The Effect of Reduced Dietary Protein on Adipose Tissue in Local Krškopolje Pigs
Abstract
1. Introduction
2. Results
2.1. Histomorphological Traits of Adipose Tissue
2.2. Lipogenic Enzyme Activities of Adipose Tissue
2.3. Fatty Acid Composition of Adipose Tissue
2.4. RNA-Sequencing
2.4.1. Diet Effect on Differential Gene Expression in the Outdoor Rearing System
2.4.2. Diet Effect on Differential Gene Expression in the Indoor Rearing System
2.5. Candidate Gene Expression Analysis Using NanoString nCounter Gene Expression Assay
2.5.1. Effect of Diet on the Candidate Gene Expression in the Outdoor System
2.5.2. Effect of Diet on the Candidate Gene Expression in the Indoor System
2.6. RNA-Seq Validation Using Nanostring nCounter Gene Expression Assay
3. Discussion
3.1. The Effect of the Diet on Adipose Tissue of Krškopolje Pigs Reared in the Outdoor System
3.2. The Effect of the Diet on Adipose Tissue of Krškopolje Pigs Reared in the Indoor System
3.3. Conclusions
4. Materials and Methods
4.1. Animals and Sample Collection
4.2. Adipose Tissue Histomorphological Traits
4.3. Determination of Lipogenic Enzyme Activity
4.4. Fatty Acid Composition Analysis
4.5. RNA-Sequencing Analysis
4.5.1. RNA Extraction, Library Preparation, and Sequencing
4.5.2. Bioinformatic Analysis of RNA-Seq Data
4.5.3. Gene Ontology and KEGG Pathway Over-Representation Analyses
4.6. Candidate Gene Expression Analysis and Validation of RNA-Seq Data Using NanoString
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batorek Lukač, N.; Tomažin, U.; Škrlep, M.; Kastelic, A.; Poklukar, K.; Čandek-Potokar, M. Krškopoljski Prašič. In European Local Pig Breeds—Diversity and Performance. A Study of Project TREASURE; Intech Open: Rijeka, Croatia, 2019. [Google Scholar]
- Poklukar, K.; Čandek-Potokar, M.; Lukač, N.B.; Škrlep, M. Biochemical and Gene Expression Differences Associated with Higher Fat Deposition in Krškopolje Pigs in Comparison with Lean Hybrid Pigs. Livest. Sci. 2023, 272, 105247. [Google Scholar] [CrossRef]
- Brossard, L.; Nieto, R.; Charneca, R.; Araujo, J.P.; Pugliese, C.; Radović, Č.; Čandek-Potokar, M. Modelling Nutritional Requirements of Growing Pigs from Local Breeds Using InraPorc. Animals 2019, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Škrlep, M.; Poklukar, K.; Vrecl, M.; Brankovič, J.; Čandek-Potokar, M. Growth Performance, Carcass Quality, and Lipid Metabolism in Krškopolje Pigs and Modern Hybrid Pigs: Comparison of Genotypes and Evaluation of Dietary Protein Reduction. Animals 2024, 14, 3331. [Google Scholar] [CrossRef] [PubMed]
- Palma-Granados, P.; Seiquer, I.; Benítez, R.; Óvilo, C.; Nieto, R. Effects of Lysine Deficiency on Carcass Composition and Activity and Gene Expression of Lipogenic Enzymes in Muscles and Backfat Adipose Tissue of Fatty and Lean Piglets. Anim. Int. J. Anim. Biosci. 2019, 13, 2406–2418. [Google Scholar] [CrossRef]
