radiation-Induced Bystander Effect and Cytoplasmic Irradiation Studies with Microbeams. Biology 2022, 11, 945. [Google Scholar] [CrossRef] [PubMed]
- Maeda, M.; Tomita, M.; Usami, N.; Kobayashi, K. Bystander Cell Death Is Modified by Sites of Energy Deposition within Cells Irradiated with a Synchrotron X-Ray Microbeam. Radiat. Res. 2010, 174, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, K.T.; McGarry, C.K.; Trainor, C.; O’Sullivan, J.M.; Hounsell, A.R.; Prise, K.M. Out-of-Field Cell Survival Following Exposure to Intensity-Modulated Radiation Fields. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1516–1522. [Google Scholar] [CrossRef]
- McGarry, C.K.; Butterworth, K.T.; Trainor, C.; McMahon, S.J.; O’Sullivan, J.M.; Prise, K.M.; Hounsell, A.R. In-Vitro Investigation of out-of-Field Cell Survival Following the Delivery of Conformal, Intensity-Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) Plans. Phys. Med. Biol. 2012, 57, 6635–6645. [Google Scholar] [CrossRef]
- Claridge Mackonis, E.; Suchowerska, N.; Zhang, M.; Ebert, M.; McKenzie, D.R.; Jackson, M. Cellular Response to Modulated Radiation Fields. Phys. Med. Biol. 2007, 52, 5469–5482. [Google Scholar] [CrossRef]
- Arous, D.; Larsen Lie, J.; Vårli Håland, B.; Børsting, M.; Frederike Jeppesen Edin, N.; Malinen, E. 2D Mapping of Radiation Dose and Clonogenic Survival for Accurate Assessment of in Vitro X-Ray GRID Irradiation Effects. Phys. Med. Biol. 2023, 68, 025024. [Google Scholar] [CrossRef]
- Gehre, S.; Meyer, F.; Sengedorj, A.; Grottker, F.; Reichardt, C.M.; Alomo, J.; Borgmann, K.; Frey, B.; Fietkau, R.; Rückert, M.; et al. Clonogenicity-Based Radioresistance Determines the Expression of Immune Suppressive Immune Checkpoint Molecules after Hypofractionated Irradiation of MDA-MB-231 Triple-Negative Breast Cancer Cells. Front. Oncol. 2023, 13, 981239. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, H.; Meng, F.; Han, Y.; Chen, Y.; Xiao, M.; Jiang, H.; Yu, Z.; Xu, B. Role of BCLAF-1 in PD-L1 Stabilization in Response to Ionizing Irradiation. Cancer Sci. 2021, 112, 4064–4074. [Google Scholar] [CrossRef]
- Ma, C.M.; Coffey, C.W.; DeWerd, L.A.; Liu, C.; Nath, R.; Seltzer, S.M.; Seuntjens, J.P. AAPM Protocol for 40-300 KV x-Ray Beam Dosimetry in Radiotherapy and Radiobiology. Med. Phys. 2001, 28, 868–893. [Google Scholar] [CrossRef] [PubMed]
- Niroomand-Rad, A.; Chiu-Tsao, S.T.; Grams, M.P.; Lewis, D.F.; Soares, C.G.; Van Battum, L.J.; Das, I.J.; Trichter, S.; Kissick, M.W.; Massillon-JL, G.; et al. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG-55. Med. Phys. 2020, 47, 5986–6025. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.E.; Herman, M.G.; Grams, M.P. Methodology for Radiochromic Film Analysis Using FilmQA Pro and ImageJ. PLoS ONE 2020, 15, e0233562. [Google Scholar] [CrossRef] [PubMed]
- Barcelo, H.; Faul, J.; Crimmins, E.; Thyagarajan, B. A Practical Cryopreservation and Staining Protocol for Immunophenotyping in Population Studies. Curr. Protoc. Cytom. 2018, 84, e35. [Google Scholar] [CrossRef]
- Carlson, N.; House, C.D.; Tambasco, M. Toward a Transportable Cell Culture Platform for Evaluating Radiotherapy Dose Modifying Factors. Int. J. Mol. Sci. 2023, 24, 15953. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
Group | Radiation Peak Dose (Gy) | PBMCs | ICM | Post-Treatment Incubation Time (Days) | % Cell Survival |
---|---|---|---|---|---|
C1. Control | 0 | No | No | NA | (100 ± 18)% |
C2. PBMC Control | 0 | Yes | No | 5 | (72 ± 5)% |
1A. ICM: 3-Hole GRID | 0 | No | Yes | 5 | (105 ± 16)% |
1B. ICM: 6-Hole GRID | 0 | No | Yes | 5 | (78 ± 13)% |
2A. Abscopal: 3-Hole GRID | 0 | Yes | Yes | 5 | (74 ± 5)% |
2B. Abscopal: 6-Hole GRID | 0 | Yes | Yes | 5 | (79 ± 12)% |
3A. Bystander: 3-Hole GRID | 20 | No | Yes | 1 | (68 ± 4)% |
3B. Bystander: 6-Hole GRID | 20 | No | Yes | 1 | (54 ± 14)% |
4A. Primary: 3-Hole GRID | 20 | Yes | Yes | 6 | (61 ± 6)% |
4B. Primary: 6-Hole GRID | 20 | Yes | Yes | 6 | (59 ± 7)% |
5A. R & R: 3-Hole GRID | 20 | No | Yes | 6 | (91 ± 6)% |
5B. R & R: 6-Hole GRID | 20 | No | Yes | 6 | (86 ± 22)% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casteloes, N.; House, C.D.; Tambasco, M. A 3D Co-Culture Scaffold Approach to Assess Spatially Fractionated Radiotherapy Bystander and Abscopal Immune Effects on Clonogenic Survival. Int. J. Mol. Sci. 2025, 26, 4436. https://doi.org/10.3390/ijms26094436
Casteloes N, House CD, Tambasco M. A 3D Co-Culture Scaffold Approach to Assess Spatially Fractionated Radiotherapy Bystander and Abscopal Immune Effects on Clonogenic Survival. International Journal of Molecular Sciences. 2025; 26(9):4436. https://doi.org/10.3390/ijms26094436
Chicago/Turabian StyleCasteloes, Nicholas, Carrie D. House, and Mauro Tambasco. 2025. "A 3D Co-Culture Scaffold Approach to Assess Spatially Fractionated Radiotherapy Bystander and Abscopal Immune Effects on Clonogenic Survival" International Journal of Molecular Sciences 26, no. 9: 4436. https://doi.org/10.3390/ijms26094436
APA StyleCasteloes, N., House, C. D., & Tambasco, M. (2025). A 3D Co-Culture Scaffold Approach to Assess Spatially Fractionated Radiotherapy Bystander and Abscopal Immune Effects on Clonogenic Survival. International Journal of Molecular Sciences, 26(9), 4436. https://doi.org/10.3390/ijms26094436