- Tejeda, J.F.; Hernández-Matamoros, A.; Paniagua, M.; González, E. Effect of Free-Range and Low-Protein Concentrated Diets on Growth Performance, Carcass Traits, and Meat Composition of Iberian Pig. Animals 2020, 10, 273. [Google Scholar] [CrossRef]
- Madeira, M.S.; Rolo, E.A.; Alfaia, C.M.; Pires, V.R.; Luxton, R.; Doran, O.; Bessa, R.J.B.; Prates, J.A.M. Influence of Betaine and Arginine Supplementation of Reduced Protein Diets on Fatty Acid Composition and Gene Expression in the Muscle and Subcutaneous Adipose Tissue of Cross-Bred Pigs. Br. J. Nutr. 2016, 115, 937–950. [Google Scholar] [CrossRef]
- Aquilani, C.; Sirtori, F.; Franci, O.; Acciaioli, A.; Bozzi, R.; Pezzati, A.; Pugliese, C. Effects of Protein Restriction on Performances and Meat Quality of Cinta Senese Pig Reared in an Organic System. Animals 2019, 9, 310. [Google Scholar] [CrossRef]
- Muñoz, M.; Fernández-Barroso, M.A.; López-García, A.; Caraballo, C.; Nuñez, Y.; Óvilo, C.; González, E.; García-Casco, J.M. Consequences of a Low Protein Diet on the Liver and Longissimus Dorsi Transcriptome of Duroc × Iberian Crossbred Pigs. Animal 2021, 15, 100408. [Google Scholar] [CrossRef]
- Škrlep, M.; Poklukar, K.; Millet, S.; Čandek-Potokar, M. Reducing Protein Levels in Diets for Local Pig Breeds: A Case Study on Fat-type Krškopolje Pig. Anim. Sci. J. 2025; under review. [Google Scholar]
- Zhao, S.; Wang, J.; Song, X.; Zhang, X.; Ge, C.; Gao, S. Impact of Dietary Protein on Lipid Metabolism-Related Gene Expression in Porcine Adipose Tissue. Nutr. Metab. 2010, 7, 6. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.M.; Song, X.L.; Pan, H.B.; Li, W.Z.; Zhang, Y.Y.; Gao, S.Z.; Chen, D.W. Low Protein Diet Up-Regulate Intramuscular Lipogenic Gene Expression and down-Regulate Lipolytic Gene Expression in Growth—Finishing Pigs. Livest. Sci. 2012, 148, 119–128. [Google Scholar] [CrossRef]
- Madeira, M.S.; Pires, V.M.R.; Alfaia, C.M.; Costa, A.S.H.; Luxton, R.; Doran, O.; Bessa, R.J.B.; Prates, J.A.M. Differential Effects of Reduced Protein Diets on Fatty Acid Composition and Gene Expression in Muscle and Subcutaneous Adipose Tissue of Alentejana Purebred and Large White × Landrace × Pietrain Crossbred Pigs. Br. J. Nutr. 2013, 110, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.S.; Wang, Y.; Feugang, J.M.; Zhou, H.; Liao, S.F. RNA Sequencing Analysis Revealed Differentially Expressed Genes and Their Functional Annotation in Porcine Longissimus Dorsi Muscle Affected by Dietary Lysine Restriction. Front. Vet. Sci. 2023, 10, 1233292. [Google Scholar] [CrossRef] [PubMed]
- Malgwi, I.H.; Halas, V.; Grünvald, P.; Schiavon, S.; Jócsák, I. Genes Related to Fat Metabolism in Pigs and Intramuscular Fat Content of Pork: A Focus on Nutrigenetics and Nutrigenomics. Animals 2022, 12, 150. [Google Scholar] [CrossRef]
- Stachowiak, M.; Nowacka-Woszuk, J.; Szydlowski, M.; Switonski, M. The ACACA and SREBF1 Genes Are Promising Markers for Pig Carcass and Performance Traits, but Not for Fatty Acid Content in the Longissimus Dorsi Muscle and Adipose Tissue. Meat Sci. 2013, 95, 64–71. [Google Scholar] [CrossRef]
- Muñoz, G.; Alves, E.; Fernández, A.; Óvilo, C.; Barragán, C.; Estellé, J.; Quintanilla, R.; Folch, J.M.; Silió, L.; Rodríguez, M.C.; et al. QTL Detection on Porcine Chromosome 12 for Fatty-Acid Composition and Association Analyses of the Fatty Acid Synthase, Gastric Inhibitory Polypeptide and Acetyl-Coenzyme A Carboxylase Alpha Genes. Anim. Genet. 2007, 38, 639–646. [Google Scholar] [CrossRef]
- Colbert, C.L.; Kim, C.-W.; Moon, Y.-A.; Henry, L.; Palnitkar, M.; McKean, W.B.; Fitzgerald, K.; Deisenhofer, J.; Horton, J.D.; Kwon, H.J. Crystal Structure of Spot 14, a Modulator of Fatty Acid Synthesis. Proc. Natl. Acad. Sci. USA 2010, 107, 18820–18825. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, J.; Qin, W.; Chen, H.; Chen, G.; Shang, X.; Zhang, M.; Balsai, N.; Chen, H. Polymorphisms in 5′ Proximal Regulating Region of THRSP Gene Are Associated with Fat Production in Pigs. 3 Biotech 2020, 10, 267. [Google Scholar] [CrossRef]
- Corominas, J.; Ramayo-Caldas, Y.; Puig-Oliveras, A.; Estellé, J.; Castelló, A.; Alves, E.; Pena, R.N.; Ballester, M.; Folch, J.M. Analysis of Porcine Adipose Tissue Transcriptome Reveals Differences in de Novo Fatty Acid Synthesis in Pigs with Divergent Muscle Fatty Acid Composition. BMC Genom. 2013, 14, 843. [Google Scholar] [CrossRef]
- Xing, K.; Wang, K.; Ao, H.; Chen, S.; Tan, Z.; Wang, Y.; Xitong, Z.; Yang, T.; Zhang, F.; Liu, Y.; et al. Comparative Adipose Transcriptome Analysis Digs out Genes Related to Fat Deposition in Two Pig Breeds. Sci. Rep. 2019, 9, 12925. [Google Scholar] [CrossRef]
- Meneses, M.J.; Silvestre, R.; Sousa-Lima, I.; Macedo, M.P. Paraoxonase-1 as a Regulator of Glucose and Lipid Homeostasis: Impact on the Onset and Progression of Metabolic Disorders. Int. J. Mol. Sci. 2019, 20, 4049. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, H.; Xia, N. The Interplay Between Adipose Tissue and Vasculature: Role of Oxidative Stress in Obesity. Front. Cardiovasc. Med. 2021, 8, 650214. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef]
- Pugliese, C.; Madonia, G.; Chiofalo, V.; Margiotta, S.; Acciaioli, A.; Gandini, G. Comparison of the Performances of Nero Siciliano Pigs Reared Indoors and Outdoors. 1. Growth and Carcass Composition. Meat Sci. 2003, 65, 825–831. [Google Scholar] [CrossRef]
- Bee, G.; Guex, G.; Herzog, W. Free-Range Rearing of Pigs during the Winter: Adaptations in Muscle Fiber Characteristics and Effects on Adipose Tissue Composition and Meat Quality Traits. J. Anim. Sci. 2004, 82, 1206–1218. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Carneiro-Freire, N.; Seco-Filgueira, M.; Fernández-Fernández, C.; Mouriño-Bayolo, D. Mitochondrial β-Oxidation of Saturated Fatty Acids in Humans. Mitochondrion 2019, 46, 73–90. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, B.; Zhang, X.; Sun, G.; Sun, X. Targeting Orphan Nuclear Receptors NR4As for Energy Homeostasis and Diabetes. Front. Pharmacol. 2020, 11, 587457. [Google Scholar] [CrossRef]
- Timofeev, Y.S.; Kiselev, A.R.; Dzhioeva, O.N.; Drapkina, O.M. Heat Shock Proteins (HSPs) and Cardiovascular Complications of Obesity: Searching for Potential Biomarkers. Curr. Issues Mol. Biol. 2023, 45, 9378–9389. [Google Scholar] [CrossRef]
- Moura, C.S.; Lollo, P.C.B.; Morato, P.N.; Amaya-Farfan, J. Dietary Nutrients and Bioactive Substances Modulate Heat Shock Protein (HSP) Expression: A Review. Nutrients 2018, 10, 683. [Google Scholar] [CrossRef]
- Krause, M.; Heck, T.G.; Bittencourt, A.; Scomazzon, S.P.; Newsholme, P.; Curi, R.; de Bittencourt, P.I.H. The Chaperone Balance Hypothesis: The Importance of the Extracellular to Intracellular HSP70 Ratio to Inflammation-Driven Type 2 Diabetes, the Effect of Exercise, and the Implications for Clinical Management. Mediat. Inflamm. 2015, 2015, 249205. [Google Scholar] [CrossRef]
- Dahdah, N.; Tercero-Alcázar, C.; Malagón, M.M.; Garcia-Roves, P.M.; Guzmán-Ruiz, R. Interrelation of Adipose Tissue Macrophages and Fibrosis in Obesity. Biochem. Pharmacol. 2024, 225, 116324. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Gao, Y.; Aaron, N.; Qiang, L. A Glimpse of the Connection between PPARγ and Macrophage. Front. Pharmacol. 2023, 14, 1254317. [Google Scholar] [CrossRef] [PubMed]
- Colmenares, M.T.C.; Matos, A.d.O.; Dantas, P.H.d.S.; Neto, J.R.D.C.; Silva-Sales, M.; Sales-Campos, H. Unveiling the Impact of TREM-2+ Macrophages in Metabolic Disorders. Cell. Immunol. 2024, 405–406, 104882. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Brunner, J.S.; Hajto, A.; Sharif, O.; Schabbauer, G. Lipid Scavenging Macrophages and Inflammation. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2022, 1867, 159066. [Google Scholar] [CrossRef]
- Odegaard, J.I.; Ricardo-Gonzalez, R.R.; Eagle, A.R.; Vats, D.; Morel, C.R.; Goforth, M.H.; Subramanian, V.; Mukundan, L.; Ferrante, A.W.; Chawla, A. Alternative M2 Activation of Kupffer Cells by PPARδ Ameliorates Obesity-Induced Insulin Resistance. Cell Metab. 2008, 7, 496–507. [Google Scholar] [CrossRef]
- Heming, M.; Gran, S.; Jauch, S.-L.; Fischer-Riepe, L.; Russo, A.; Klotz, L.; Hermann, S.; Schäfers, M.; Roth, J.; Barczyk-Kahlert, K. Peroxisome Proliferator-Activated Receptor-γ Modulates the Response of Macrophages to Lipopolysaccharide and Glucocorticoids. Front. Immunol. 2018, 9, 893. [Google Scholar] [CrossRef]
- Santos, E.W.; de Oliveira, D.C.; Hastreiter, A.; Beltran, J.S.d.O.; Rogero, M.M.; Fock, R.A.; Borelli, P. High-Fat Diet or Low-Protein Diet Changes Peritoneal Macrophages Function in Mice. Nutrire 2016, 41, 6. [Google Scholar] [CrossRef]
- Liao, S.F.; Wang, T.; Regmi, N. Lysine Nutrition in Swine and the Related Monogastric Animals: Muscle Protein Biosynthesis and Beyond. SpringerPlus 2015, 4, 147. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasbad, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Bazin, R.; Ferré, P. Assays of Lipogenic Enzymes. In Adipose Tissue Protocols; Ailhaud, G., Ed.; Springer: New York, NY, USA, 2001; pp. 121–127. [Google Scholar]
- Škrlep, M.; Poklukar, K.; Kress, K.; Vrecl, M.; Fazarinc, G.; Lukač, N.B.; Weiler, U.; Stefanski, V.; Čandek-Potokar, M. Effect of Immunocastration and Housing Conditions on Pig Carcass and Meat Quality Traits1. Transl. Anim. Sci. 2020, 4, 1224–1237. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. The R Package Rsubread Is Easier, Faster, Cheaper and Better for Alignment and Quantification of RNA Sequencing Reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Yu, G. Thirteen Years of clusterProfiler. Innovation 2024, 5, 100722. [Google Scholar] [CrossRef]
HP Diet | LP Diet | RMSE | p-Value | |
---|---|---|---|---|
Outdoor rearing system | ||||
Number of pigs | 12 | 12 | ||
Backfat thickness, mm | 49.4 | 53.7 | 5.21 | 0.058 |
Adipocyte surface area, µm2 | ||||
Inner layer | 7828 | 8055 | 873.1 | 0.540 |
Outer layer | 8596 | 8645 | 723.1 | 0.872 |
Number of adipocytes per ROI | ||||
Inner layer | 136 | 132 | 24.0 | 0.686 |
Outer layer | 149 | 144 | 24.3 | 0.622 |
Indoor rearing system | ||||
Number of pigs | 14 | 14 | ||
Backfat thickness, mm | 45.1 | 42.7 | 5.24 | 0.236 |
Adipocyte surface area, µm2 | ||||
Inner layer | 7330 | 6767 | 855.5 | 0.094 |
Outer layer | 8048 | 7321 | 792.1 | 0.023 |
Number of adipocytes per ROI | ||||
Inner layer | 160 | 180 | 28.8 | 0.079 |
Outer layer | 185 | 190 | 23.7 | 0.548 |
HP Diet | LP Diet | RMSE | p-Value | |
---|---|---|---|---|
Outdoor rearing system | ||||
Number of pigs | 12 | 12 | ||
ME1 | 298.5 | 416.4 | 108.24 | 0.014 |
G6PD | 500.7 | 628.4 | 127.69 | 0.023 |
CCL | 167.4 | 256.0 | 71.3 | 0.006 |
FASN | 19.5 | 39.5 | 19.8 | 0.034 |
Indoor rearing system | ||||
Number of pigs | 14 | 14 | ||
ME1 | 211.6 | 240.8 | 60.27 | 0.212 |
G6PD | 491.3 | 495.1 | 102.7 | 0.922 |
CCL | 123.9 | 124.1 | 53.59 | 0.992 |
FASN | 18.1 | 15.0 | 8.77 | 0.456 |
HP Diet | LP Diet | RMSE | p-Value | |
---|---|---|---|---|
Outdoor rearing system | ||||
Number of pigs | 12 | 12 | ||
SFA | 43.47 | 43.52 | 1.570 | 0.937 |
MUFA | 45.55 | 46.73 | 1.273 | 0.034 |
PUFA | 10.98 | 9.75 | 0.859 | 0.002 |
C10:00 | 0.05 | 0.05 | 0.016 | 0.787 |
C12:00 | 0.07 | 0.07 | 0.004 | 0.606 |
C14:00 | 1.36 | 1.31 | 0.060 | 0.066 |
C15:00 | 0.01 | 0.00 | 0.010 | 0.204 |
C16:00 | 25.79 | 25.93 | 0.724 | 0.637 |
C16:1n−7 | 1.8 | 1.86 | 0.267 | 0.616 |
C17:00 | 0.13 | 0.12 | 0.014 | 0.015 |
C17:1n−7 | 0.21 | 0.19 | 0.031 | 0.080 |
C18:00 | 15.83 | 15.8 | 1.248 | 0.950 |
C18:1n−9 | 42.18 | 43.26 | 1.144 | 0.031 |
C18:2n−6 | 9.26 | 8.21 | 0.757 | 0.003 |
C18:3n−3 | 0.69 | 0.61 | 0.058 | 0.005 |
C20:00 | 0.24 | 0.25 | 0.020 | 0.194 |
C20:1n−9 | 1.36 | 1.43 | 0.150 | 0.275 |
C20:2n−6 | 0.69 | 0.62 | 0.058 | 0.009 |
C20:3n−6 | 0.05 | 0.04 | 0.008 | 0.061 |
C20:3n−3 | 0.13 | 0.11 | 0.013 | 0.006 |
C22:1n−9 | 0.00 | 0.00 | . | . |
C20:4n−6 | 0.17 | 0.15 | 0.023 | 0.186 |
C22:6n−3 | 0.00 | 0.00 | . | . |
Indoor rearing system | ||||
Number of pigs | 14 | 14 | ||
SFA | 41.71 | 42.15 | 1.617 | 0.483 |
MUFA | 46.52 | 46.82 | 1.661 | 0.342 |
PUFA | 11.77 | 11.03 | 1.145 | 0.103 |
C10:00 | 0.06 | 0.06 | 0.005 | 0.178 |
C12:00 | 0.07 | 0.07 | 0.007 | 1.000 |
C14:00 | 1.30 | 1.26 | 0.080 | 0.130 |
C15:00 | 0.03 | 0.02 | 0.022 | 0.239 |
C16:00 | 25.01 | 24.79 | 0.806 | 0.465 |
C16:1n−7 | 2.01 | 1.83 | 0.246 | 0.059 |
C17:00 | 0.14 | 0.14 | 0.022 | 0.768 |
C17:1n−7 | 0.25 | 0.25 | 0.038 | 0.518 |
C18:00 | 14.89 | 15.60 | 1.181 | 0.123 |
C18:1n−9 | 43.09 | 43.48 | 1.533 | 0.509 |
C18:2n−6 | 9.99 | 9.36 | 0.994 | 0.108 |
C18:3n−3 | 0.84 | 0.73 | 0.076 | 0.001 |
C20:00 | 0.21 | 0.22 | 0.027 | 0.453 |
C20:1n−9 | 1.17 | 1.24 | 0.952 | 0.292 |
C20:2n−6 | 0.60 | 0.61 | 0.065 | 0.804 |
C20:3n−6 | 0.04 | 0.04 | 0.008 | 0.749 |
C20:3n−3 | 0.11 | 0.10 | 0.024 | 0.235 |
C22:1n−9 | 0.00 | 0.01 | 0.038 | 0.327 |
C20:4n−6 | 0.18 | 0.19 | 0.027 | 0.810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poklukar, K.; Čandek-Potokar, M.; Vrecl, M.; Brankovič, J.; Uršič, M.; Škrlep, M. The Effect of Reduced Dietary Protein on Adipose Tissue in Local Krškopolje Pigs. Int. J. Mol. Sci. 2025, 26, 4440. https://doi.org/10.3390/ijms26094440
Poklukar K, Čandek-Potokar M, Vrecl M, Brankovič J, Uršič M, Škrlep M. The Effect of Reduced Dietary Protein on Adipose Tissue in Local Krškopolje Pigs. International Journal of Molecular Sciences. 2025; 26(9):4440. https://doi.org/10.3390/ijms26094440
Chicago/Turabian StylePoklukar, Klavdija, Marjeta Čandek-Potokar, Milka Vrecl, Jana Brankovič, Matjaž Uršič, and Martin Škrlep. 2025. "The Effect of Reduced Dietary Protein on Adipose Tissue in Local Krškopolje Pigs" International Journal of Molecular Sciences 26, no. 9: 4440. https://doi.org/10.3390/ijms26094440
APA StylePoklukar, K., Čandek-Potokar, M., Vrecl, M., Brankovič, J., Uršič, M., & Škrlep, M. (2025). The Effect of Reduced Dietary Protein on Adipose Tissue in Local Krškopolje Pigs. International Journal of Molecular Sciences, 26(9), 4440. https://doi.org/10.3390/ijms26094440